
Algebraic Multigrid SolverforDiscrete Elliptic Second Order ProblemsFerdinand KickingerInstitut f�ur MathematikJohannes Kepler Universit�at LinzAbstractIn this paper, an Algebraic Multigrid Solver (AMG++) is presented. This solver isespecially suited for the fast solution of large sparse systems Ahuh = fh of algebraicequations arising from �nite element (FE) discretisation of second-order elliptic boundaryvalue problems (BVP) on unstructured re�ned meshes in one, two and three dimensi-ons as well. The only information used is recovered from the sti�ness matrix Ah. Moreprecisely, the information hidden in the sti�ness matrix allows us, to construct "coarsegrids", the intergrid transfer operators (restriction and prolongation) and the coarse gridmatrices. These tools together with some smoother and a solver for the equations on thecoarsest grid build up a complete multigrid algorithm. In special cases, we observe, thatthe AMS completely coincides with some standard geometrical multigrid algorithms. TheAMS has been applied to two and three dimensional examples. The algebraic multigridalgorithm shows the same numerical behaviour as it is known from the geometrical mul-tigrid algorithms. Symmetric variants of the algebraic multigrid method can be used forpreconditioning a conjugate gradient solver. This combination is more robust and impro-ves the convergence rate considerably. This paper was supported by the Austrian 'Fondszur F�orderung der wissenschaftlichen Forschung (FWF)' within the project P10643-TEC,'Domain Decomposition Methods in Structural Mechanics'.1 IntroductionDuring the last years, the importance of the numerical simulation has been growing more andmore. This is certainly due to the rapid development of the hardware with respect to theresources in memory and arithmetic power of the processors (see table below).1985 1995RAM 640 KByte 512 MByteMFlop 0.X X00.HDD 20 MByte 8 GByteParallel machines allow us to multiply these resources by the number of pocessors available.The software is always a little bit behind the progress in the hardware. This is especially truefor application software. In industry, technical experiments for developping and improvingnew products are more and more replaced by computer simulations, provided that they arecheaper and as realistic as experiments, or even better. Imagine, that we have to develop anew product, for example an electrical machine or a combustion engine. The "classical" wayto do this is to use experience for developing a prototype, then do some experiments, improvethe prototype and so on. Doing the same with numerical simulation, we must not build somany prototypes, because we can test on the computer, and make the nessecary improvementsalso on the computer. Furthermore, the optimization process can be modeled mathematically,and therefore, it can be carried out on the computer. This is called automatic optimal design.The computer aided design and the automatic optimal desingn need both a lot of calls of thesimulation routines. This is the reason why we need fast simulation codes. This is alreadytrue for two dimensions. Conserning simulations on the basis of Partial Di�erential Equations1



(PDEs) and its Finite Element (FE) discretisations, the numerical algorithm in the heart ofthe most simulation codes and especially of commercial simulation codes, are far from beingoptimal with respect to the complexity in aritmetic and memory.The disadvantage of many mesh generators consists in the fact that they are producingsome �ne grid with no hierarchical structure in it. Thus, the application of a geometricalstandard multigrid solver is not possible as long as no coarsening strategies are available.Recently, such coarsening strategies have been proposed by R. E. Bank and J. Xu in twodimensions (see [16]). Being aware of that problem, we have been working on an AlgebraicMultigrid Solver from the very beginning. In this context, "Algebraic" means, that we puta matrix Kh and a righthandside fh into a black box "Solver" and get out the solution uhof the algebraic system Khuh = fh. No mesh information is required to obtain the solution!! The algebraic multigrid solver should converge at least nearely as fast as the geometricalversion. In this case, the disadvantage of the mesh generator mentioned above turns out to bean advantage, because the AMG (Algebraic MultiGrid) works on unstructured �ne, nestedand caotically re�ned meshes nearely as well as the standard multigrid method. Anotheradvantage of the AMG is the fact, that it is easy to exchange the solver routine in somestandard �nite element package by the AMG-routine. We have to put in only the solver,it is not necessary to change the meshing strategie and the whole data structures. Alsoadaptive mesh re�nement causes troubles for standard multigrid (see [12]) which disappearin the algebraic case. The �rst serious algebraic approach to multigrid methods was mademore than 10 years ago by J. W. Ruge and K. St�uben, in [7]. However, this approach wasrestricted to M-matrices, reqular grids or require the knowledge of the coordinats in everymeshpoint.Recently, some revival of algebraic multigrid techniques has been observed ([8], [9], [17],[18], [19], [4]). This is certainly due to the sucess of multilevel techniques (see [5]) as well asthe enormous progress in the hardware. Our approach is based on the topological graph of thematrix de�ned in [11]. A coarsening algorithm working on this graph gives some coarser graphfrom which and from the �ne grid matrix the coarse grid matrix can be derived by Galerkinprojection, provided that some prolongation is de�ned. At �rst we de�ne the prolongationmatrix and obtain the restriction operator by transposing the prolongation matrix. In orderto complete the multigrid algorithm, it remains to de�ne some smoothing iteration and somesolver for the system araizing at the "coarsest" grid. These components form a completemultigrid cycle that can be used immediately as a solver, or, in a symmetric version, aspreconditioner in the conjugate gradient (CG) iteration. The only conditions that restrictsthe application of the algebraic multigrid solver consists in the fact, that the underlying PDEis of second order, and the unknown approximate the nodal values of the unknown function(the unknown should not be approximate derivatives !!). This means, that we should useLagrangian-typed �nite elements.2 Coarse Grid Generation Based on Topological Matrix GraphsThe main task in Algebraic Multigrid is based on �nding some coarse grids, where the requiredinformation needs not to be a real coarsenig of the given mesh. Using Galerkins method, wehave to search out a prolongation and a restriction operator, to generate some coarse gridcorrections.We know, that the matrix contains mesh information. This is at least, that unknowns,which are connected in the matrix, are neigbours in the mesh. Therefore we need the followingde�nition.De�nition 1 Let A 2 KI�I be a matrix with index set I. As the Graph G(A) of the matrixA = [a��]��2I we denote the following subset of I � I:G(A) = f(�; �) 2 I � I : a�;� 6= 0g: (1)2



26664 0 1 0 00 0 1 01 0 0 01 0 1 0 37775 2666664 0 1 0 0 11 0 0 0 10 0 0 1 00 0 2 0 02 2 0 0 0 3777775 (2)
m6�������4 m������	 HHHHHHY 3m?2m������*1 m3PPPPPPPPPm4m5PPPPPPPPPm1���������m2Figure 1: Matrices and corresponding graphsWe can describe the set G(A) as follows: The elements � 2 I are denoted as vertices andthe (�; �) 2 G(A) are denoted as edges, going from � to �. If the the matrix A is symmetric,the graph G(A) is symmetric. But also in the case a�;� 6= 0; a�;� 6= 0 8a�;� 6= 0 the graphis symmetric. (See also Figure 1.)Let us assume, that the graph is numbered (take the numbering of the matrix), then wecan write down an algorithm, where we put in a (symmetric) graph and get out a coarser(symmetric) graph.Algorithm 1 Coarse Graph Generator1. Put graph G(A) in.2. Go through the vertices in G(A) and build up a new Graph I .� let � be the actual vertex� if (this vertex of G(A) is not marked as visited)� put � into I , and mark this node in G(A) as visited� go through the connected vertices of � and{ let � be the actual vertex with (�; �) 2 G(A){ if (this vertex of G(A) is not marked as visited){ put (�; �) into I{ mark � in G(A) as visitedFigure 2 shows us the action of the above algorithm on some simple graph. The nodes inthe directed graph I where the edges start, are some kind of topolocical coarse grid points.This way of �nding a coarse grid is very simple, but useful and fast to compute. The timefor calculating the coarse grid structure is about the computation a vector scalar product.Out of this algorithm, there comes some kind of unknown-clustering, where neigbouredunknowns are put together. (In groups of about two, in the one dimensional case, in groupsof about four, in the two dimensional case, in groups of about eight, in the three dimensional3



16 � 17 � 18j = j = j12 � 13 � 14 � 15j = j = j = j8 � 9 � 10 � 11= j = j = j = j3 � 4 � 5 � 6 � 7j = j =1 � 2 ! 16 17 18" %12 13 14 ! 15" %8 9 10 11" % "3 4 5 ! 6 7" %1 ! 2 (3)Figure 2: Generation of graph I
Figure 3: Coarseningcase.) If we do the coarsening and build up a mesh, putting the new unknown of the coarsegrid in the middle of the clusterd unknowns of the �ne grid, and interpret this as mesh, wecan see what is going on in Figure 3With this Graph I , we are now going to build up the Galerkin Interpolator.3 Intergrid Transfer Operators and Coarse Grid MatriciesOnce the coarse grid is speci�ed, it is relatively easy to de�ne the prolongator (interpolator)IG, mapping some vector from the coarse grid space RNcorse to a vector of the �ne grid spaceRNfine Let us number the coarse grid points in I . Then we can write down the InterpolatorIG = [aij ]�Ncorse �Nfine �matrix as follows:IG = (aij) := 8><>:aij = 1 if j is the renumberd i (when it is a coarse grid point)if (j;i)2I (j is renumberd)0 otherwise 9>=>; (4)4



The Galerkin Interoplator for Figure 3 looks like:266666664 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 377777775t (5)Knowing that the restrictionRG = ItG (6)we can write the coarse grid system asRGKIGucoarse = RGdfine: (7)We demonstrate this algorithm on a few examples: Let us consider the simplest 1D secondorder boundary value problem:Example 1 1D�u00 = f in (0; 1) u(0) = 0; u(1) = 0: (8)Taking the weak formulation, this reads as follows: Find u 2 V0 = H10 (
) such thatZ 10 u0(x)v0(x)dx = Z 10 f(x)v(x)dx 8v 2 V0 (9)with given f 2 L2(0; 1). FE-discretisation on an uniform grid with piecewise linear Ansatz-functions and h = 17 , results in the sti�ness matrix:K = 1h 0BBBBBBB@ 2 �1�1 2 �1�1 2 �1�1 2 �1�1 2 �1�1 2 1CCCCCCCA ; (10)the interpolator de�ned above has the matrix representation:IG = 0BBBBBBB@ 1 0 01 0 00 1 00 1 00 0 10 0 1 1CCCCCCCA : (11)Now it is easy to compute the Galerkin coarse grid matrixKcoarse = ItGKIG = 1h 0B@ 2 �1 0�1 2 �10 �1 2 1CA : (12)The simplest 2D problem of second order is:5



Example 2 2D�4 u = f 2 (0; 1)2 and u = 0 on� = @
: (13)Taking again the weak formulation, we end up with: Find u 2 V0 = H10(
) such thatZ
 gradu(x)gradv(x)dx = Z
 f(x)v(x)dx 8v 2 V0 (14)with given f 2 L2(
). FE-discretisation on an uniform grid with piecewise linear Ansatz-functions and an arbitary h results in the sti�ness matrix:K = 0BBBBBBBBBBB@ 4 �1 �1�1 . . . . . . . . .. . . �1�1 . ... . . . . . . . . �1�1 �1 4 1CCCCCCCCCCCA (15)with the interpolator:0BBBBBB@ ... ... ... ..." % " % : : :� ! � ! : : :" % " % : : :� ! � ! : : : 1CCCCCCA (16)projecting on the coarse grid, we getKcoarse = ItGKIG = 0BBBBBBBBBBB@ 8 �2 �2�2 . .. . . . . . .. . . �2�2 . ... . . . . . . . . �2�2 �2 8 1CCCCCCCCCCCA (17)4 DetailsIn this Algebraic Multigrid Method, we have used a constant interpolation on neigbourednodes. For elliptic equations, with unknowns of the function value, it works well, but whathappens on equations of 4th order?Another thing of interest is, which cycle we should use. Testing a lot of con�gurations, we�nd, that the V11-cycle ist the most e�cient with respect to computational time for all thetested examples. The fastes way of reducing the error is using a CG-Method, preconditionedwith the AMGM V11 procedure. This means one forward Gauss-Seidel smoothing, then therecursiv call of the procedure and one backward call of the Gauss-Seidel smoothing.Taking a look at the smoother and the according damping factor, we see, that for dampingfactor ! = 1 (xm+1 = xm+!W�1(Ax�f)) we obtain the best results (also ! > 1 was tested).Testing out problems with local re�ned grids, or with di�erent materials, no problemsoccur. (See [28]) 6
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Figure 4: approx. of the Eigen-function5 Heuristics5.1 The Coarse Grid MatricesIf we look in simple cases at the araising corse grid matrices, we can interpret them as FEM-matrices of corresponding problems, with di�erent discretisation parameter h.5.1.1 1D caseWe look at the 1D problem as above with start re�nement n = 2i. Calculating the FEM-Matrix with linear Ansatz-functions, we get the recursivly de�ned coarse grid matrices asFEM-matrices according to the following discret problems (level is denoting the level ofrecoarsing where zero is the �ne grid):�u00 = f in (Plevelj=1 2j4�n ; 1�Plevelj=1 2j4�n)with zero dirichlet boundary conditions. (18)This means, we have a coarse grid approximation of the boundary of order h.Picture 4 shows us the approximation of the coaresest Eigen-function in the model forthe �ne grid h = 17 and the �rst coarsening.5.1.2 2D caseIn this case, in the same way, the corresponding problems to the coarse grid matrices (�negrid discretisation choosen, that n = 2i unknowns are in each direction) are:�4 u = f in [levelXj=1 2j4 � n ; 1� levelXj=1 2j4 � n ]2 uj@
 = 0 (19)The approximation of the boundary we can see in �gure 5.5.2 A Model ProblemLet us take a look at the model problem ��u = f in one two and three dimensions withdirichlet boundary conditions. Taking the weak formulation we get the following problem:7
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Figure 5: approx. of the boundary of the unit squareFind u 2 V = H10(
)a(u; v) = f(v); 8v 2 Vwith a(u; v) = R
5u � 5vdx and f(v) = R
 fvdx (20)For f 2 L2(
) and some regularity conditions on the domain 
 we obtain the followinginequality, if we use piecewise linear Ansatz functions and a regular mesh:ku� uhk1 � Chkfk0; (21)where u � exact solution,uh � FEM- approximation of the solution,h � discretisation parameter.Using the argument of Aubin-Nitsche (see [11]) we get also a result for the L2 Norm:ku� uhk0 � Ĉh2kfk0: (22)Taking the discret system we get the following linear equations:Ah�uh = �fh (23)where Ah = [aij ]i;j2I with aij = a(pi; pj);�uh $ uh =Xi2I [�uh]ipi;[ �fh]i = Z
 pifdxIf we take the algebraic coarsening introduced in the sections before we get:a(pi + pj ; pk + pl) =a(pi; pk) + a(pi; pl) + a(pj ; pk) + a(pj ; pl) (24)This means, by a renumbering of the unknowns, such that neigboured unknowns are puttogether, we get a blockstructure where the coarse grid matrix is the matrix of the sum of allentries in each block. 8
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Figure 6: Ansatz-functionsExample 3 ��u = f in (0; 1) h = 171h2 � 2 �1�1 2 �1�1 2 �1� � � � � � ! 1h2 � 2 �1�1 2 �1�1 2 (25)We get coarse grid Ansatzfunktion like shown in Figure 6.5.3 A simple Basis TransformationWe start at the discret systemAh�uh = �fh (26)with the coarse grid systemAH �uH = �fH ; AH = RAhP; �fH = R �fh: (27)in the one dimensional case we get a basis for the coarse grid space by: [[:: 00 11 ::]]. For theN(R) we can give also a basis: [[:: 00 1� 1 ::]] (see Figure 7).If we Take the system for �u00 = f in [0; 1] h = 113 with homogenious Dirichlet boundaryconditions, we get by transforming, the following system:1h2 � 2 �1 �1�1 2 �1 1 �1�1 2 �1 1 �1�1 2 �1 1 �1�1 2 �1 1 �1�1 2 11 6 1�1 1 1 6 1�1 1 1 6 1�1 1 1 6 1�1 1 1 6 1�1 1 6 � u1 + u2u3 + u4u5 + u6u7 + u8u9 + u10u11 + u12u1 � u2u3 � u4u5 � u6u7 � u8u9 � u10u11 � u12 = f1 + f2f3 + f4f5 + f6f7 + f8f9 + f10f11 + f12f1 � f2f3 � f4f5 � f6f7 � f8f9 � f10f11 � f12 ;(28)9



Figure 7: Ansatz-functions for N(R)? and N(R)which we can rewrite in the formA11 A12A21 A22 � û̂u0 = f̂̂f 0 : (29)We see that A11 is our coarse grid matrix. Before we do any calculations in this represen-tation, we see, that the Ansatz-functions for the N(R)? are, for h ! 1, an approximationof the Dirac impulse. This means, that elements in N(R)? approximate the function value.The basis for N(R) is, for h ! 1, an approximation of the derivative of the Dirac impulse,this means, that elements in N(R) approximate the derivative of the solution.Recall that the above system is equivalent to the origin FEM-system.In the in�nit dimensional case, if all is su�cient smooth, we can also write formally insteadof �u00 = f� @2@x2 �12 @@x�12 @@x 12(I � @2@x2 ) � uu0 = 12 ff 0 : (30)In the two dimensional case the above calculations can be done again for the special caseof ��u = f; u� = 0 in (0; 1)2 with unknowns in i=n; j=n with 0 < i; j < n. We get the basistransformation with the following Ansatz-functions (see Figure 8 and 9).[:::1; 1; 1; 1:::] : : : u[:::1;�1; 1;�1:::] : : : @u@x[:::1; 1;�1;�1:::] : : : @u@y[:::1;�1;�1; 1:::] : : : @2u@x@yBack to our transformed equationA11 A12A21 A22 � û̂u0 = f̂̂f 0 : (31)Here we can write for the coarse grid systemA11 00 0 � û0 = f̂0 ; (32)10
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Figure 8: Ansatz-functions for N(R)? and N(R) in the 2D case

Figure 9: Ansatz-functions for N(R) in the 2D case11



-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2 2.5 3

"pic33.dat"

Figure 10: approx. of the Eigen-function MGM/AMGMwith the solution in N(R)? as follows:A�111 00 0 � f̂0 = û0 : (33)This allows us, to give an explicit formulation of A�1h � PAHRA11 A12A21 A22 �1 � A�111 00 0 ="I � I A�111 A120 0 # �A�1h ;which can be a starting point for further calculations.We should mention, that the used smoothers like Jacobi or Gauss-Seidel Iterations allful�l the Smoothing Proporty, see [10] ,[26].Another interesting point is the approximation of the coaresest Eigen-function of standardMultigrid compared with Algebraic Multigrid of this kind (see Figure 10).Another approach using the basis transformation above, results in a orthogonal basissplitting of the space Vh into Vh1 and Vh2. Vh1 is the space of the coarse grid Ansatz-functions,Vh2 is the N(R). Because of Vh = Vh1LVh2 we get the existance of projectors S1 : Vh ! Vh1and S2 : Vh ! Vh2 with S1 + S2 = I . In the following k:k means the energienorm de�ned bythe bilinearform a(:; :).k:k2 = a(:; :) (34)We de�ne further a pseudonorm bk:kc : Vh ! R2 (see [11] bybkukc :=  kS1ukkS2uk ! 8u 2 Vh: (35)For a bounded linear operator, the pseudonorm in analogous de�ned bybkQkc :=  kQk11 kQk12kQk21 kQk22 ! (36)12



with kQkij := supv2Vhj ;v 6=0 kSiQvkkvk ; i; j = 1; 2: (37)This leads us tobkQukc � bkQkc � bkukc; (38)and bkQ1 �Q2kc � bkQ1kc � bkQ2kc: (39)Lemma 1 For the spaces Vh1 and Vh2 in the one dimensional Dirichlet problem, the followinginequality holds:ja(u; v)j � 1p2kukkvk 8u 2 Vh1; v 2 Vh2: (40)The proof for this lemma is simple, but technical. We use the fact, that the derivative of thecoarse grid functions, is 0 on the clustered elements. That is the reason, why we have onlyto integrate over halve of the elements. In two dimensions, we get the same result with theconstant p32 .We further de�ne the projector Pj : Vh ! Vhj .Pju 2 Vhj with a(Pju; v) = a(u; v) 8v 2 Vhj : (41)For that projector, we can proove the following lemma:Lemma 2 For the pseudonorm of the mapping I � Pj (Pj de�ned above) we getbkI � P1kc �  0 01p2 1 ! ; bkI � P2kc �  1p2 10 0 ! : (42)For details and proof see [11].By means of this Lemma, we get the convergence of the following theoretical algorithmin the energie norm.Algorithm 2uk+ 12h := ukh + vk1;h with vk1;h 2 Vh1 (43)a(vk1;h; v) = (f; v)� a(ukh; v) 8v 2 Vh1: (44)uk+1h := uk+ 12h + vk2;h with vk2;h 2 Vh2 (45)a(vk2;h; v) = (f; v)� a(uk+ 12h ; v) 8v 2 Vh2: (46)By the use of the above de�ned pseudonorm, we can de�ne a norm equivalent to theenergie norm as follows:jjjujjj :=maxfkS1uk; kS2ukg: (47)The following theorem gives us the convergence of the above algorithm. (For details see[11]) 13



Theorem 1 For an arbitrary starting point u0h 2 Vh, the algorithm 2 converges to the solutionuh 2 Vh of the discrete problema(uh; vh) = (f; vh) 8vh 2 Vh; (48)and the following estimatejjjuk+ 32h � uhjjj � 12 jjjukh � uhjjj; k = 1; 2; : : : : (49)holds.For proof see also [11].Another di�erent way is, to use the above results, for the coarse grid correction, and togive an estimate for the smoothing strategie, which together form the convergence for the twogrid method.Lemma 3 The two grid method with the coarse grid correction in Vh1 and the Richardsonsmoother with � = 1�max converges to the solution uh 2 Vh of the discrete problema(uh; vh) = (f; vh) 8vh 2 Vh; (50)and the following estimate is independent of the discretisation parameter h.jjjuk+ 32h � uhjjj � c � jjjukh � uhjjj; k = 1; 2; : : : : (51)with c < 1.Proof:We have already prooven the following estimatebkI � P1kc �  0 01p2 1 ! (52)With the lemma of Gerschgorin we get (easy) that the pseudonorm of the iteration matrixfrom the Richardson method with � = 1�max can be bounded by:bkMkc = bkI � �Khkc �  1 1414 12 ! (53)Thus we get for pre-smoothing, coarse grid correction and post-smoothingbkuk+1h � uhkc �  1 1414 12 ! �  0 01p2 1 ! � 1 1414 12 ! (54)� bkukh � uhkc (55)+ (56)jjjuk+1h � uhjjj � c � jjjukh � uhjjj c < 1 (57)6 PerformanceThe algorithm is implemented as a C++ program, and has been tested on a 486 PC. We usea CG-iteration with Algebraic Multigrid preconditioning, where the coarsening is stopped,when the number of unknowns is � 40.The next results give a comparison of 3 di�erent problems (see Examples 4-6 below). Thegeometries shown in Figure 12 - 13. In the following we use the notation: g(x) = gi in
i � 
. 14



(0,0) 65 145 225 290100200 �������/R=30��)u=100 PPiu=-100
Figure 11: Example 4Example 4 (Wire) Find u 2 Vg = fv 2 H1(
)jv = 0 on the outer boundary, v = 100=�100at the interiour boundary g such thatZ
 gradu(x) � gradv(x)dx = Z
 f(x)v(x)dx 8v 2 V0 = H10(
) (58)with given f = 0.Example 5 (Chip) Find u 2 V = H1(
) such thatZ
 �igradu(x) � gradv(x)dx+ Z� �uvds = Z
 f(x)v(x)dx+ Z� �uAvds 8v 2 V (59)with Robin boundary conditions on the boundary,�1 = 52e� 2; �2 = 15e� 2;f1 = 0; f2 = 100;� = 0:3e4; uA = 288: (60)Example 6 (Electromagnet) Find u 2 V0 = H10(
) such thatZ
 �igradu(x) � gradv(x)dx = Z
 f(x)v(x)dx 8v 2 V0 (61)with homogenious Dirichlet boundary conditions, where�1 = 1; �2 = 23 ; �3 = 1000;f1 = +=� 1; f2 = 0; f3 = 0; (62)
1 : : : iron;
2 : : : air;
1 : : : kernel: 15
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The number of unknowns is about the same. For h = :02 � 500, h = :01 � 2000 andh = :005 � 8000. When using a-priori local re�ning on the boundary (discretisation on theboundary is 4-times �ner) the number of unknowns doubles. In Example 4, there is only onematerial. In Example 5 and Example 6 there are 2 and 3 materials, respectively, where thecoe�cients di�er from 4 to 1e3 (see Example 6). The number of iterations, for reducing theresiduals by a factor � = 1e� 4, is shown in the following table:ex3 h = :02 h = :01 h = :005V-cycle(1) 8 12 15V-cycle(.3) 10 17 25V-cycle(.7) 9 14 21W-cycle 5 6 8W-cycle+LR 5 7 7ex4 h = :02 h = :01 h = :005V-cycle(1) 6 10 14V-cycle(.3) 11 16 21V-cycle(.7) 8 11 17W-cycle 4 6 7W-cycle+LR 4 5 7ex5 h = :02 h = :01 h = :005V-cycle(1) 7 10 15V-cycle(.3) 12 16 23V-cycle(.7) 11 12 18W-cycle 5 6 7W-cycle+LR 8 11 14The parameter in V-cycle(param.) means the damping of the Gauss-Seidel update.We have to note, that the used grids are totally unstructured, and the size of the triangelsvary by a factor 16 because of the local re�nement. The according meshes and solutions areshown in the Appendix.6.1 Adaptive re�nementThe next step is to look at adaptive re�ned grids. To get this grids, we use a primarymesh, and compute the solution. This mesh is rather �ne, and the solution is computed withAMGPCG. With this solution, we calculate some kind of approximation-function, whichcontains information whether the local linear approximation is good or not. At least, we getout a re�ne level for each unknown to improve the approximation. This information goes backin the mesh generator, and we get out some adaptive re�ned grid. The known solution onthe primary grid is interpolated onto this secondary grid, and again we make some iterationsof AMGPCG. We can control this local re�nement in that way, that the memory ressourcesof the computer are used in an optimal way.The following tabel shows the iteration numbers for the di�erent examples. The algorithmwas �rst reducing the residuals by a factor 1e-8, then doing some adaptive re�nemens, andreducing again the residuals by 1e-4.
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ex1 14 � 4000 unkn. ex6 19 � 500035 2520 � 6400 unkn. 16 � 5000ex2 40 � 4400 unkn. ex7 15 � 440037 1617 � 6800 unkn. 18 � 7600ex3 9 � 500 unkn. ex8 8 � 95010 914 � 7000 unkn. 10 � 5000ex4 8 � 1900 unkn. ex9 11 � 110013 1119 � 7500 unkn. 22 � 6600ex5 19 � 1800 unkn.1522 � 5500 unkn.6.2 3D-examplesNext we tested our AMGM for the Poisson equation with Dirichlet boundary conditons�4 u = 1 in 
 and u = 273:15 on � = @
 (63)in three dimensions for di�erent geometries. For details about the geometries see [27].All numerical experiments were carried out on a Pentium with 100 MHz and 32 MByteRAM. In the following tables the time is given in seconds.Example 7 SphereThe �rst test is a sphere with radius r = 0:2.Sphere h=.04 h=.02 h=.01Meshpoints 948 6748 506833D elements 2225 17911 1429992D elements 693 2772 11086Time mesh 1 4 33Time matrix 1 6 60Time solver 1 6 120Num. of It 4 4 5Example 8 TorusThe next test example is a torus with outer radius r1 = 0:175 and inner radius r2 = 0:75.The torus and the mesh (h=0.02) are presented in [27].Torus h=.04 h=.02 h=.01Meshpoints 637 4301 307713D elements 1266 10495 828422D elements 700 2831 11604Time mesh 1 4 28Time matrix 1 3 30Time solver 1 4 26Num. of It 4 4 5 18



Example 9 ConeThe third test example is a cone with radius r = 0:15 and height h = 0:3.Cone h=.04 h=.02 h=.01Meshpoints 228 1615 110793D elements 495 4002 297362D elements 303 1193 4672Time mesh 1 3 19Time matrix 1 2 10Time solver 1 1 10Num. of It 4 5 5Example 10 Hexaedron with TorusTestobj. 1 h=.02 h=.014 h=.012Meshpoints 8368 23853 395513D elements 22426 65277 1096042D elements 4514 9663 39551Time mesh 7 18 29Time matrix 7 23 39Time solver 8 24 38Num. of It 4 5 5Example 11 Cylinder with TorusTestobj. 2 h=.02 h=.01Meshpoints 3586 283603D elements 9488 787582D elements 2192 9309Time mesh 4 27Time matrix 3 28Time solver 3 28Num. of It 4 5In the above tables, we see the optimal behaviour in time of the components of the FE-code, especially the solver routine. For di�erent generated �ne grids, the time for solving thelinear system is proportional to the number of unknowns.7 Further Goals of Developing Algebraic Multigrid Techni-ques� Analysis of the Convergence:The next step for the introduced method must be the analysis of the solver. A similarmethod developed by P. Vanek is analysed in that way ([18]), that he proves a conver-gence rate like ken+1k � (1� CL )kenk, where en denotes the error in the n -th iterationof the V11 cycle. 0 < C < 1 is a constant independen of h and L denotes the numberof levels used. 19



� Test and Analysis of the AMG for 4-th Order Equations:Like Vanek did in [18], we have to test this method also for the case of 4-th orderequations, like the biharmonic equation. The analysis of the convergence should follow.� Parallelisation of the Algebraic MultigridIf we use this method for three dimensional problems with non-simple geometries, theparallelisation of this algorithm is necessary to get acces to the ressources of parallelmachines.References[1] R. Dautray J.-L. Lions: Mathematical Analysis and numerical Methods forScience and Technology Vol 1. Springer-Verlag Berlin, 1990.[2] V. Girault, P.-A. Raviart: Finite Element Approximation of the Navier-StokesEquations Springer-Verlag Berlin, 1979.[3] T. Rossi: Fictious Domain Methos. University of Jyv�askyl�a, 1995.[4] A. A. Reusken: A Multigrid Method Based on Incomplete Gaussian ELimina-tion. Eindhoven University of Technology, Department for Mathematics and ComputerScience, RANA 95-13, 1995.[5] J. H. Bramble, J. E. Pasciak, J. Xu: Parallel Multilevel Preconditioners. Mathe-matic of Computation, 55(191):1-22, 1990.[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Elements. Springer Verlag, 1991.[7] J. W. Ruge, K.St�uben Algebraic Multigrid (AMG). Multigrid Methods (St. McCormick, ed.), Frontiers in Applied Mathematics, Vol 5, SIAM, Philadelphia 1986.[8] P.M. de Zeeuw: Matrix Dependent Prolongations and Restrictions in a BlackBox Multigrid. J. Comp. and Appl. Mathematics 33, 1-27 1990.[9] F. Chatelin and W.L. Miranker: Acceleration by Aggregation of Successive Ap-proximation Methods. LAA 43, 17-47 1982.[10] W. Hackbusch Iterative L�oser gro�er schwachbesetzter GleichungssystemeTeubner Studienb�ucher Mathematik, 1993.[11] Ch. Gro�mann H.-G. Roos: Numerik partieller Di�erentialgleichungen TeubnerStudienb�ucher Mathematik, 1994.[12] S. Margenov, J. Maubach: Optimal Algebraic Multilevel Preconditioning forLocal Re�nement along a Line. Numerical Linear Algebra with Application 2 (4),347-361, 1995.[13] B. Heise: Parallel solvers for linear and nonlinear exterior magnetic �eld pro-blems based upon FE/BE formulations. Institutsbericht Nr. 486, Universit�at Linz,Institut f�ur Mathematik, 1995.[14] B.Heise: Comparison of Parallel Solvers for Nonlinear Ellipic Problems Basedon Domain Decomposition Ideas. Institutsbericht Nr. 494, Universit�at Linz, Institutf�ur Mathematik, 1995.[15] B. Heise: A Mixed Variational Formulation for 3D Magnetostatics and Its Finite Ele-ment Discretisation. Tecnical Report 96-3, Universit�at Linz, Institut f�ur Mathematik,Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.20
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