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Abstract

In this paper, an Algebraic Multigrid Solver (AMG++4) is presented. This solver is
especially suited for the fast solution of large sparse systems Apup = fp of algebraic
equations arising from finite element (FE) discretisation of second-order elliptic boundary
value problems (BVP) on unstructured refined meshes in one, two and three dimensi-
ons as well. The only information used is recovered from the stiffness matrix A;. More
precisely, the information hidden in the stiffness matrix allows us, to construct ”coarse
grids”, the intergrid transfer operators (restriction and prolongation) and the coarse grid
matrices. These tools together with some smoother and a solver for the equations on the
coarsest grid build up a complete multigrid algorithm. In special cases, we observe, that
the AMS completely coincides with some standard geometrical multigrid algorithms. The
AMS has been applied to two and three dimensional examples. The algebraic multigrid
algorithm shows the same numerical behaviour as it is known from the geometrical mul-
tigrid algorithms. Symmetric variants of the algebraic multigrid method can be used for
preconditioning a conjugate gradient solver. This combination is more robust and impro-
ves the convergence rate considerably. This paper was supported by the Austrian "Fonds
zur Forderung der wissenschaftlichen Forschung (FWF)’ within the project P10643-TEC,
"Domain Decomposition Methods in Structural Mechanics’.

1 Introduction

During the last years, the importance of the numerical simulation has been growing more and
more. This is certainly due to the rapid development of the hardware with respect to the
resources in memory and arithmetic power of the processors (see table below).

1985 1995

RAM | 640 KByte | 512 MByte
MFlop 0.X X00.
HDD | 20 MByte 8 GByte

Parallel machines allow us to multiply these resources by the number of pocessors available.
The software is always a little bit behind the progress in the hardware. This is especially true
for application software. In industry, technical experiments for developping and improving
new products are more and more replaced by computer simulations, provided that they are
cheaper and as realistic as experiments, or even better. Imagine, that we have to develop a
new product, for example an electrical machine or a combustion engine. The ”classical” way
to do this is to use experience for developing a prototype, then do some experiments, improve
the prototype and so on. Doing the same with numerical simulation, we must not build so
many prototypes, because we can test on the computer, and make the nessecary improvements
also on the computer. Furthermore, the optimization process can be modeled mathematically,
and therefore, it can be carried out on the computer. This is called automatic optimal design.
The computer aided design and the automatic optimal desingn need both a lot of calls of the
simulation routines. This is the reason why we need fast simulation codes. This is already
true for two dimensions. Conserning simulations on the basis of Partial Differential Equations



(PDEs) and its Finite Element (FE) discretisations, the numerical algorithm in the heart of
the most simulation codes and especially of commercial simulation codes, are far from being
optimal with respect to the complexity in aritmetic and memory.

The disadvantage of many mesh generators consists in the fact that they are producing
some fine grid with no hierarchical structure in it. Thus, the application of a geometrical
standard multigrid solver is not possible as long as no coarsening strategies are available.
Recently, such coarsening strategies have been proposed by R. E. Bank and J. Xu in two
dimensions (see [16]). Being aware of that problem, we have been working on an Algebraic
Multigrid Solver from the very beginning. In this context, ” Algebraic” means, that we put
a matrix K, and a righthandside fj into a black box ”Solver” and get out the solution wuy
of the algebraic system Kpup = fr. No mesh information is required to obtain the solution
' The algebraic multigrid solver should converge at least nearely as fast as the geometrical
version. In this case, the disadvantage of the mesh generator mentioned above turns out to be
an advantage, because the AMG (Algebraic MultiGrid) works on unstructured fine, nested
and caotically refined meshes nearely as well as the standard multigrid method. Another
advantage of the AMG is the fact, that it is easy to exchange the solver routine in some
standard finite element package by the AMG-routine. We have to put in only the solver,
it is not necessary to change the meshing strategie and the whole data structures. Also
adaptive mesh refinement causes troubles for standard multigrid (see [12]) which disappear
in the algebraic case. The first serious algebraic approach to multigrid methods was made
more than 10 years ago by J. W. Ruge and K. Stiiben, in [7]. However, this approach was
restricted to M-matrices, reqular grids or require the knowledge of the coordinats in every
meshpoint.

Recently, some revival of algebraic multigrid techniques has been observed ([8], [9], [17],
[18], [19], [4]). This is certainly due to the sucess of multilevel techniques (see [5]) as well as
the enormous progress in the hardware. Qur approach is based on the topological graph of the
matrix defined in [11]. A coarsening algorithm working on this graph gives some coarser graph
from which and from the fine grid matrix the coarse grid matrix can be derived by Galerkin
projection, provided that some prolongation is defined. At first we define the prolongation
matrix and obtain the restriction operator by transposing the prolongation matrix. In order
to complete the multigrid algorithm, it remains to define some smoothing iteration and some
solver for the system araizing at the ”coarsest” grid. These components form a complete
multigrid cycle that can be used immediately as a solver, or, in a symmetric version, as
preconditioner in the conjugate gradient (CG) iteration. The only conditions that restricts
the application of the algebraic multigrid solver consists in the fact, that the underlying PDE
is of second order, and the unknown approximate the nodal values of the unknown function
(the unknown should not be approximate derivatives !!). This means, that we should use
Lagrangian-typed finite elements.

2 Coarse Grid Generation Based on Topological Matrix Graphs

The main task in Algebraic Multigrid is based on finding some coarse grids, where the required
information needs not to be a real coarsenig of the given mesh. Using Galerkins method, we
have to search out a prolongation and a restriction operator, to generate some coarse grid
corrections.

We know, that the matrix contains mesh information. This is at least, that unknowns,
which are connected in the matrix, are neighours in the mesh. Therefore we need the following
definition.

Definition 1 Let A € KI*! be a matriz with index set I. As the Graph G(A) of the matriz
A = [anglaper we denote the following subset of 1 x I:

G(A)={(a,p) el x1:a,3+#0}. (1)
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Figure 1: Matrices and corresponding graphs

We can describe the set G/(A) as follows: The elements a € I are denoted as vertices and
the (a, 5) € G(A) are denoted as edges, going from a to 4. If the the matrix A is symmetric,
the graph G/(A) is symmetric. But also in the case ay g # 0,45, # 0 Va, g # 0 the graph
is symmetric. (See also Figure 1.)

Let us assume, that the graph is numbered (take the numbering of the matrix), then we
can write down an algorithm, where we put in a (symmetric) graph and get out a coarser
(symmetric) graph.

Algorithm 1 Coarse Graph Generator
1. Put graph G(A) in.
2. Go through the vertices in G(A) and build up a new Graph 1.

e let o be the actual vertex

o if (this vertex of G(A) is not marked as visited)

e put « into /, and mark this node in G(A) as visited
e go through the connected vertices of o and

— let 3 be the actual vertex with («, 3) € G(A)

— if (this vertex of G/(A) is not marked as visited)
— put (a, ) into [

— mark §in G(A) as visited

Figure 2 shows us the action of the above algorithm on some simple graph. The nodes in
the directed graph I where the edges start, are some kind of topolocical coarse grid points.
This way of finding a coarse grid is very simple, but useful and fast to compute. The time
for calculating the coarse grid structure is about the computation a vector scalar product.

Out of this algorithm, there comes some kind of unknown-clustering, where neighoured
unknowns are put together. (In groups of about two, in the one dimensional case, in groups
of about four, in the two dimensional case, in groups of about eight, in the three dimensional
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Figure 2: Generation of graph [

Figure 3: Coarsening

case.) If we do the coarsening and build up a mesh, putting the new unknown of the coarse
grid in the middle of the clusterd unknowns of the fine grid, and interpret this as mesh, we
can see what is going on in Figure 3

With this Graph I, we are now going to build up the Galerkin Interpolator.

3 Intergrid Transfer Operators and Coarse Grid Matricies

Once the coarse grid is specified, it is relatively easy to define the prolongator (interpolator)
I, mapping some vector from the coarse grid space RNeorse to a vector of the fine grid space
RNrine Let us number the coarse grid points in I. Then we can write down the Interpolator
I = [ai;] = Neorse X Ngine — matriz as follows:

if j is the renumberd ¢ (when it is a coarse grid point)
a;;j =1 o . berd
Ic = (a;) == if (j,)er (j is renumberd)
0 otherwise

S
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The Galerkin Interoplator for Figure 3 looks like:

11110 0 000 O0O0O0OO0OO0OO0OO0OO0ODQO
0O 0001 1001 1O000O0OO0OO0OO0OTF@WO
0 000O0O0O1TO0O0OO0OT1TTO0TO0OTO0OO0DO0OOQO0QDO 5)
0 000O0O0O0OT1O0OO0OO0OD1TT1O0O0O0O0OTP OO
000 0O0O0OO0OO0OOOCDOOOTLTTI1TO0T1T1
|0 0000 O0O0O0OO0OO0OO0OO0OTO0ODTO0ODTO0OT1TO0 O0]
Knowing that the restriction
R =1L (6)
we can write the coarse grid system as
RGKIGucoarse = RGdfine- (7)

We demonstrate this algorithm on a few examples: Let us consider the simplest 1D second
order boundary value problem:

Example 1 1D
—u" = fin(0,1) w(0)=0, wu(l)=0. (8)

Taking the weak formulation, this reads as follows: Find u € Vo = HJ () such that

1 1
/ u'(z)v'(z)de = / flz)v(z)dz Vv e Vy (9)
0 0
with given f € L5(0,1). FE-discretisation on an uniform grid with piecewise linear Ansatz-
functions and h = %, results in the stiffness matrix:
2 -1
-1 2 -1

-1 2 -1

= =

the interpolator defined above has the matrix representation:

1 00
1 00
010
le=149 1 0 (11)
0 0 1
0 0 1
Now it is easy to compute the Galerkin coarse grid matrix
1 2 -1 0
](coarse = IIE}I(IG = E -1 2 -1 . (12)
0 -1 2

The simplest 2D problem of second order is:



Example 2 2D

~Au=f €(0,1)* and u=0 onl' = 99. (13)
Taking again the weak formulation, we end up with: Find u € Vo = H}(Q) such that
/ gradu(z)gradv(z)dz = / flz)v(z)dz Yve Vg (14)
Q Q

with given f € Ly(Q). FE-discretisation on an uniform grid with piecewise linear Ansatz-
functions and an arbitary h results in the stiffness matrix:

4 -1 -1
-1
K= - (15)
-1
SO
-1 -1 4
with the interpolator:
[
°o — o — (16)
[
L] — [ ] —
projecting on the coarse grid, we get
8 =2 -2
-2
- t 1 -2
Keoarse = I K1 = (17)
9 -
SO
-2 -2 8

4 Details

In this Algebraic Multigrid Method, we have used a constant interpolation on neighoured
nodes. For elliptic equations, with unknowns of the function value, it works well, but what
happens on equations of 4th orderl’

Another thing of interest is, which cycle we should use. Testing a lot of configurations, we
find, that the V11-cycle ist the most efficient with respect to computational time for all the
tested examples. The fastes way of reducing the error is using a CG-Method, preconditioned
with the AMGM V11 procedure. This means one forward Gauss-Seidel smoothing, then the
recursiv call of the procedure and one backward call of the Gauss-Seidel smoothing.

Taking a look at the smoother and the according damping factor, we see, that for damping
factor w = 1 (a™*! = 2™ +wW ™1 ( Az — f)) we obtain the best results (also w > 1 was tested).

Testing out problems with local refined grids, or with different materials, no problems
occur. (See [28])
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Figure 4: approx. of the Eigen-function

5 Heuristics

5.1 The Coarse Grid Matrices

If we look in simple cases at the araising corse grid matrices, we can interpret them as FEM-
matrices of corresponding problems, with different discretisation parameter h.

5.1.1 1D case

We look at the 1D problem as above with start refinement n = 2. Calculating the FEM-
Matrix with linear Ansatz-functions, we get the recursivly defined coarse grid matrices as
FEM-matrices according to the following discret problems (level is denoting the level of
recoarsing where zero is the fine grid):

. level 27 level 27
—u’ = f in (27 A1 - B

with zero dirichlet boundary conditions.

(18)

This means, we have a coarse grid approximation of the boundary of order h.
Picture 4 shows us the approximation of the coaresest Figen-function in the model for
the fine grid h = % and the first coarsening.

5.1.2 2D case

In this case, in the same way, the corresponding problems to the coarse grid matrices (fine
grid discretisation choosen, that n = 2' unknowns are in each direction) are:

level 2] level

9J
—Au=f in] —;1—2—]2 Upn = 0 (19)
],:14-71 ],:14-71

The approximation of the boundary we can see in figure 5.

5.2 A Model Problem

Let us take a look at the model problem —Aw = f in one two and three dimensions with
dirichlet boundary conditions. Taking the weak formulation we get the following problem:
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Figure 5: approx. of the boundary of the unit square

Find v € V = HY(Q)
a(u,v) = f(v), YveV
with a(u,v) = [, Vu-yvde and f(v) = [, fodz (20)

For f € Ly(Q) and some regularity conditions on the domain € we obtain the following
inequality, if we use piecewise linear Ansatz functions and a regular mesh:

[[w = unlls < Chl[f]lo; (21)
where
u — exact solution,
up — FEM- approximation of the solution,
h — discretisation parameter.

Using the argument of Aubin-Nitsche (see [11]) we get also a result for the Ly Norm:
lu = unllo < CB?| fllo. (22)

Taking the discret system we get the following linear equations:

Apty, = fn (23)
where
An = aijlijer with ai;; = a(pi, pj),
w, = oun = lunli,
el

[fn)i = /Qpifdw

If we take the algebraic coarsening introduced in the sections before we get:

a(pi + pj.pe +p1) =
a(pi, pr) + a(pi, pi) + a(pj, pi) + alpj, pr) (24)
This means, by a renumbering of the unknowns, such that neighoured unknowns are put

together, we get a blockstructure where the coarse grid matrix is the matrix of the sum of all
entries in each block.



Example 3 —Au= fin (0,1) h = %
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Figure 6: Ansatz-functions
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We get coarse grid Ansatzfunktion like shown in Figure 6.

5.3 A simple Basis Transformation

We start at the discret system

Apty, = fn

with the coarse grid system

Aptig = fuo,

Ap = RALP, fg = Rf.

(26)

(27)

in the one dimensional case we get a basis for the coarse grid space by: [[..00 11 ..]]. For the

N(R) we can give also a basis: [[..001— 1..]] (see Figure 7).

If we Take the system for —u” = fin [0,1] h = 11—3 with homogenious Dirichlet boundary
conditions, we get by transforming, the following system:

2 -1 -1 uy + us i+ fo
-1 2 -1 1 -1 uz + ug s+ fa
-1 2 -1 1 -1 us + s fs+ fs
-1 2 -1 1 -1 u7 + ug fr+fs
-1 2 -1 1 -1 U + U1g Jo + J10
i -1 2 1 U tuie | fii+ fi2 (28)
h2 1 6 1 Uy — Uz h—f |
-1 1 1 6 1 U3 — Ug fs—fa
-1 1 1 6 1 us — Us fs—Js
-1 1 1 6 1 u7 — ug fr—1Is
-1 1 1 6 1 Uy — U1o fo— Jio
-1 1 6 Ul — U2 Ji1 — fi2




Figure 7: Ansatz-functions for N(R)™ and N(R)

which we can rewrite in the form

All A12
A21 A22

f
l

We see that Ayq is our coarse grid matrix. Before we do any calculations in this represen-
tation, we see, that the Ansatz-functions for the N(R)™ are, for h — oo, an approximation
of the Dirac impulse. This means, that elements in N(R)~ approximate the function value.
The basis for N(R) is, for h — oo, an approximation of the derivative of the Dirac impulse,
this means, that elements in N(R) approximate the derivative of the solution.

Recall that the above system is equivalent to the origin FEM-system.

In the infinit dimensional case, if all is sufficient smooth, we can also write formally instead

of —u" = f

U
!

(29)

2
_ 881’2 _%88_1’2 u :1‘ f i (30)
LETE N\ ELEr

In the two dimensional case the above calculations can be done again for the special case
of —Au = f,ur = 0 in (0,1)? with unknowns in i/n,j/n with 0 < ,j < n. We get the basis
transformation with the following Ansatz-functions (see Figure 8 and 9).

[L1,1,1.] ...

J

[, —1,1,—1..] g—;‘

[1,1,-1,—1..] 8—;‘

2

[, —1,—1,1..] ;;gy
Back to our transformed equation

|| I‘jf (31)

Here we can write for the coarse grid system

Ap 0“

U

0

—~
w
N

~—

0 0

S
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Figure 8: Ansatz-functions for N(R)™ and N(R) in the 2D case

Figure 9: Ansatz-functions for N(R) in the 2D case

11
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Figure 10: approx. of the Eigen-function MGM/AMGM
with the solution in N(R)~ as follows:

(33)

AR o] f
0 0

This allows us, to give an explicit formulation of Agl — PApR

An A [0 At o]
Ay Ag 0 0|
I AjlAg 1

o ]

which can be a starting point for further calculations.

We should mention, that the used smoothers like Jacobi or Gauss-Seidel Iterations all
fulfil the Smoothing Proporty, see [10] ,[26].

Another interesting point is the approximation of the coaresest Figen-function of standard
Multigrid compared with Algebraic Multigrid of this kind (see Figure 10).

Another approach using the basis transformation above, results in a orthogonal basis
splitting of the space V}, into V1 and Vya. Vi is the space of the coarse grid Ansatz-functions,
Via is the N(R). Because of V}, = Vi1 @ V2 we get the existance of projectors 57 : Vi, — Vg
and Sy : Vi, — Vi with 51 + 92 = I. In the following ||.|| means the energienorm defined by
the bilinearform a(.,.).

112 = a(...) (34)

We define further a pseadonorm |||.||| : Vi, — R? (see [11] by

all] = ( ngg” ) Vu € V. (35)

For a bounded linear operator, the pseudonorm in analogous defined by
Q[ [|Q1]x2
= 36
el (u@uzl 121l (36)

12



with

1l = sup ZQL (37)
vEVy;,v#0 HUH
This leads us to
UQull) < L@ - Lllwll], (38)
and
Q1 - Q2ll] < [[[Qall] - [I1Q2]l]- (39)

Lemma 1 For the spaces Vi1 and Vg in the one dimensional Dirichlet problem, the following
inequality holds:
1

V2

The proof for this lemma is simple, but technical. We use the fact, that the derivative of the
coarse grid functions, is 0 on the clustered elements. That is the reason, why we have only
to integrate over halve of the elements. In two dimensions, we get the same result with the

la(u, v)] < —=||ul||]o]] ¥u € Vir, v € Via. (40)

constant @
We further define the projector P; : Vj, — Vj;.

Piu € Vy; with a(Pju,v) = a(u,v) VYo € V. (41)
For that projector, we can proove the following lemma:

Lemma 2 For the pseudonorm of the mapping I — P; (P; defined above) we get

0 0 LQ 1
LHI—PHHS(% 1), LHI—PzHJS({ 0)- (42)

For details and proof see [11].
By means of this Lemma, we get the convergence of the following theoretical algorithm
in the energie norm.

Algorithm 2

1

uh = UZ —|— ?]fh ’LUZth ?th € Vhl (43)
a(vfh,v) = (f,v)- a(ufb,v) Yo € Vi. (44)
1
urtt = u:+2 + véh with v;h € Vio (45)
k4L
a(vh,0) = (fio)—alu, *,0) Vo€ Vi (46)

By the use of the above defined pseudonorm, we can define a norm equivalent to the
energie norm as follows:

Il := max{[|Syul|, [[Szul }. (47)

The following theorem gives us the convergence of the above algorithm. (For details see

[11])

13



Theorem 1 For an arbitrary starting point uy € Vy, the algorithm 2 converges to the solution
up € Vy, of the discrete problem

alup,vp) = (f,on) Yop € Vy, (48)
and the following estimate
k42 1
[y, 2—UhIIIS§|IIU§3—MIII, k=12,... (49)
holds.

For proof see also [11].

Another different way is, to use the above results, for the coarse grid correction, and to
give an estimate for the smoothing strategie, which together form the convergence for the two
grid method.

Lemma 3 The two grid method with the coarse grid correction in Vi1 and the Richardson

smoother with 0 = L_ converges to the solution uj, € V}, of the discrete problem

alup,vp) = (f,vn) Vo € Vi, (50)

and the following estimate is independent of the discretisation parameter h.

k3 k
w, * = uplll < e [lup —wuplll, k=1,2,.... (51)
with ¢ < 1.
Proof:
We have already prooven the following estimate
0 0
U= Pufl] < ( S ) (52)
V2

With the lemma of Gerschgorin we get (easy) that the pseudonorm of the iteration matrix
from the Richardson method with 6 = can be bounded by:

A777,(1:r

) (53)

Thus we get for pre-smoothing, coarse grid correction and post-smoothing

ML = [ - 6K < (

A=
RO | | =

uru’,z“—uhws(i )(i ?)-(i ) (54)
4 2 V2 4 2

Lluf; = uall] (55)

\ (56)

1yt = wnll] < e llluf —wll] e <1 (57)

6 Performance

The algorithm is implemented as a C+4 program, and has been tested on a 486 PC. We use
a CG-iteration with Algebraic Multigrid preconditioning, where the coarsening is stopped,
when the number of unknowns is < 40.

The next results give a comparison of 3 different problems (see Examples 4-6 below). The
geometries shown in Figure 12 - 13. In the following we use the notation: g(z) = g¢; in

Q, C Q.

14
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Figure 11: Example 4

Example 4 (Wire) Findu € V, = {v € H'(Q)|v = 0 on the outer boundary, v = 100/ — 100

at the interiour boundary } such that
/ gradu(z) - gradv(z)de = / f(x)v(z)dz Yo € Vo= HHQ)
Q Q

with given f = 0.

Example 5 (Chip) Finduw € V = HY(Q) such that

/ pigradu(z) - grado(z)dz + / auvds = / flz)v(z)da + / augvds Yv eV
Q r Q r
with Robin boundary conditions on the boundary,

1 = 52e — 2, g = 15e — 2,
fl = 07f2 = 100,
a = 0.3ed,uy = 288.

Example 6 (Electromagnet) Find u € Vo = H}(Q) such that

/ pigradu(z) - gradov(z)de = / flz)v(z)dz Vv eV
Q Q
with homogenious Dirichlet boundary conditions, where

pr =1 pe = %7“3 = 1000,
fl = —I_/_ 17f2:07f3:07

Q... iron,
Qo ... air,
Q... kernel.

15
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Figure 13: Example 6
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The number of unknowns is about the same. For A = .02 ~ 500, h = .01 ~ 2000 and
h = .005 ~ 8000. When using a-priori local refining on the boundary (discretisation on the
boundary is 4-times finer) the number of unknowns doubles. In Example 4, there is only one
material. In Example 5 and Example 6 there are 2 and 3 materials, respectively, where the
coefficients differ from 4 to le3 (see Example 6). The number of iterations, for reducing the
residuals by a factor € = le — 4, is shown in the following table:

ex3 h=.02|h=.01|hL=.005
V-cycle(1) 8 12 15
V-cycle(.3) 10 17 25
V-cycle(.7) 9 14 21
W-cycle 5 6 8
W-cycle+LR | 5 7 7

ex4 h=.02|h=.01|hL=.005
V-cycle(1) 6 10 14
V-cycle(.3) 11 16 21
V-cycle(.7) 8 11 17
W-cycle 4 6 7
W-cycle+LR | 4 5 7

exb h=.02|h=.01|hL=.005
V-cycle(1) 7 10 15
V-cycle(.3) 12 16 23
V-cycle(.7) 11 12 18
W-cycle 5 6 7
W-cycle+LR | 8 11 14

The parameter in V-cycle(param.) means the damping of the Gauss-Seidel update.

We have to note, that the used grids are totally unstructured, and the size of the triangels
vary by a factor 16 because of the local refinement. The according meshes and solutions are
shown in the Appendix.

6.1 Adaptive refinement

The next step is to look at adaptive refined grids. To get this grids, we use a primary
mesh, and compute the solution. This mesh is rather fine, and the solution is computed with
AMGPCG. With this solution, we calculate some kind of approximation-function, which
contains information whether the local linear approximation is good or not. At least, we get
out a refine level for each unknown to improve the approximation. This information goes back
in the mesh generator, and we get out some adaptive refined grid. The known solution on
the primary grid is interpolated onto this secondary grid, and again we make some iterations
of AMGPCG. We can control this local refinement in that way, that the memory ressources
of the computer are used in an optimal way.

The following tabel shows the iteration numbers for the different examples. The algorithm
was first reducing the residuals by a factor le-8, then doing some adaptive refinemens, and
reducing again the residuals by le-4.

17



ex]l | 14 | ~ 4000 unkn. || ex6 | 19 | ~ 5000

35 25

20 | ~ 6400 unkn. 16 | ~ 5000
ex2 | 40 | ~ 4400 unkn. || ex7 | 15 | ~ 4400

37 16

17 | ~ 6800 unkn. 18 | ~ 7600
ex3 | 9 | ~ 500 unkn. ex8 | 8 | ~ 950

10 9

14 | ~ 7000 unkn. 10 | ~ 5000
ex4 | 8 ~ 1900 unkn. || ex9 | 11 | ~ 1100

13 11

19 | ~ 7500 unkn. 22 | ~ 6600
exb | 19 | ~ 1800 unkn.

15

22 | ~ 5500 unkn.

6.2 3D-examples

Next we tested our AMGM for the Poisson equation with Dirichlet boundary conditons
—Au=1in Qand u=273.150n I' = 00 (63)

in three dimensions for different geometries. For details about the geometries see [27].
All numerical experiments were carried out on a Pentium with 100 MHz and 32 MByte
RAM. In the following tables the time is given in seconds.

Example 7 Sphere

The first test is a sphere with radius r = 0.2.

| Sphere | h=.04 [ h=.02 [ h=.01 |
Meshpoints 948 6748 | 50683
3D elements || 2225 17911 | 142999
2D elements | 693 2772 11086

Time mesh 1 4 33
Time matrix || 1 6 60
Time solver 1 6 120
Num. of It 4 4 5

Example 8 Torus

The next test example is a torus with outer radius ry = 0.175 and inner radius ro = 0.75.
The torus and the mesh (h=0.02) are presented in [27].

| Torus | h=.04 | h=.02 [ h=.01 |
Meshpoints 637 4301 | 30771
3D elements || 1266 10495 | 82842
2D elements || 700 2831 11604

Time mesh 1 4 28
Time matrix || 1 3 30
Time solver 1 4 26
Num. of It 4 4 5
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Example 9 Cone

The third test example is a cone with radius » = 0.15 and height A = 0.3.

| Cone | h=.04 | h=.02 [ h=.01 |
Meshpoints 228 1615 11079
3D elements || 495 4002 29736
2D elements || 303 1193 4672

Time mesh 1 3 19
Time matrix || 1 2 10
Time solver 1 1 10
Num. of It 4 5 5

Example 10 Hexaedron with Torus

Testobj. 1 || h=.02 [ h=.014 | h=.012
Meshpoints 8368 23853 39551
3D elements || 22426 | 65277 109604
2D elements || 4514 | 9663 39551

Time mesh 7 18 29
Time matrix || 7 23 39
Time solver 8 24 38
Num. of It 4 5 5

Example 11 Cylinder with Torus

| Testobj. 2 | h=.02 | h=.01 |
Meshpoints 3586 | 28360
3D elements || 9488 78758
2D elements || 2192 9309
Time mesh 4 27

Time matrix || 3 28
Time solver 3 28
Num. of It 4 5

In the above tables, we see the optimal behaviour in time of the components of the FE-
code, especially the solver routine. For different generated fine grids, the time for solving the
linear system is proportional to the number of unknowns.

7 Further Goals of Developing Algebraic Multigrid Techni-
ques

e Analysis of the Convergence:

The next step for the introduced method must be the analysis of the solver. A similar
method developed by P. Vanek is analysed in that way ([18]), that he proves a conver-
gence rate like [|e"t1]| < (1 — £)||e”||, where €” denotes the error in the n -th iteration
of the V11 cycle. 0 < C' < 1 is a constant independen of h and L denotes the number
of levels used.
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o lest and Analysis of the AMG for 4-th Order Kquations:
Like Vanek did in [18], we have to test this method also for the case of 4-th order
equations, like the biharmonic equation. The analysis of the convergence should follow.
e Parallelisation of the Algebraic Multigrid

If we use this method for three dimensional problems with non-simple geometries, the
parallelisation of this algorithm is necessary to get acces to the ressources of parallel
machines.
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