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Abstract

Extension operators extend functions defined on the boundary of a
domain into its interior. This paper presents explicit extension oper-
ators by means of multilevel decompositions on hierarchical grids. It
is shown that the norm-preserving property of these operators holds
for the 2D as well for the 3D case with constants independent on dis-
cretization and domain size. These constants can be further improved
by an additional iteration scheme applied to the extension operator.
Some implementation of these techniques is presented for a domain
decomposition preconditioner and numerical experiments are given.

Keywords : Boundary value problems, trace theory, multilevel meth-
ods, domain decomposition, preconditioning, finite ele-
ment method.

1 Introduction

The purpose of this paper is to discuss the construction of norm-preserving
explicit extension operators of functions at a boundary into the interior of
the domain. The theorems on traces of functions from Sobolev spaces play
an important role in studying boundary value problems of mathematical
physics [2, 3, 4]. These theorems are commonly used for deriving a priori
estimates of the stability with respect to boundary conditions. For the case
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of grid functions the first constructive analysis of this problem seems to be
carried out in [1], where the case of rectangular grids was considered. For
a numerical solution of non-homogeneous Dirichlet problems it is important
to have a good extension of the Dirichlet conditions inside the domain. If
the trivial extension, i.e. extension by zero at interior nodes of the grid, is
used then instead of the numerical solution of a boundary value problem with
a smooth solution, we have to compute a solution with a huge gradient in
the vicinity of the boundary. The use of norm-preserving explicit extension
operators gives a “good” initial guess for iteration processes and reduces
the boundary value problems with non-homogeneous Dirichlet conditions to
the boundary value problems with homogeneous Dirichlet conditions. The
solution of the last is uniformly bounded with respect to the grid size.

Another important application of the explicit extension operators is con-
nected with domain decomposition methods [18, 19, 21]. Using the ex-
plicit extension operators in domain decomposition methods, instead of exact
solvers in the subdomains, local preconditioning operators can be utilized.
Using this operators, optimal estimates of the convergence rate of the domain
decomposition methods and optimal arithmetic cost are obtained.

The first construction of the norm-preserving explicit extension opera-
tors for unstructured grids seems to be suggested in [18] and used for the
construction of preconditioning operators in [18, 19, 20, 21]. For the case
of hierarchical grids, near norm-preserving explicit extension operators have
been suggested in [14] which are easy to implement. Its iterative improv-
ing was discussed in [10, 11]. In this paper we follow [22]. To construct
the explicit extension operators, functions at the boundary are decomposed
into series of functions at hierarchical grids. Then, each component of this
decomposition will be extended in a very simple way. Multilevel decomposi-
tion in trace spaces was also considered in [25]. To prove the trace theorem
for hierarchical grids, a multilevel decomposition of the boundary has been
used in [24]. In the present paper, we design the multilevel decomposition of
functions on the boundary with very cheap arithmetic costs and the arith-
metic costs of the resulting explicit extension operators (as well as adjoint
operators) is proportional to the number of grid nodes.

The paper is organized as follows. In Section 2, the construction of ex-
plicit extension operators is presented. Realization aspects of these exten-
sions are discussed in Section 3. The improvement of the extensions by an
iterative scheme is proposed in Section 4. The application to domain decom-
position methods is considered in Section 5 and some numerical experiments
are presented in Section 6.



2 Construction of Extension Operators

Let €2 be a bounded, polygonal domain and I' be its boundary. Consider a
coarse grid triangulation of (2

which will be successively refined an number of times. This results in a

sequence of nested triangulations Q2 Q" ... Q" such that
My,
=", k=017,
i=1

are generated by subdividing triangles 7 into four

i

where the triangles Ti(k+])
congruent, subtriangles by connecting the midpoints of the edges. Introduce
the spaces Wy, and Vj, of FE (finite element) functions. The space Wy, consists
of real-valued functions which are continuous on €2 and linear on the triangles

in Q. The space V is the space of traces on ' of functions from W,
Vi = {SOh\QOh = uh\r, with u” € Wi}

We consider W), and V}, as the subspaces of the Sobolev spaces H'(2) and
H%(F), respectively, with corresponding norms [4]. The main goal is the
construction of some norm—preserving explicit extension operator ¢ from V;

tOWJZ
t: VJ —)WJ .

This construction is based on the idea from [14], but instead of Yserentant’s
hierarchical decomposition [27, 28] of the space V; we use some analogous

of the so—called BPX~decomposition of V; [7, 26]. Denote by cp(k), i =

1,2,..., N; the nodal basis of V;, and by @Ek) the one dimensional subspace
(k)

spanned by this function ¢, with support ai(k). Define

QY Ly(T) — o

the Lo—like projection from Lo (T") onto @Ek):



where

i = — R P I (1a)
(@i "5 Do)

k) _ 1 h

4" = (())W 1)1 0) (1b)
meas | o

Denote by

N,
Q=Y 0", k=01,...,7-1.
=1

For k = J, Q. is defined as the Ly orthoprojection from Ly(€2) onto V.

LEMMA 1. There exist positive constants ¢, ¢o, independent of h, such
that for any " €V,

J
a " 1o < I1Que" I, m + ZQkH(Qk — Que—1))#" I,
k=1

Hz(F)
< & HQDhHQH%(F)'

PROOF The result above is a simple consequence of well-known properties
of @ and a technique from [5, 9, 23, 24, 28]. However, for completeness we
give the proof. It is easy to see that () is the linear projection onto V; and
there exists a constant c3, independent of h, such that

1Quely oy < esllel, Ly, Voo € Lal) )

!

holds, where o*gk)

point with (Ii(k).

Also the following approximation property of ) holds :

(%)

is the union of all o; which posses at least one common

N,
le = Quelliumy < Dolle— el o0, = anwm Quell3, )
i=1

Ny,
JE— . . — 2
- Z||¢_H7+Qk (KZ (10) ||L2(0’Ek))

IN

1+C3 ZH@_H?H (k)



Here k; is an arbitrary constant function. Then the estimate

le — QrellT,mry < € 2% ol Vo € H'(T)

is valid with some h-independent constant ¢;. According to [24] there exists
also an h-independent constant ¢; such that

e ey < ot Z2’f||§k||,2

Z £h—<ﬂ

J
< ||Q090h||12(r) + Z 251 (Qr — Qr—1) CPhH%Q(F)

< [1Qo™I7,ry + 42 2" l" — Qee"lI7, )

Let us estimate ||¢" — Q" ||1,(r). For any ¢ € H'(T') we have

" — Qk@hHLQ(F) = l¢" v+ — Qv+ Qutp — Qk@hHLQ(r)
< " = Yl + ¥ — Qudbllaay + Q¥ — ")y
< (1+ )" —"(/)Hfz + a2 W|H1(F) ;

where the constant ¢4 arises from (2) by summing of (Ii(k)

over all ¢y € H'(T'), we obtain the K-functional

||90h*QkS0h||Lg(r < P5¢ l,?lf {HSO — Yl +2 kW\Hl )} = s K1 (275, ¢")

. Taking the infimum

where the constant ¢ is independent of h. Using the equivalence of norms
(see, e.g., [9, 24])

o0
10" 2y = 110" 0y + SRR ")
one obtains the statement of Lemma 1. [ |

Denote by mv(;k), i=1,2, ... ,L; the nodes of the triangulation QF (we as-

sume that nodes ng) are enumerated first on I' and then inside €2) and define

the extension operator ¢ in the following way. For any ¢" € V; set

e = Qo (3a)
Po= Qe Q)¢ k=1,2,....J. (3b)



Then

goh:w['}+1/)f+...+1/)f} .

Define the extension u! € Wy of the function ¢} according to [14, 22]:

h(.(0) (0)
(0 Yo (x, ,x; €D
i) = {EO( R (12
h( (k) (k)
h,.(k) V(i) @ €,
up(zi’) = k (4b)
Z { 0 o) ¢r

For ¢ we choose either the mean value of the boundary function # or the
solution of the proper PDE on the coarsest grid with Dirichlet boundary
conditions }.

Now, we define the extension

toh =ul =l pul 4+l (5)

By setting ¢ ¢" := v, the definition above can be written in a recursive way :

vy = ub (6a)
Ve = Upy +up k=1,...,J . (6b)
Note, that v, € W, is the extension of Qz¢" on level k =0,...,.J.

REMARK 1. We can use the Ly orthoprojection from Lo(S2) onto Vi in-
stead of Qr, k =0,1,...,.J — 1. But in this case the cost of the decomposi-
tion (3) is expensive (especially for three dimensional problems).

LEMMA 2. There exists a positive constant cg, independent of h, such that
[kl @) < 6 2% (05l nary, b =0,1,...,J.
PROOF The proof of this lemma is obvious and was done in [14]. [

THEOREM 1. There exists a positive constant ¢z, independent of h, such
that

It @) < erlle”|l pery V" €V

Here the operator t is defined in (5).



PROOF We have (see,e.g., [24])

7
66"y = "y < s nf 7 4 a0
A

J h h
> wpg=u
k=0

7
< CSZ 4 gl -
k=0

Here cg is independent of h and the U,Z‘, k=0,...,J are defined in (4). Then
it follows from Lemma 1, 2 and from the special structure of the functions u!

that

J J
Z4k||u2||%g(ﬂ) < CgZQkHWH%Q(r) < 010||90h||?ql/2(r)
k=0 k=0

holds, where ¢q, ¢y are independent of h. Note that ¢; = /cg - ¢1g . [ |

REMARK 2. The construction of the extension operatort for three dimen-
stonal problems can be done in the same way. The Theorem 1 is valid too.

If the original domain is split into many subdomains in domain decompo-
sition methods [19], then the diameters of the subdomains depend on some
small parameter £ and we need the extension operator ¢ such that the con-
stant ¢; from the Theorem 1 is independent of €. To do this, let us assume
that by making the change of variables

r=c-s, wx€Q (7)

the domain € is transformed into the domain €' with the boundary I and
that the properties of Q' are independent of €. From [19, 20] we have the
following.

LEMMA 3. There exists a positive constant ¢y, independent of h and ¢,
such that

culle®ll 3 ) < Il

)

for any function u" € W, where o" € V; is the trace of u at the boundary T,
And there exists a positive constant cio, independent of h and €, such that
for any " € V; there exists u" € W, :

u'(z) = ¢"(z), w €T,

ooy < cnlle®l3,



Here
e 5., = <l ey + 0",

"2y = / (o ()2 |

2
Iﬂc—u\2

LEMMA 4. There exists a positive constant ci3, independent of h and ¢,
such that for any " € V;

(8)

I < enlle"|)?

1
les + el + 91l

T) %(]—\) ’

1
H2(T)
Here
= Que", w1 =¢" ¢
The following lemma is valid.

LEMMA 5. There exists a positive constant ci4, independent of h and ¢,
such that

HZ(T)

€

J
1
||903'||j{%(r) +o @QW?H%Q(F) + ZQkH(Qk - le)@?“i(r)) < call@"? 4
k=1

Here @l ", are from (8).
PROOF Using (7) and Lemma 1, we have

%HQO?H%Z(F) + \@?\QH%(F = ||90?||%2(rf) + |80?|i,%(

) )

IN

J
o @QB@?HQLQ(F’) + > 2@} - le)w’fllig(m)

J
= a @QO%HLQ +22k”(Qka1)@?HiQ(r)) -
k=1

Here @), is the projection which corresponds to () with the change of
variables. [ ]



THEOREM 2. There exists a positive constant ci5, independent of h and
e, such that

It < ewlle'll, 3, Ve €V .

Here the operator t is defined in (5).
PROOF For ¢}, o from (8) we have

J
Qg2+ D224 1(Qu = @u1)e I
< k=1
J
< 1Ry + D2 2@k — Qe n)eh iy
€ k=1

J
+ Z 2°01(Qr — Qr—1) 0 117,y

k=1

For the function ! consider the following decomposition:

vy = 903,0 + 90317
ho
$po = const = meas fgo
)7
803,1 = 903 - @g,o-
It is easy to see that (Qy — Qk,l)cpg"ﬂ =0, k=1,2,---,.J .

Then we can use the evident trick from [14] with the Poincare inequality
in Hz(I"):

J J
Z Qk”(Qk - qu)s@é‘H%Q(r) = Z 2k||(Qk - qu)@gg ||%2(r)

k=1 k=1
= SZQkH Qr — Q- 1)9001”121*' < 025”903,1“2%@,)
k=1
< g€ = v
= 1659001|H2 oy 6165‘@0,1|H%(F) = ci6¢leg) HEI)

Here ¢y is from the Poincare inequality. It is easy to see that there exists a
positive constant c¢;7, independent of h and £, such that

gy < errlls ] whry

where ¥ = oh = Qop", and ull € Wy is from (4). The rest of the estimates
for Theorem 2 and Theorem 1 is the same. [ |



3 Realization of the Extension

Consider the symmetric, H'-elliptic and H'-bounded variational problem

find u € ];I(Q) :
/Q Mz) V0u(z) Vo(z) de = /Q f@)o@)de  Yoe HY(Q), (9)

arising from the weak formulation of a scalar second—order, symmetric and
uniformly bounded elliptic boundary value problem given in a plane bounded
domain Q C R? with a piecewise smooth boundary I' = 9} .

Define the usual finite elements (FE) nodal basis

O = [, ;] = [1917... ! S ] , (10)

! NG TN NN ()

where the first N((j]) = N, basis functions on the finest level .J correspond
to nodes on I'; the remaining basis functions are in the interior. The proper
nodes will be denoted by “C” and “I”. Similarly, Nék) and N;k) represent
the number of basis functions on the boundary and in the interior on level k.
Then the FE isomorphism leads to the symmetric and positive definite system
of equations on each level &k

Ker Keorg) (Ucg fex
E ’ ’ t)o= ko= 11
: Ek (Kfc,k KT,k > <ﬂl,k fl,k ik ’ ( )

where Ky is symmetric, positive definite.

In the following, the matrices Iy, Ity B coarse grid nodes
denote the proper identities on level k and e new fine grid nodes
the matrices Pit!, PrMt PETL vepresent

the usual linear FE interpolation matrices
(Fig. 1) on the proper subsets of nodes.
The multilevel extension of a function

h NG o)

Pt = Zl Y, ®; EV{ represented by
J

the vector ¢y € RM¢' into a function

()7 (D
h __ Ne '+N;
us = 2.

1
2

N[ =

Uu; 192(']) € W, represented
) .

by the vector u € RV~ consists of three

steps :

Figure 1: Linear FE interpolation

10



1. Determine the rectangular %<~ projection matrix Q; and define
the coefficients of the projection Q)" in the FE nodal basis of level k

Bo=Qw  k=0,...J. (12)

2. According to (3) split the vectors 3, into the coefficients of the multi-

(k)
level nodal basis presentation of " = 37 Z:V” agk)gpgk) and deter-

mine the coefficient vectors o,

Qo = QU (13a)
— Pk I ék—l —
gk .— (_ C,k*] C’k) /8 k — 17 ey z] - (13b)
B
: : NELN® 1y o)
3. The coefficients v, of the extensions v, =), ' wv;/0;" are deter-
mined by
_ [ Ycpo IC,O
w= (i) = (o) e
o
_ (Yo Ioy Pg‘,kq 0 ="
U = (ﬂ[,k) ( 0 Plk(:,kq Plk,kfl Yokt | - (14D)

Vrk—1

Denote by E the matrix representation of the extension ¢ (5), then we
set By = v,.

1o 1

i 1 )NI(O) XNéO)’
mean value of the boundary data into the interior. Another approach
is the discrete harmonic extension on the coarsest grid with respect to

the PDE, i.e., Bico = — K,y Kico.

. 1 .
The matrix B¢y can be chosen as W( mapping the

4 Improving the Extension by an Iteration
Scheme

Denote by z;, some extension of boundary data a(, then the functional

T (zrk) = (Kk (a”> , (a”>> represents the square of the energy norm of

21k 21k
that extension. The extensions given in (6) are just an approximation of the

following minimization problem

Vrrg = arg min j(él,k) ) (15)

2k

11



which is equivalent to the system of equations

v = o
ZC\k =2C\k (16)
K;ykgl’k = —chykgak k = 0, cee J .

To improve the quality of those extensions given in (6), i.e., decrease the
constants in Theorems 1 and 2, we apply some iteration scheme on (16)

4 . 4 .
Vi = Ui — Bk (Kiwvry, + Kiokaey) - (17)
Vg .
By defining the iteration matrix M;* = [] (I,,k — TgB,,kKLk) the v, itera-
j=1

tions can be rewritten to
Ve . Vg 0 Vi —1
Vrg = Ml,kﬂi,k - (Il,k - Ml,k) KI,kKIC,kQC,k (18)

with some initial guess 7_)?7,{. To define the preconditioner By, for instance,
we can split Ky into the strictly upper, diagonal and lower part, i.e.,
Kir = L1+ Drg+ Upy, then the Gauf3-Seidel iteration matrix is defined
via Ml,k = (DI,k + Ll’k)ilULk.

There are two opportunities to choose the initial guess Q?’k and the bound-
ary data ac .
First, we start the iteration with the zero initial guess and the discrete rep-
resentation of ¢, i.e., o, on the boundary. This changes (14b) into

Q
Yok) _ Icy 1 Piy 0 U_k . (19)
U1k —(Irp — M75)Kp p Kic Plkc,kq Pﬁ,k—] ;(;:7]]

The second opportunity consists in using the actual extension on level k

as initial guess and the proper boundary data vc. The relation

Vo = oy + P&y ey leads directly to the second reformulation of (14b)

k (o7
(QC,IC) __ ( IC,k 0 ) (I(j’k PC,kf] 0 ) v
T Vg -1 Vi k k YCk—1
Urk *(Il,k - Ml,k)Kr,kKlC,k Ml,k 0 Pm,kq PI,kfl Uy

(20)

In the following, we omit the level index k. Recalling the functional J(z;),
the proper error functional is £(z;) =|| z; — w; ||f{[ with w;, = — K, 'K;caq
as the exact discrete extension.

12



LEMMA 6. Denote by Q} the j-th iterate in iteration scheme (17), which
converges in the Ki-energy norm, i.e., there exists a positive constant ¢ < 1
such that

; i1
Jwr —wy |, < allwr —w g, (21)

e}
J
wr

holds for all j > 0. Then the extension (Q > fulfills

Jw)) = T(w,)+Ew)) < T(w,)+q7Ew?)

with some initial guess w?.

PROOF With the definitions for J and £ we write

- () 6)
wy wy
= (K}, w) + (Kicae, w)) + (Kojw), ac) + (Koae, ac)
——_———
=(w},Krcae)
= (Krw"},w"}) + (KI Kf]chQc,lﬂ}) + (w"}, K K;1K1020>
————— ——
=—w; =—w;
+ (Kjwp,wy) — (Kjwp, wy) + (Keae, a¢)
= (Ki(w] —wy), (w] —w,;)) — (Kjw;, wy) + (Keag, ac)

= Nwi—w, I, — Iy, + ey,
5@}) j@])

< @ llu w2 4T (wy) = €W + T (w)

(21) . .
< - P, AT () = W) + T(w) - .

5 Application to a DD Preconditioner

The domain 2 will be decomposed into p non-overlapping subdomains
Qs (s=1,...,p) such that Q =[J'_, Q. The grid triangulations Q", will
be distributed analogously for all level £ =0,...,J.

Now, the submatrices in system (11) are changed into blockmatrices, es-

pecially K; = diag (K7;),_, - This new system will be solved by some

13



parallelized preconditioned iterative method, e.g., CG-method. As a precon-
ditioner we use the ASM DD preconditioner

O (10 B,J) (O(; O) ( Ic ()) | (22)
This preconditioner contains the three components C; = diag(cr,i)izl’...m,
Cc and the block matrix Bre, which can be chosen freely in order to adapt
the preconditioner to the particulars of the problem under consideration. For
the choice Bjc; = —Bj ;K ¢, see [13]. As preconditioner C¢ for the Schur

complement S¢ = K¢ — KorK; ' Ko the BPS [6] is used.
The preconditioning step w = C~'r can be rewritten in the form

Algorithm 1 : The ASM-DD Preconditioner [13]

14
w, = Cf Zl ATM (Zc,z' + BIT(:,iZI,i)
1=

_ e L
w,; = Crirp,+ Bioiwe, ci=1,2,....p

where A; = (2‘; AACIiji) denotes the subdomain connectivity matrix which
is used for a convenient notation only. The subdomain FE assembly process
which is connected with nearest neighbour communication stands behind this
notation. For further investigations on DD preconditioners see [17, 13, 12,
16, 21, 20].

Assume positive, h-independent spectral equivalence constants
Yo YCs Vs V1 fulfilling the spectral equivalence inequalities

Yo Cc < Sc < 7cCc and 7,0 < K; < 7,0

If we have additionally a constant ¢ so that

Ve .
) < )

holds then the upper and lower bounds of the condition number x(C~'K)
[13, 8] can be estimated as

O(cy) < w(CT'K) < O(c) . (24)

Estimate (23) represents the result from Theorem 1 in a discrete sense,
so that Bj¢c can be chosen as the discrete extension operator defined in (14),
(19) or (20). Additionally, Algorithm 1 requires Ber = B so that the

14



transposed of that extension have to be applied. Whereas transposing (14)
is quite simple one have to take care when smoothing is included.

If we denote by M the adjoint operator to My, with respect to the Ky
inner product, then the transposed operation to ( 19) can be written as

[ Vor — KCI,k (Ii,k - (Mr k) ) IkT_)I,k

%ak*l B (P(’f*,kq)T?_)C,k + (szc 1 T Uk ’
ZIk—1 (Plk,kil)Tyl,k

(25)

i.e., we have to perform vy sweeps of the iteration procedure defined by M
with the right hand side v;, and a zero initial guess. If M; represents a
lexicographically forward Gauf3-Seidel iteration, then the adjoint iteration is
the lexicographically backward one.

In the transposed operation to (20), the action

(M?:k)yk Vreg = Yrg— K[,kK;’,]CQ,,k + (M,Tk)yk Urk

* Yk
—1
= Yrx— Ky (II,k - (Ml,k> ) K[,kﬂi,k
N >

is just the defect calculation using the result w; , of v iterations with the

*
iteration operator My ;. So, this transposed operation can be written as

YVor — KOI,kMLk

Q, i T . T
Vor1 | = (PO,kfl) [vor — Korpwr ) + (Plc,kq) [wr g — Krawpy] | (26)

T
Ure—1 k
’ Pr,kq [Ql,k - Kl,kwl,k]

When the operator C} in Algorithm 1 is also defined as a multilevel operator,
the action C;'r; can be combined with B7.r;, see [11, 10].

6 Numerical Experiments

In the numerical experiments we used two simple and one challenging exam-
ples.

Example 1: —Au = 1 inQ=][0,1] x[0,0.5]
u = 0 onodf

Example 2: —Au = 1 inQ=][0,1]?
u = 0 onof

15



For Example 1, the domain 2 was subdivided into 2 squares, while the do-
main in Example 2 was partitioned into 16 squares.

Example 3 (Electrical machine): As a more challenging example we cal-
culated the magnetic potential in an electrical machine with a rather complex
geometry and large jumps in the coefficients (for more details see [15]), for
the decomposition of the domain into 16 subdomains see Fig. 2.

‘Ai V‘
A
POBERETIX

Figure 2: Material adapted decomposition and initial mesh of Example 3

All calculations were done on a 16 processor Parsytec POWER-XPLORER
with 32 MByte memory per node. All examples were solved with the pre-
conditioned parallelized CG using Algorithm 1 as preconditioning step until
an accuracy, measured in the KC~'K-energy norm, of 107% was achieved.
As Schur complement preconditioner C: the BPS [6] was used. Unless men-
tioned specifically, the inner problem was solved exactly, i.e., C; = K. For
comparison we used in example 3 also a multigrid V-cycle with one pre-
and one post-smoothing sweep (V11) for defining C;. The iteration proce-
dure (18) implemented via (20) was applied at the most one time (v € {0,1}).
In tables 1 - 3 the projection (la) was tested; the tables 4 - 6 present the
results using projection (1b). For measuring the quality of the extensions

we calculate Cyyer =|| E¢ l /

7? , the ratio between an ap-
7K, KTO£ %

proximate extension E¢ and the exact one in the energy norm.

16



proj. (1a) [v [ J=0]J=1|J=2]J=3[J=4|J=5]J=6]

Iterations | 0 2 7 8 11 12 13 13
Claver 01 1.00 1.05 1.07 1.10 1.14 1.17 1.19
Iterations | 1 2 6 8 8 8 9 9

Cliver 1 1.00 1.01 1.03 1.05 1.06 1.07 1.07

Table 1: # CG-iterations for Example 1 using 2 processors

proj. (la) [v [ J=0]J=1[J=2]J=3]J=4|J=5][J=6]

Iterations | 0 9 13 15 17 19 21 22
Claver 0 1.00 1.04 1.06 1.10 1.13 1.15 1.17
Iterations | 1 9 13 15 15 16 18 20
Claver 1 1.00 1.02 1.04 1.05 1.06 1.07 1.08

Table 2: # CG-iterations for Example 2 (459777 d.o.f.) using 16 processors

| proj. (1a) (v J=0]J=1]J=2]J=3] J=4] J=5 |

| # unknowns | || 440 [ 1.715 [ 6.773 | 26.921 | 107.345 | 428.705 |
Cr exact: Iterations | 0 25 33 41 50 59 69
Quality Cyyer 0| 1.00 1.05 1.08 1.11 1.13 1.14
C exact: Iterations | 1 25 32 39 46 52 59
Quality Cyyer 11 1.00 1.02 1.04 1.05 1.06 1.06
C; - V11: Iterations | 0 25 33 41 50 59 67
solver in sec. 0 1.5 2.2 3.5 7.1 21.5 80.5
C; - V11: Iterations | 1 25 32 39 45 51 58
solver in sec. 1 1.7 2.2 3.4 6.8 21.5 87.2

Table 3: # CG-iterations for Example 3 using 16 processors

For all three examples, the behavior of the iteration counts reflects the
logarithmic grow of the condition number x(C~'K) for the BPS Schur com-
plement preconditioner, i.e., the constant ¢z (23) seems to be h-independent.
Also the quality ratio C,. seems to be bounded with growing level num-
ber J, especially in example 3. Both observations are in agreement with the
result of Theorem 1. The additional iteration (v = 1) for defining the ex-
tension decreases the iteration count and really improves the quality of the
extension. The solver times in Table 3 indicate that the additional iteration
does not speed up the solution process for the example presented.
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proj. (1b) [v ][ J=0]J=1[J=2|J=3|J=4][J=5|J=6|

Tterations | 0 2 7 10 12 13 14 14
Claver 0| 1.00 1.06 1.08 1.12 1.15 1.17 1.19
Tterations | 1 2 6 8 9 9 9 9

Claver 1 1.00 1.01 1.02 1.04 1.05 1.07 1.07

Table 4: # CG-iterations for Example 1 using 2 processors

proj. (1b) [v [ J=0]J=1]J=2|J=3]|J=4]J=5]J=6|

Tterations | 0 9 13 16 19 20 22 23
Claver 0| 1.00 1.04 1.09 1.12 1.16 1.17 1.18
Tterations | 1 9 13 14 16 17 18 19
Claver 1 1.00 1.01 1.03 1.04 1.05 1.06 1.06

Table 5: # CG-iterations for Example 2 (459777 d.o.f.) using 16 processors

| proj. (1b) (v J=0]J=1]J=2]J=3] J=4] J=5 |

| # unknowns | [ 440 [ 1.715 | 6.773 | 26.921 | 107.345 | 428.705 |
Iterations 0 25 34 43 52 60 70
Quality Cyyer 0| 1.00 1.05 1.10 1.13 1.16 1.17
Iterations 1 25 32 39 46 03 59
Quality Cyyer 11 1.00 1.02 1.04 1.05 1.05 1.05
Cr - V11: Iterations | 0 25 34 43 53 60 68
solver in sec. 0 1.6 2.4 3.6 7.4 20.8 81.5
Cr - V11: Iterations | 1 25 32 39 47 54 60
solver in sec. 1 1.6 2.1 3.5 7.5 22.8 90.0

Table 6: # CG-iterations for Example 3 using 16 processors

Although the iteration counts in tables 4 - 6 are slightly higher, we can
draw the same conclusions for projection (1b) as for the projection according
to (la).

7 Conclusions

The extension technique (5) presented in Section 2 is a fast and qualitatively
good approximation of the homogeneous extension of Laplacian-like differ-
ential operators when using the projections (1). The independence of the
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constants in Theorems 1 and 2 from the discretization parameter h and the
diameter £ of the domain is still valid in the 3D-case but has to be tested in
future. In combination with a proper iteration procedure (18), the extension
procedure works also with respect to more complicated second order differ-
ential operators (see [11]). For the examples given, the additional iteration
step per level did not result in an improved overall solution time. But this
property may change in other examples.

When using the extensions in a DD preconditioner, the transposed of
those extensions is needed. In combination with a proper preconditioner C;
a sophisticated implementation reduces significantly the time per iteration
(for more details see [11, 10]). Here, again the 3D-case has to be investi-
gated. Using an efficient h-independent preconditioner C;, e.g. multigrid,
the asymptotic behavior of the condition number x(C~'K) depends only on
the asymptotic behavior of the Schur complement preconditioner Cc. There-
fore, the numerical effort of the whole parallel algorithm is nearly optimal
(logarithmically optimal).
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