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of grid functions the �rst constructive analysis of this problem seems to becarried out in [1], where the case of rectangular grids was considered. Fora numerical solution of non-homogeneous Dirichlet problems it is importantto have a good extension of the Dirichlet conditions inside the domain. Ifthe trivial extension, i.e. extension by zero at interior nodes of the grid, isused then instead of the numerical solution of a boundary value problem witha smooth solution, we have to compute a solution with a huge gradient inthe vicinity of the boundary. The use of norm-preserving explicit extensionoperators gives a "good" initial guess for iteration processes and reducesthe boundary value problems with non-homogeneous Dirichlet conditions tothe boundary value problems with homogeneous Dirichlet conditions. Thesolution of the last is uniformly bounded with respect to the grid size.Another important application of the explicit extension operators is con-nected with domain decomposition methods [18, 19, 21]. Using the ex-plicit extension operators in domain decomposition methods, instead of exactsolvers in the subdomains, local preconditioning operators can be utilized.Using this operators, optimal estimates of the convergence rate of the domaindecomposition methods and optimal arithmetic cost are obtained.The �rst construction of the norm-preserving explicit extension opera-tors for unstructured grids seems to be suggested in [18] and used for theconstruction of preconditioning operators in [18, 19, 20, 21]. For the caseof hierarchical grids, near norm-preserving explicit extension operators havebeen suggested in [14] which are easy to implement. Its iterative improv-ing was discussed in [10, 11]. In this paper we follow [22]. To constructthe explicit extension operators, functions at the boundary are decomposedinto series of functions at hierarchical grids. Then, each component of thisdecomposition will be extended in a very simple way. Multilevel decomposi-tion in trace spaces was also considered in [25]. To prove the trace theoremfor hierarchical grids, a multilevel decomposition of the boundary has beenused in [24]. In the present paper, we design the multilevel decomposition offunctions on the boundary with very cheap arithmetic costs and the arith-metic costs of the resulting explicit extension operators (as well as adjointoperators) is proportional to the number of grid nodes.The paper is organized as follows. In Section 2, the construction of ex-plicit extension operators is presented. Realization aspects of these exten-sions are discussed in Section 3. The improvement of the extensions by aniterative scheme is proposed in Section 4. The application to domain decom-position methods is considered in Section 5 and some numerical experimentsare presented in Section 6. 2



2 Construction of Extension OperatorsLet 
 be a bounded, polygonal domain and � be its boundary. Consider acoarse grid triangulation of 

h0 = M0[i=1 � (0)i ; diam(� (0)i ) = O(1)which will be successively re�ned an number of times. This results in asequence of nested triangulations 
h0 ; 
h1 ; : : : ; 
hJ such that
hk = Mk[i=1 � (k)i ; k = 0; 1; : : : ; J ;where the triangles � (k+1)i are generated by subdividing triangles � (k)i into fourcongruent subtriangles by connecting the midpoints of the edges. Introducethe spaces W k and Vk of FE (�nite element) functions. The space W k consistsof real-valued functions which are continuous on 
 and linear on the trianglesin 
hk. The space Vk is the space of traces on � of functions from W k :Vk = f'hj'h = uhj�; with uh 2 W kgWe consider W k and Vk as the subspaces of the Sobolev spaces H1(
) andH 12 (�), respectively, with corresponding norms [4]. The main goal is theconstruction of some norm{preserving explicit extension operator t from VJto W J : t : VJ ! W J :This construction is based on the idea from [14], but instead of Yserentant'shierarchical decomposition [27, 28] of the space VJ we use some analogousof the so{called BPX{decomposition of VJ [7, 26]. Denote by '(k)i ; i =1; 2; : : : ; Nk the nodal basis of Vk and by �(k)i the one{dimensional subspacespanned by this function '(k)i with support �(k)i . De�neQ(k)i : L2(�)! �(k)ithe L2{like projection from L2(�) onto �(k)i :Q(k)i  h = d(k)i ( h)'(k)i ;3



where d(k)i = 1('(k)i ; 1)L2(�) ( h; '(k)i )L2(�) ; or (1a)d(k)i = 1meas��(k)i �( h; 1)L2(�(k)i )) : (1b)Denote by Qk = NkXi=1 Q(k)i ; k = 0; 1; : : : ; J � 1 :For k = J , Qk is de�ned as the L2{orthoprojection from L2(
) onto VJ .LEMMA 1. There exist positive constants c1, c2, independent of h, suchthat for any 'h 2 VJc1 k'hk2H 12 (�) � kQ0'hk2L2(�) + JXk=1 2kk(Qk �Q(k�1))'hk2L2(�)� c2 k'hk2H 12 (�):PROOF The result above is a simple consequence of well-known propertiesof Qk and a technique from [5, 9, 23, 24, 28]. However, for completeness wegive the proof. It is easy to see that Qk is the linear projection onto Vk andthere exists a constant c3, independent of h, such thatkQk'kL2(�(k)i ) � c3 k'kL2(�(k)i 0 ) 8 ' 2 L2(�) (2)holds, where �(k)i 0 is the union of all �(k)j which posses at least one commonpoint with �(k)i .Also the following approximation property of Qk holds :k'�Qk'k2L2(�) � NkXi=1 k'�Qk'k2L2(�(k)i ) = NkXi=1 k'� �i + �i �Qk'k2L2(�(k)i )= NkXi=1 k'� �i +Qk (�i � ') k2L2(�(k)i )� 2(1 + c23) NkXi=1 k'� �ik2L2(�(k)i 0) :4



Here �i is an arbitrary constant function. Then the estimatek'�Qk'k2L2(�) � c4 2�k j'jH1(�) 8' 2 H1(�)is valid with some h-independent constant c4. According to [24] there existsalso an h-independent constant c1 such thatc1 k'hk2H1=2(�) � inf�hk2VkJPk=0 �hk ='h JXk=0 2k k�hkk2L2(�)� kQ0'hk2L2(�) + JXk=1 2k k (Qk �Qk�1)'hk2L2(�)� kQ0'hk2L2(�) + 4 JXk=1 2k k'h �Qk'hk2L2(�) :Let us estimate k'h �Qk'hkL2(�). For any  2 H1(�) we havek'h �Qk'hkL2(�) = k'h �  +  �Qk +Qk �Qk'hkL2(�)� k'h �  kL2(�) + k �Qk kL2(�) + kQk( � 'h)kL2(�)� (1 + c03)k'h �  kL2(�) + c42�kj jH1(�) ;where the constant c03 arises from (2) by summing of �(k)i . Taking the in�mumover all  2 H1(�), we obtain the K-functionalk'h �Qk'hkL2(�) � c5 inf 2H1(�) �k'h �  k+ 2�kj jH1(�)	 = c5K1(2�k; 'h) ;where the constant c5 is independent of h. Using the equivalence of norms(see, e.g., [9, 24])k'hk2H1=2(�) � k'hk2L2(�) + 1Xk=1 2kK21 (2�k; 'h) ;one obtains the statement of Lemma 1.Denote by x(k)i , i=1,2, : : : ,Lk the nodes of the triangulation 
hk (we as-sume that nodes x(k)i are enumerated �rst on � and then inside 
) and de�nethe extension operator t in the following way. For any 'h 2 VJ set h0 = Q0 'h ; (3a) hk = (Qk �Qk�1)'h; k = 1; 2; : : : ; J : (3b)5



Then 'h =  h0 +  h1 + : : :+  hJ :De�ne the extension uhk 2 W k of the function  hk according to [14, 22]:uh0(x(0)i ) = (  h0 (x(0)i ) ; x(0)i 2 � ; x(0)i 62 � ; (4a)uhk(x(k)i ) = (  hk (x(k)i ) ; x(k)i 2 � ;0 ; x(k)i 62 � ; (4b)For  we choose either the mean value of the boundary function  h0 or thesolution of the proper PDE on the coarsest grid with Dirichlet boundaryconditions  h0 .Now, we de�ne the extensiont 'h := uh � uh0 + uh1 + : : :+ uhJ : (5)By setting t 'h := vJ the de�nition above can be written in a recursive way :v0 := uh0 (6a)vk := vk�1 + uhk k = 1; : : : ; J : (6b)Note, that vk 2 W k is the extension of Qk'h on level k = 0; : : : ; J .REMARK 1. We can use the L2{orthoprojection from L2(
) onto Vk in-stead of Qk, k = 0; 1; : : : ; J � 1. But in this case the cost of the decomposi-tion (3) is expensive (especially for three dimensional problems).LEMMA 2. There exists a positive constant c6, independent of h, such thatkuhkkH1(
) � c6 2k k hkkL2(�); k = 0; 1; : : : ; J:PROOF The proof of this lemma is obvious and was done in [14].THEOREM 1. There exists a positive constant c7, independent of h, suchthat kt'hkH1(
) � c7k'hkH 12 (�) 8'h 2 VJ :Here the operator t is de�ned in (5). 6



PROOF We have (see,e.g., [24])kt'hk2H1(
) = kuhk2H1(
) � c8 infwhk2WkJPk=0whk =uh JXk=0 4k kwhkk2L2(
)� c8 JXk=0 4k kuhkk2L2(
) :Here c8 is independent of h and the uhk, k = 0; : : : ; J are de�ned in (4). Thenit follows from Lemma 1, 2 and from the special structure of the functions uhkthat JXk=0 4k kuhkk2L2(
) � c9 JXk=0 2k k hkk2L2(�) � c10k'hk2H1=2(�)holds, where c9, c10 are independent of h. Note that c7 = pc8 � c10 .REMARK 2. The construction of the extension operator t for three dimen-sional problems can be done in the same way. The Theorem 1 is valid too.If the original domain is split into many subdomains in domain decompo-sition methods [19], then the diameters of the subdomains depend on somesmall parameter " and we need the extension operator t such that the con-stant c7 from the Theorem 1 is independent of ". To do this, let us assumethat by making the change of variablesx = " � s; x 2 
 (7)the domain 
 is transformed into the domain 
0 with the boundary �0 andthat the properties of 
0 are independent of ". From [19, 20] we have thefollowing.LEMMA 3. There exists a positive constant c11, independent of h and ",such that c11k'hkH 12" (�) � kuhkH1(
)for any function uh 2 W J , where 'h 2 VJ is the trace of uh at the boundary �.And there exists a positive constant c12, independent of h and ", such thatfor any 'h 2 VJ there exists uh 2 W J :uh(x) = 'h(x); x 2 �;kuhkH1(
) � c12k'hkH 12" (�) :7



Here k'hk2H 12" (�) = "k'hk2L2(�) + j'hj2H 12 (�) ;k'hk2L2(�) = Z� ('h(x))2dx ;j'hj2H 12 (�) = Z� Z� ('h(x)� 'h)y))2jx� yj2 dx dy :LEMMA 4. There exists a positive constant c13, independent of h and ",such that for any 'h 2 VJk'h0k2H 12� (�) + 1"k'h1k2L2(�) + j'h1 j2H 12 (�) � c13k'hk2H 12" (�): (8)Here 'h0 = Q0'h; 'h1 = 'h � 'h0 :The following lemma is valid.LEMMA 5. There exists a positive constant c14, independent of h and ",such thatk'h0k2H 12" (�) + 1"  kQ0'h1k2L2(�) + JXk=1 2kk(Qk �Qk�1)'h1k2L2(�)! � c14k'hk2H 12� (�)Here 'h0 ; 'h1 , are from (8).PROOF Using (7) and Lemma 1, we have1"k'h1k2L2(�) + j'h1 j2H 12 (�) = k'h1k2L2(�0) + j'h1 j2H 12 (�0)� 1c1  kQ00'h1k2L2(�0) + JXk=1 2kk(Q0k �Q0k�1)'h1k2L2(�0)!= 1"c1  kQ0'h1k2L2(�) + JXk=1 2kk(Qk �Qk�1)'h1k2L2(�)! :Here Q0k is the projection which corresponds to Qk with the change ofvariables. 8



THEOREM 2. There exists a positive constant c15, independent of h and", such that kt'hkH1(
) � c15k'hkH 12" (�) 8'h 2 VJ :Here the operator t is de�ned in (5).PROOF For 'h0 ; 'h1 from (8) we havekQ0'hk2H 12" (�) + JXk=1 2kk(Qk �Qk�1)'hk2L2(�)� kQ0'hk2H 12" (�) + JXk=1 2kk(Qk �Qk�1)'h1k2L2(�)+ JXk=1 2kk(Qk �Qk�1)'h0k2L2(�) :For the function 'h0 consider the following decomposition:'h0 = 'h0;0 + 'h0;1;'h0;0 = const = 1meas(�) R� 'h0(x)dx'h0;1 = 'h0 � 'h0;0:It is easy to see that (Qk �Qk�1)'h0;0 = 0; k = 1; 2; � � � ; J :Then we can use the evident trick from [14] with the Poincare inequalityin H 12 (�0):JXk=1 2kk(Qk �Qk�1)'h0k2L2(�) = JXk=1 2kk(Qk �Qk�1)'h0;1k2L2(�)= " JXk=1 2kk(Q0k �Q0k�1)'h0;1k2L2(�0) � c2"k'h0;1k2H 12 (�0)� c16 "j'h0;1j2H 12 (�1) = c16 "j'h0;1j2H 12 (�) = c16 "j'h0 j2H 12 (�) :Here c16 is from the Poincare inequality. It is easy to see that there exists apositive constant c17, independent of h and ", such thatkuh0kH1(
) � c17k h0kH 12" (�);where  h0 = 'h0 = Q0'h, and uh0 2 W 0 is from (4). The rest of the estimatesfor Theorem 2 and Theorem 1 is the same.9



3 Realization of the ExtensionConsider the symmetric, �H1{elliptic and �H1{bounded variational problem�nd u 2 �H1(
) :Z
 �(x)rTu(x)rv(x) dx = Z
 f(x) v(x) dx 8v 2 �H1(
) ; (9)arising from the weak formulation of a scalar second{order, symmetric anduniformly bounded elliptic boundary value problem given in a plane boundeddomain 
 � R2 with a piecewise smooth boundary � = @
 .De�ne the usual �nite elements (FE) nodal basis� = [�C ;�I ] = �#J1 ; � � � ; #JN(J)C ; #JN(J)C +1; � � � ; #JN(J)C +N(J)I � ; (10)where the �rst N (J)C = NJ basis functions on the �nest level J correspondto nodes on �, the remaining basis functions are in the interior. The propernodes will be denoted by \C" and \I". Similarly, N (k)C and N (k)I representthe number of basis functions on the boundary and in the interior on level k.Then the FE isomorphism leads to the symmetric and positive de�nite systemof equations on each level kKk uk := �KC;k KCI;kKIC;k KI;k � �uC;kuI;k� =  fC;kf I;k! =: fk ; (11)where KI;k is symmetric, positive de�nite.In the following, the matrices IC;k, II;kdenote the proper identities on level k andthe matrices P k+1C;k , P k+1I;k , P k+1IC;k representthe usual linear FE interpolation matrices(Fig. 1) on the proper subsets of nodes.The multilevel extension of a function h = PN(J)Ci  i '(J)i 2 VJ represented bythe vector  2 RN(J)C into a functionuh = PN(J)C +N(J)Ii ui #(J)i 2 W J representedby the vector u 2 RN(J)I consists of three ����������
��
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Figure 1: Linear FE interpolationsteps :
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1. Determine the rectangular N(k)C �N(J)C projection matrix Qk and de�nethe coe�cients of the projection Qk h in the FE nodal basis of level k�k := Qk k = 0; : : : ; J : (12)2. According to (3) split the vectors �k into the coe�cients of the multi-level nodal basis presentation of  h = PJk=0 PN(k)Ci �(k)i '(k)i and deter-mine the coe�cient vectors �k�0 := �0 (13a)�k := ��P kC;k�1 IC;k���k�1�k � k = 1; : : : ; J : (13b)3. The coe�cients vk of the extensions vk =PN(k)C +N(k)Ii=1 v(k)i #(k)i are deter-mined byv0 = �vC;0vI;0� := � IC;0BIC;0��0 (14a)vk = �vC;kvI;k� := �IC;k P kC;k�1 00 P kIC;k�1 P kI;k�1� 0@ �kvC;k�1vI;k�11A : (14b)Denote by E the matrix representation of the extension t (5), then weset E' := vJ .The matrix BIC;0 can be chosen as 1N(0)C � 1 ��� 1� �1 ��� 1 �N(0)I �N(0)C , mapping themean value of the boundary data into the interior. Another approachis the discrete harmonic extension on the coarsest grid with respect tothe PDE, i.e., BIC;0 = �K�1I;0KIC;0.4 Improving the Extension by an IterationSchemeDenote by zI;k some extension of boundary data �C;k, then the functionalJ (zI;k) = �Kk ��C;kzI;k� ;��C;kzI;k�� represents the square of the energy norm ofthat extension. The extensions given in (6) are just an approximation of thefollowing minimization problemvI;k = argminzI;k J (zI;k) ; (15)11



which is equivalent to the system of equationsvC;k = �C;kKI;kvI;k = �KIC;k�C;k k = 0; : : : ; J : (16)To improve the quality of those extensions given in (6), i.e., decrease theconstants in Theorems 1 and 2, we apply some iteration scheme on (16)vjI;k := vj�1I;k � � jkBI;k � �KI;kvj�1I;k +KIC;k�C;k� : (17)By de�ning the iteration matrix M�kI;k := �kQj=1 �II;k � � jkBI;kKI;k� the �k itera-tions can be rewritten tov�kI;k := M�kI;kv0I;k � �II;k �M�kI;k�K�1I;kKIC;k�C;k (18)with some initial guess v0I;k. To de�ne the preconditioner BI;k, for instance,we can split KI;k into the strictly upper, diagonal and lower part, i.e.,KI;k = LI;k +DI;k + UI;k, then the Gau�-Seidel iteration matrix is de�nedvia MI;k := (DI;k + LI;k)�1UI;k.There are two opportunities to choose the initial guess v0I;k and the bound-ary data �C;k.First, we start the iteration with the zero initial guess and the discrete rep-resentation of  hk , i.e., �k, on the boundary. This changes (14b) into0@vC;kvI;k1A := 0@ IC;k P kC;k�1 0�(II;k �M�kI;k)K�1I;kKIC;k P kIC;k�1 P kI;k�11A0BBB@ �kvC;k�1vI;k�11CCCA : (19)The second opportunity consists in using the actual extension on level kas initial guess and the proper boundary data vC;k. The relationvC;k = �k + P kC;k�1vC;k�1 leads directly to the second reformulation of (14b)0@vC;kvI;k1A := 0@ IC;k 0�(II;k �M�kI;k)K�1I;kKIC;k M�kI;k1A0@IC;k P kC;k�1 00 P kIC;k�1 P kI;k�11A0BBB@ �kvC;k�1vI;k�11CCCA :(20)In the following, we omit the level index k. Recalling the functional J (zI),the proper error functional is E(zI) =k zI � wI k2KI with wI = �K�1I KIC�Cas the exact discrete extension. 12



LEMMA 6. Denote by wjI the j-th iterate in iteration scheme (17), whichconverges in the KI-energy norm, i.e., there exists a positive constant q < 1such that k wjI � wI kKI � q k wj�1I � wI kKI (21)holds for all j > 0. Then the extension ��CwjI� ful�llsJ (wjI) = J (wI) + E(wjI) � J (wI) + q2jE(w0I)with some initial guess w0I.PROOF With the de�nitions for J and E we writeJ (wjI) = �K ��CwjI� ;��CwjI��= �KIwjI ; wjI�+ �KIC�C ; wjI�+ �KCIwjI ; �C�| {z }=(wjI ;KIC�C) +(KC�C ; �C)= �KIwjI ; wjI�+ �KI K�1I KIC�C| {z }=�wI ; wjI�+ �wjI ; KI K�1I KIC�C| {z }=�wI �+ (KIwI ; wI)� (KIwI ; wI) + (KC�C ; �C)= �KI(wjI � wI); (wjI � wI)�� (KIwI ; wI) + (KC�C ; �C)= k wjI � wI k2KI| {z }E(wjI) � k wI k2KI + k �C k2KC| {z }J (wI)(21)� q2 k wj�1I � wI k2KI +J (wI) = q2E(wj�1I ) + J (wI)(21)� q2j k w0I � wI k2KI +J (wI) = q2jE(w0I) + J (wI) :5 Application to a DD PreconditionerThe domain 
 will be decomposed into p non-overlapping subdomains
s (s = 1; : : : ; p) such that 
 = Sps=1
s . The grid triangulations 
h; willbe distributed analogously for all level k = 0; : : : ; J .Now, the submatrices in system (11) are changed into blockmatrices, es-pecially KI = diag (KI;i)i=1;::: ;p. This new system will be solved by some13



parallelized preconditioned iterative method, e.g., CG-method. As a precon-ditioner we use the ASM{DD preconditionerC = �IC �B�TICO II ��CC OO CI�� IC O�BIC II� : (22)This preconditioner contains the three components CI = diag (CI;i)i=1;::: ;p,CC and the block matrix BIC , which can be chosen freely in order to adaptthe preconditioner to the particulars of the problem under consideration. Forthe choice BIC;i = �BI;iKIC;i see [13]. As preconditioner CC for the Schurcomplement SC = KC �KCIK�1I KIC the BPS [6] is used.The preconditioning step w = C�1r can be rewritten in the formAlgorithm 1 : The ASM-DD Preconditioner [13]wC = C�1C pPi=1 ATC;i �rC;i +BTIC;irI;i�wI;i = C�1I;i rI;i +BIC;iwC;i ; i = 1; 2; : : : ; pwhere Ai = � AC;i ACI;iAIC;i AI;i � denotes the subdomain connectivity matrix whichis used for a convenient notation only. The subdomain FE assembly processwhich is connected with nearest neighbour communication stands behind thisnotation. For further investigations on DD preconditioners see [17, 13, 12,16, 21, 20].Assume positive, h-independent spectral equivalence constantsC ; C ; I ; I ful�lling the spectral equivalence inequalitiesC CC � SC � C CC and I CI � KI � I CI :If we have additionally a constant cE so that� vCBICvC�K � cE k vC kSC 8vC 2 RNc (23)holds then the upper and lower bounds of the condition number �(C�1K)[13, 8] can be estimated asO(c2E) � �(C�1K) � O(c4E) : (24)Estimate (23) represents the result from Theorem 1 in a discrete sense,so that BIC can be chosen as the discrete extension operator de�ned in (14),(19) or (20). Additionally, Algorithm 1 requires BCI = BTIC so that the14



transposed of that extension have to be applied. Whereas transposing (14)is quite simple one have to take care when smoothing is included.If we denote by �M I;k the adjoint operator toMI;k with respect to the KI;kinner product, then the transposed operation to (19) can be written as0@ �kvC;k�1vI;k�11A = 0BBB@vC;k �KCI;k �II;k � � �M I;k��k�K�1I;k vI;k�P kC;k�1�T vC;k + �P kIC;k�1�T vI;k�P kI;k�1�T vI;k
1CCCA ; (25)i.e., we have to perform �k sweeps of the iteration procedure de�ned by �M I;kwith the right hand side vI;k and a zero initial guess. If MI;k represents alexicographically forward Gau�-Seidel iteration, then the adjoint iteration isthe lexicographically backward one.In the transposed operation to (20), the action�MTI;k��k vI;k = vI;k �KI;kK�1I;kvI;k + �MTI;k��k vI;k= vI;k �KI;k�II;k � � �M I;k��k�K�1I;kvI;k| {z }=: wI;kis just the defect calculation using the result wI;k of �k iterations with theiteration operator �M I;k. So, this transposed operation can be written as �kvC;k�1vI;k�1! = 0B@ vC;k �KCI;kwI;k�P kC;k�1�T �vC;k �KCI;kwI;k� + �P kIC;k�1�T �vI;k �KI;kwI;k��P kI;k�1�T �vI;k �KI;kwI;k� 1CA: (26)When the operator CI in Algorithm 1 is also de�ned as a multilevel operator,the action C�1I rI can be combined with BTICrI , see [11, 10].6 Numerical ExperimentsIn the numerical experiments we used two simple and one challenging exam-ples.Example 1: �4 u = 1 in
 = [0; 1]� [0; 0:5]u = 0 on @
Example 2: �4 u = 1 in
 = [0; 1]2u = 0 on @
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For Example 1, the domain 
 was subdivided into 2 squares, while the do-main in Example 2 was partitioned into 16 squares.Example 3 (Electrical machine): As a more challenging example we cal-culated the magnetic potential in an electrical machine with a rather complexgeometry and large jumps in the coe�cients (for more details see [15]), forthe decomposition of the domain into 16 subdomains see Fig. 2.

Figure 2: Material adapted decomposition and initial mesh of Example 3All calculations were done on a 16 processor Parsytec Power-Xplorerwith 32 MByte memory per node. All examples were solved with the pre-conditioned parallelized CG using Algorithm 1 as preconditioning step untilan accuracy, measured in the KC�1K-energy norm, of 10�6 was achieved.As Schur complement preconditioner CC the BPS [6] was used. Unless men-tioned speci�cally, the inner problem was solved exactly, i.e., CI = KI . Forcomparison we used in example 3 also a multigrid V-cycle with one pre-and one post-smoothing sweep (V11) for de�ning CI . The iteration proce-dure (18) implemented via (20) was applied at the most one time (� 2 f0; 1g).In tables 1 - 3 the projection (1a) was tested; the tables 4 - 6 present theresults using projection (1b). For measuring the quality of the extensionswe calculate Caver =k E' kK �� '�K�1I KIC' �K , the ratio between an ap-proximate extension E' and the exact one in the energy norm.
16



proj. (1a) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6Iterations 0 2 7 8 11 12 13 13Caver 0 1.00 1.05 1.07 1.10 1.14 1.17 1.19Iterations 1 2 6 8 8 8 9 9Caver 1 1.00 1.01 1.03 1.05 1.06 1.07 1.07Table 1: # CG-iterations for Example 1 using 2 processorsproj. (1a) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6Iterations 0 9 13 15 17 19 21 22Caver 0 1.00 1.04 1.06 1.10 1.13 1.15 1.17Iterations 1 9 13 15 15 16 18 20Caver 1 1.00 1.02 1.04 1.05 1.06 1.07 1.08Table 2: # CG-iterations for Example 2 (459777 d.o.f.) using 16 processorsproj. (1a) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5# unknowns 440 1.715 6.773 26.921 107.345 428.705CI exact: Iterations 0 25 33 41 50 59 69Quality Caver 0 1.00 1.05 1.08 1.11 1.13 1.14CI exact: Iterations 1 25 32 39 46 52 59Quality Caver 1 1.00 1.02 1.04 1.05 1.06 1.06CI - V11: Iterations 0 25 33 41 50 59 67solver in sec. 0 1.5 2.2 3.5 7.1 21.5 80.5CI - V11: Iterations 1 25 32 39 45 51 58solver in sec. 1 1.7 2.2 3.4 6.8 21.5 87.2Table 3: # CG-iterations for Example 3 using 16 processorsFor all three examples, the behavior of the iteration counts reects thelogarithmic grow of the condition number �(C�1K) for the BPS Schur com-plement preconditioner, i.e., the constant cE (23) seems to be h-independent.Also the quality ratio Caver seems to be bounded with growing level num-ber J, especially in example 3. Both observations are in agreement with theresult of Theorem 1. The additional iteration (� = 1) for de�ning the ex-tension decreases the iteration count and really improves the quality of theextension. The solver times in Table 3 indicate that the additional iterationdoes not speed up the solution process for the example presented.17



proj. (1b) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6Iterations 0 2 7 10 12 13 14 14Caver 0 1.00 1.06 1.08 1.12 1.15 1.17 1.19Iterations 1 2 6 8 9 9 9 9Caver 1 1.00 1.01 1.02 1.04 1.05 1.07 1.07Table 4: # CG-iterations for Example 1 using 2 processorsproj. (1b) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6Iterations 0 9 13 16 19 20 22 23Caver 0 1.00 1.04 1.09 1.12 1.16 1.17 1.18Iterations 1 9 13 14 16 17 18 19Caver 1 1.00 1.01 1.03 1.04 1.05 1.06 1.06Table 5: # CG-iterations for Example 2 (459777 d.o.f.) using 16 processorsproj. (1b) � J = 0 J = 1 J = 2 J = 3 J = 4 J = 5# unknowns 440 1.715 6.773 26.921 107.345 428.705Iterations 0 25 34 43 52 60 70Quality Caver 0 1.00 1.05 1.10 1.13 1.16 1.17Iterations 1 25 32 39 46 53 59Quality Caver 1 1.00 1.02 1.04 1.05 1.05 1.05CI - V11: Iterations 0 25 34 43 53 60 68solver in sec. 0 1.6 2.4 3.6 7.4 20.8 81.5CI - V11: Iterations 1 25 32 39 47 54 60solver in sec. 1 1.6 2.1 3.5 7.5 22.8 90.0Table 6: # CG-iterations for Example 3 using 16 processorsAlthough the iteration counts in tables 4 - 6 are slightly higher, we candraw the same conclusions for projection (1b) as for the projection accordingto (1a).7 ConclusionsThe extension technique (5) presented in Section 2 is a fast and qualitativelygood approximation of the homogeneous extension of Laplacian-like di�er-ential operators when using the projections (1). The independence of the18



constants in Theorems 1 and 2 from the discretization parameter h and thediameter " of the domain is still valid in the 3D-case but has to be tested infuture. In combination with a proper iteration procedure (18), the extensionprocedure works also with respect to more complicated second order di�er-ential operators (see [11]). For the examples given, the additional iterationstep per level did not result in an improved overall solution time. But thisproperty may change in other examples.When using the extensions in a DD preconditioner, the transposed ofthose extensions is needed. In combination with a proper preconditioner CIa sophisticated implementation reduces signi�cantly the time per iteration(for more details see [11, 10]). Here, again the 3D-case has to be investi-gated. Using an e�cient h-independent preconditioner CI , e.g. multigrid,the asymptotic behavior of the condition number �(C�1K) depends only onthe asymptotic behavior of the Schur complement preconditioner CC . There-fore, the numerical e�ort of the whole parallel algorithm is nearly optimal(logarithmically optimal).References[1] V. B. Andreev. The stability of �nite di�erence schemes for ellipticequations with respect to the Dirichlet boundary conditions. Zh. Vychisl.Mat. Mat. Fiz., 12:598{611, 1972.[2] N. Aronszajn. Boundary value of functions with �nite Dirichlet inte-gral. In Conference on partial di�erential equations, Studies in eigen-value problems, 1955.[3] V. M. Babic and L. N. Slobodecki. On the boundness of the Dirichletintegral. Dokl. Akad. Nauk SSSR, 106(4):604{607, 1956.[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'ski. Integral presentations offunctions and embedding theorems. Nauka, Moscow, 1975. in Russian.[5] F. A. Bornemann and H. Yserentant. A basic norm equivalence for thetheory of multilevel methods. Numer. Math., 64:455{476, 1993.[6] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction ofpreconditioners for elliptic problems by substructuring I { IV. Mathe-matics of Computation, 1986, 1987, 1988, 1989. 47, 103{134, 49, 1{16,51, 415{430, 53, 1{24.[7] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel precondi-tioners. Mathematics of Computation, 55(191):1 { 22, 1990.19
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