
Preprocessing in BE/FE Domain Decomposition MethodsM. Goppold� G. Haasey B. Heisez M. KuhnxAbstractThe Domain Decomposition Method (DD) is a powerful tool for constructing e�-cient parallel solvers for Partial Di�erential Equationd (PDEs) which are well suited torun on Multiple Instruction Multiple Data (MIMD) computers. However, the e�ciencyof DD{solvers depends heavily on the underlying decomposition of the domain of inter-est into subdomains. In this paper, we introduce the Adaptive Domain DecompositionPreprocessor ADDPre which realizes an automatic decomposition of the domain underconsideration into p subdomains, where p is the number of processors to be used. Wediscuss both, the codes being involved and the data{formats being used for describing thedecomposition of the problem.Numerical examples, demonstrating the performance of the prepreocessor as well asthe e�ciency of the parallel solver are presented.Key words: Partial di�erential equations, �nite element methods, boundary elementmethods, domain decomposition methods, parallel algorithms, preprocessing, solvers.AMS subject classi�cations: 65N55, 65N22, 65F10, 65N30, 65N38, 65Y10, 65Y05,05C90.1 IntroductionNowadays, Domain Decomposition (DD) algorithms are of great interest, since they are thebasic tool for constructing algorithms which are well suited to run on Multiple InstructionMultiple Data (MIMD) parallel computers with message-passing. These parallel machinesprovide su�cient CPU power and su�ciently large storage capacity as it is necessary for thenumerical simulation of complex processes. Another important aspect is that DD methodsallow us to "marry" the advantages of the Finite Element Method (FEM) to those of theBoundary Element Method (BEM) via a uni�ed coupled variational formulation [6,11,24,27].Therefore, e�cient parallel solvers for large systems of algebraic equations resulting from,e.g., the �nite element (FE), the boundary element (BE), or a coupled FE/BE discretizationof the partial di�erential equation, have been developed [11{16,19{23,27,31].To achieve the inherent high parallel e�ciency of the solvers it is necessary to distributethe work to the p processors of the parallel computer with a good load balance. The lattermeans that the total waiting time, i.e., the sum over all processors of the time that a processorhas to wait idle for the others, should be small. As an example, in the FEM-DD for linear�Faculty of Mathematics, Technical University Chemnitz, D-90122 Chemnitz, Germany. (E-mail:mgoppold@mathematik.tu-chemnitz.de)yInstitute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria.(E-mail: ghaase@miraculix.numa.uni-linz.ac.at)zInstitute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria.(E-mail: heise@miraculix.numa.uni-linz.ac.at)xInstitute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria.(E-mail: kuhn@miraculix.numa.uni-linz.ac.at) 1



elliptic problems, almost equal numbers of nodes, elements, and coupling boundaries shouldbe assigned to each processor. Such a distribution can be set manually for academic testexamples only.A powerful tool for the distribution of an initial mesh represented by a graph is therecursive spectral bisection method (rsb) [4,30]. We will apply an improved version thatallows us to decompose a naturally given (by the material coe�cients) initial decompositionconsisting of Pmat subregions of di�erent size into an arbitrary number p of �nal well-balancedsubdomains. First, we determine the number of subdomains in which each subregion is tobe decomposed (it needs not to be a power of 2), then we apply the modi�ed rsb to eachsubregion.Further, complicated coupling boundaries between the subdomains can reduce the e�-ciency of the DD based solvers mentioned above. Thus, it is desirable to smooth the couplingboundaries that separate subdomains inside a subregion. For that purpose, a new preprocess-ing tool has been developed. The coupling boundaries that separate subregions with di�erentcoe�cients remain unchanged in the standard DD methods.As a third aspect, adaptive re�nement strategies can lead to load-imbalance on the �negrids. Therefore, we provide the possibility to generate an a-priori re�ned mesh in the pre-processing. If this mesh is used as an input for the spectral bisection method, there will be aquasi-static load balance on the �ne grids.In this paper, we consider a potential problem arising, e.g., from magnetostatics, as a testproblem, which can be written formally as follows�div (�(x)ru(x)) = S(x) + @H0y(x)@x � @H0x(x)@y ; x 2 
 (1)u(x) = 0; x 2 �D � � := @
: (2)Here, 
 is a bounded domain, and � denotes a piecewise constant coe�cient function whichde�nes an a-priori decomposition of the domain 
 by�
 = Pmat[j=1 �̂
j ; with 
̂i \ 
̂j = ; 8i 6= j; and �(x) = �j for x 2 
̂j: (3)For the physical model, and for H0x and H0y which stand for sources associated with permanentmagnets, we refer to [17,18,20,23].The rest of the paper is organized as follows. In Section 2, we describe the preprocessingtools in detail. In Section 3, we give a short overview of the parallel algorithm for solvingthe problem stated above using this decomposition. Numerical result concerning both, thepreprocessor and the parallel solver are presented in Section 4. We conclude the paper withsome remarks in Section 5.2 PreprocessingHaving in mind to use a multiprocessor computer to solve DD-equations the most natural ideais to use one processor per subdomain. In our case we assume that the number of processors(p) to be used is (much) larger than the number of a-priori given material-de�ned domains,i.e., we have p > Pmat. Thus, we wish to decompose the domains 
̂ further, which leads�nally to �
 = [i2I �
i; with �̂
j = [i2Ij �
i 8j = 1; : : : ; Pmat (4)where the sets of indices are given by 2



Ij � I := f1; : : : ; pg ; Pmat[j=1 Ij = I; Ij \ Ik = ; 8j 6= k;i.e., the subdomains 
̂j determined by the materials may be decomposed further (see, e.g., [15]).We assume that there exist open balls Bri and Bri (i 2 I) with positive radii ri and ri, suchthat Bri � 
i � Bri and 0 < c � ri=ri � c 8i 2 I (5)with �xed (i-independent) constants c and c.The task of decomposing 
 into p subdomains starting with a �xed discretization of theinterfaces �M := [Pmatj=1 @
̂j aiming at a load-balanced decomposition is not trivial. Actuallywe seek such a decomposition for an a-priori de�ned discretization of the boundary whichminimizes the imbalance between the processors, i.e.,maxi=1;:::;pf�i Nig = mini=1;:::;pf�i Nig �! Minimum (6)where Ni (i = 1; : : : ; p) is the number of local elements arising after the decomposition and�i is a piecewise constant (over �̂
) weight function representing the work per element.In the following we describe the data formats, the �le types, the tools and, �nally, thepreprocessor ADDPre.2.1 Data FormatsThroughout the process of preprocessing we are concerned with two types of describing data:dd-data and tri-data. Both of them describe the geometry of the problem (shape of thedomain, material interfaces) as well as the discretization (density and grading of the mesh).Each of them consists of certain classes of objects which are de�ned hierarchically.type object de�nitioncrosspoints coordinatesgeometrical edges two crosspoints, (midpoint), re�nement parameter,dd{data (boundary condition)faces geometrical edges, material pointersubdomains facespoints coordinatestri{data edges two points, (midpoint), (boundary condition)triangles edges, material pointerThe main di�erence between the two data types is how the discretization is being repre-sented. The dd-data describe the re�nement only on the interfaces (as it is su�cient for aBEM discretization), whereas the tri-data describe the full 2d-discretization (as it is requiredfor a FEM discretization) and are thus, in some sense, the 2d{realization of the re�nementinformation contained in the dd-data.The following parameters are used to describe the re�nement on the geometrical edges:nn �! Number of inner nodes on an edge for the coarsest grid,kind �! Kind of discretization,r1 �! Ratio 1 of element sizes for the coarsest grid.3



For simplicity we de�ne additionally:ne �! Number of elements on an edge for the coarsest grid,where ne = nn + 1 holds. The parameter kind has the range [1; : : : ; 3], where the numbersde�ne the coarsest grid as follows.� kind = 1: Uniform discretization.a a r1 := 1:0� kind = 2: Compression towards the starting point.a b r1 := ba� kind = 3: Compression towards the end point.b a r1 := baInternally these three cases are reduced to one (grading into one direction) by introducingthe length h1 of the �rst interval and for the ratio q1 of neighboured intervals.0 `h1 hne r1 := hneh1The paramters are de�ned byq1 = ne�1pr1h1 = ( `=ne i� q1 = r1 = 1:0` q1�1qne1 �1 otherwise.where [:] denotes the integer part and r is assumed not to be one, i.e. the uniform discretizationis excluded.Further grids are obtained by dividing each interval into two subintervals such that onegets a grading with the ratio which is the square root of the previous ratio. That is if twoneighboured (old) intervals do have the ratio q1 the two subintervals will have the ratio pq1.Remark 2.1 All edges may be straight lines or arcs of a circle. In the latter case an additionalpoint (midpoint) de�nes this edge. This information would then be inherited throughout allstages of further re�nement.2.2 The �lesAlltogether three types of �les are being used during the preprocessing. There are �.tri, �.ddand �.fb �les. The �rst two contain the full geometrical information based on triangles anddd-data, respectively, whereas the third type is being used for auxiliary data. In the followingwe are going to describe the structure of the �les.4



2.2.1 The �.tri FilesThe �.tri �le contains at least 4 data blocks which are a block of constants, the coordinatesof the nodes, the description of the edges and the description of the triangles. Additionallythese �les may contain a block describing the boundary conditions.The �le starts with 7 integer numbers which have the following meaning:1.) np number of points2.) ne number of edges3.) nt number of triangles4.) nf number of degrees of freedom5.) nd number of edges with Dirichlet boundary conditions6.) nn number of points with Neumann boundary conditions7.) ns number of subdomains.What follows is the description of the nodes, edges, triangles and, possibly, boundaryconditions in the following form.1. NODES This block contains the coordinates (double precision) of all nodes.number of the node1st coordinate of the ith node2nd coordinate of the ith nodeHere, i runs from 1 to np. The nodes are ordered such that the vertices of the trianglesare given �rst followed by the mid-points de�ning curved edges that may occur.2. EDGES This block describes the edges via their bounding nodes.Number of the edgestarting point of the ith edgeending point of the ith edgemidpoint of the ith edgetype of the edgeHere, i runs from 1 to ne. The edges can be straight lines (type = 0, midpoint=0) aremay be arcs of some circle. In the latter case (type = 1) the edges are being de�neduniquely by giving their mid-points.3. TRIANGLES This block describes the edges via their bounding edges.Number of the triangle1st, 2nd, 3rd edge describing the ith trianglesubdomain-id of the ith triangle(original) material-id of the ith triangleHere, i runs from 1 to nt.4. BOUNDARY This block describes given boundary conditions.Number of the edgevalue at the starting pointvalue at the ending pointvalue at the mid-pointHere, i runs from 1 to nd+ nn. 5



2.2.2 The �.dd FilesThe �.dd �le contains several blocks each of them describing a certain part of the globalgeometry. The headline every block starts with must consist of the following data.(a) Codeword (string, 8 letters).The codeword determines which kind of data are contained in the block.(b) Type (string, 1 letter).Here, the type, independent of its actual length, of the data following the headline hasto be de�ned. There are two options available:I { integer dataR { real data.(c) Length (integer, 4 byte).This number determines the length of the type named in (b).(d) Size (integer, 4 Byte).This number tells how many data of the type (b) and length (c) are contained in theblock after the headline.After the headline the block must contain exactly as many data as determined by the numbersstated above. The sequence of the blocks is not �xed, whereas each block has a specialstructure which is described next.The codewords the blocks start with are eight letters long, where ( ) stands for space bar.(1) Codeword: NKONST  Type: ILength: 4This block contains global data in the sequence given below.1.) Number nGeom of geometrical nodes.2.) Number nEdges of geometrical edges.3.) Number nFaces of geometrical faces.4.) Number nDomain of subdomains.5.) Dimension nDim of the coordinate system.6.) Maximum number nPoly of geometrical edges describing a subdomain.7.) Number of degrees of freedom per node.8.) Maximum number nSub of faces belonging to one subdomain.9.) Number nBound of edges with boundary conditions.10.) Number nMat of materials.(2) Codeword: NODES   Type: RLength: 4 (or 8)Size: 4 � number nGeom of nodesThis block contains the coordinates of the geometrical nodes in the following order.number of the node1st coordinate of the ith node2nd coordinate of the ith node3rd coordinate of the ith node6



Here, i runs from 1 to nGeom. Note that the nodes must be ordered in such a way, thatthe numbers i=1,: : :,nCrP stand for the crosspoints and i=nCrP+1,: : :,nGeom stand forthe midpoints that may be present.(3) Codeword: EDGES   Type: ILength: 4Size: 6 � number nEdges of the geometrical edgesThe block de�nes the geometrical edges via the geometrical nodes.Number of the edgestarting crosspoint of the ith edgeend crosspoint of the ith edgemidpoint of the ith edgetype of the edgepointerThe variable i runs from 1 to nEdges. The following types of edges are de�ned:1 : straight line2 : arc of a circle(4) Codeword: FACES   Type: ILength: 4Size: (3+nPoly) � number of subdomainsThe block de�nes the geometrical faces via the geometrical edges.number of the subdomainnumber of the edges describing the subdomainnumber edge(1) ,: : :, Number edge(nPoly)original material-idHere, i runs from 1 to nFaces. If the number of edges describing the face is less thannPoly, then the remaining numbers are set to zero.(5) Codeword: MAPPING2Type: ILength: 4Size: (3+nSub) � number nDomain of subdomainsThe block contains the mapping of the subdomains onto the array of processors andclassi�es the kind of the problem which is to be solved on the subdomain.number of the processornumber of faces belonging to this subdomainnumber face(1),: : :,face(nSub)classi�cation of the problem to be solved in the ith subdomainHere, i runs from 1 to nDomain. If the number of faces describing the subdomain is lessthan nSub, then the remaining numbers are set to zero. The classi�cation is de�ned by:7



-2 : BEM-computation, exterior domain-1 : BEM-computation, interior domain1 : FEM-computation.(6) Codeword: BOUNDARYType: RLength: 4 (or 8)Size: (3+6*nFhg) � number nBound of the geometrical edges with b.c.The block contains the values which are necessary to describe the boundary conditionsalong the edges.number of the edge (see EDGES) of the ith edge with b.c.kind of the boundary conditionspointervalue1 starting node, value1 end node, value1 midpointvalue2 starting node, value1 end node, value2 midpointThe variable i runs from 1 to nBound. The value of kind ranges between 1 and 5 and isde�ned as: 1 : essential boundary conditions2 : natural boundary conditions (
owing condition)3 : natural boundary conditions (transition condition).The variable pointer can be used to de�ne a more complicated behaviour of the values ofthe boundary conditions than the linear one, which is assumed as standard. The secondvalues are the transition coe�cients in the case of boundary conditions of the 3rd kind.Otherwise they are not being used. The values of the midpoint will be ignored if theedge is a straight line.(7) Codeword: MATERIALType: RLength: 4 (or 8)Size: 8 � number nMat of materialsThe block contains the coe�cients of the di�erential equation, which are constant overthe subdomains�rTu(x)�k11 k12k21 k22�ru(x) + (b1; b2)ru(x) + cu(x) = f :k11, k12, k21, k22, b1, b2, c, fHere, i runs from 1 to nMat (=nDomain).(8) Codeword: REFINE0 Type: RLength: 4 (or 8)Size: 5 � number nEdges of geometrical edgesThis block de�nes the a-priori strategy for re�ning the edges.8



number of the edge (see EDGES)kind of discretization of the ith edgenumber of inner points on the ith edgeratio 1ratio 2Here, i runs from 1 to nEdges.(9) Codeword: MAIDX   Type: ILength: 4This block contains a integer �eld MAIDX(3,nDomain), where nDomain is the numberof subdomains.For subdomain i there is given:Number of the element subroutine to be used for the ith subdo-main.Number of data of the �eld DATMA [10] necessary for it.Start index of data in the array DATMA.Here, i runs from 1 to nMat.2.2.3 The �.fb FilesThe �.fb �les contain auxiliary data as additional cross-points and material-describing data.The �le has the same structure as the �.dd �les.(1) Codeword: NKONST  Type: ILength: 4This block contains global data in the sequence given below.1.) Number ncross of nodes.2.) Number nMater of materials.3.) Number nMAIDX of MAIDX-data.(2) Codeword: NODES   Type: RLength: 4 (or 8)Size: 4 � number nGeom of nodes(3) Codeword: MATERIALType: RLength: 4 (or 8)Size: 8 � number nMat of materials(4) Codeword: MAIDX   Type: ILength: 4Except of the �rst block, the de�nition is analogous to the description given in the previoussection. 9



2.3 The CodesThe preprocessor ADDPre uses three main tools which are AdapMesh, Decomp and Tri2DD.Now, we will describe these tools including the main ideas they are based on.2.3.1 AdapMeshAdapMesh converts dd-data into tri-data. This code applies an improved version of the meshgenerator ParMesh [9] to each of the given subdomains in parallel or sequentially one afteranother. The resulting global mesh is conforming along the interfaces since the discretizationat these interfaces has been predescribed.Additionally, it is possible to adapt the re�nement to singularities, i.e., one has to changethe re�nement parameter which are given in the input dd-�le before starting the mesh gen-erator. For this purpose, a possibly sequential coarse grid calculation could give rise to theright choice of the new re�nement parameter.2.3.2 DecompThe program Decomp decomposes a domain 
 containing Pmat single-material domains b
kinto an arbitrary number of subdomains p � Pmat so that in analogy to (4)
 = Pmat[k=1 b
k = Pmat[k=1 pk[i=1 
i = p[i=1
i; p � PmatXk=1 pkholds, where pk denotes the number of subdomains into which a single-material domain b
kwill be decomposed and b
k = pkSi=1
i is ful�lled. So each subdomain 
i belongs to exactly onematerial. In the context above the term material is not just restricted to di�erent materialconstants but is also extended to di�erent type of di�erential equations describing the localproblem or di�erent techniques for solving.The decomposition of the domain 
 cannot be done by pure geometric information of thedomain 
. For the sake of decomposition we need a triangular element grid and decomposethis grid. This grid will be read in by the program as a *.tri �le. Each element has to becharacterized by the number of the material it belongs to.Let N denote the number of elements in the whole domain 
, bNk the number of elementsin the single-material domains b
k and Ni the number of elements in the subdomains 
i. Thenwe can rewrite the relations between the domains into relations of the numbers of elementsN = PmatXk=1 bNk = PmatXk=1 pkXi=1 Ni = pkXi=1 Ni; p � PmatXk=1 pk :For explaining the technique used for decomposing the grid we �rst assume that we havejust one material in the whole domain, e.g. 
 = b
 and Pmat = 1. In the case of a decompo-sition into p = 2s, s 2 N subdomains the usual recursive spectral bisection method (rsb) isavailable [30]. For distributing the grid into an arbitrary number of subdomains we adaptedan idea of Clemens Brand [4]. The aim of all those decompositions is to distribute the ele-ments in such a way that each subdomain possesses the same (or nearly the same) number ofelements (Ni u N=p).In the case of Pmat > 1 we handle each material domain b
k (k=1;Pmat) separately asdescribed above. Now the di�culty is to determine a{priori the number of subdomains pk permaterial domain. The proper calculation for a distribution into p subdomain is done by thefollowing algorithm: 10



(1) Initialization: p := Pmat , pk := 1 ; Nk := bNk 8k = 1; Pmat(2) WHILE (p < p) DO Find j : Nj = maxi=1;:::;pNiSet p := p+ 1 , Np := Nj=2 , Nj := Nj=2DONEA load balanced distribution should also take into account that di�erent material domainsmay yield to di�erent numerical e�orts. So a weighted distribution of the elements is necessarywhich ful�lls the conditionmaxi=1;pf�iNig = mini=1;pf�iNig �! Minimum :The weights �i denote the average arithmetical work per element for solving the local problemin a subdomain 
i. That means, e.g., nonlinear behaviour of the material constants in thesubdomain 
i will be re
ected by a larger �i. To include this weighting condition in thealgorithm above all Ni have to be declared as REAL and the third initialization statementhas to be changed into Nk := �k bNk.As a result each triangle obtains the number of the subdomain it belongs to. This infor-mation will be written as a *.tri �le.Remark 2.2 The decomposition above is element based. Because of the fact that most ofthe numerical algorithms solving large systems of equations (resulting from partial di�eren-tial equations) are node based, the decomposition above does not re
ect the numerical loadbalance correctly but it works su�ciently good. Additionally no load balancing concerningcommunication is taken into account but one great advantage of the rsb is the minimizationof the subdomain boundaries. In some practical problems with a rather strange geometry ofthe material domains, e.g., long stripes, the communication balance is a -priori very poor.2.3.3 Tri2DDTri2DD converts tri-data into dd-data. Hereby, interfaces between di�erent materials and there�nement information at these interfaces are fully maintained. On the other hand interfaceswithin one material are to be smoothed to get "simple" polygons as subdomains. The aimis to obtain smooth interfaces between subdomains belonging to the same material and tominimize the global number of crosspoints without destroying the load balance generated byDecomp.The algorithm can be described as follows.
11



1. Find, for each subdoamin, the local sequence of boundary edges. De�ne these edgesas 'free'.2. Find primary crosspoints (cp).a) cp de�ned in the fb{�le.b) points which are the intersection of at least three subdomains, where boundaryconditions are interpreted as (virtual) subdomains.3. DO for all subdomainsWHILE there are 'free' (local) boundary edgesa) Find a local cp P1 which is a vertex of a 'free' boundary edge. If there is nosuch cp then de�ne some vertex P1 of a 'free' edge as cp.b) Start at P1, go along the 'free' boundary edges UNTIL for two subsequentpoints P2; P3i) P2 is a cpii) P1P2 would be accepted as new geometrical edge, whereas P1P3 wouldnot be accepted as new geometrical edge. Then de�ne P2 as new cp.c) De�ne P1P2 as new geometrical edge and set the corresponding boundaryedges to 'busy'. De�ne re�nement parameter for the new geometrical edgeaccording to the boundary edges.END WHILEEND DO4. Renumber new crosspoints.This algorithm is �nite since in each iteration at least one 'free' boundary edge is set to'busy'. An open question is how to decide whether a virtual edge P1P2 is to be accepted asnew geometrical edge or not. For this purpose we distinguish between two cases:C1: The boundary edges describe an interface between two di�erent materials.C2: The boundary edges describe an interface between two subdomains which belong to thesame material.The following criteria are applied:C1: If the new edge describes exactly the interface it is allowed.C2: The new edge must intersect all polygons de�ned by the boundary points between P1P2.If this is not the case, or if it intersects a second material it is not allowed.The re�nement parameter are determined such that they re
ect the behaviour of theboundary edges (length and grading) as good as possible.2.4 The Preprocessor ADDPreThe complete algorithm can now be formulated as follows.12



0. Create (manually) a dd-description of the problem and state a-priori re�nement in-formation on the boundaries (see Fig. 1a).1. Use AdapMesh to convert the dd-data into tri-data. (see Fig. 1b).2. Use Decomp to decompose the domain, i.e., to assign each triangle to one of thesubdomains (see Fig. 1c).3. Use Tri2DD to convert the tri-data back into dd-data (see Fig. 1d).4. Stop or, if desired, modify the re�nement information in the dd-�le and goto (1.).Starting o� with any of the data formats the preprocessor has to maintain the original informa-tion throughout all stages ending up with a dd-�le which describes �nally the decompositionof our domain into subdomains according to the a-priori given re�nement information.
Figure 1: The 4 stages (a{d from left to right) of preprocessing starting with an initialdecomposition (D1) on the left and ending up with a load-balanced decomposition (D2) onthe right.The preprocessor performs a quasi-static decomposition. It is possible to restart thepreprocessing optionally in step (4). This may be necessary if the re�nement information(grading or density of the mesh) have been modi�ed, e.g., according to the bahaviour of thesolution obtained from a coarse grid calculation. The a-posteriori change of the re�nementinformation, i.e., of the discretization, destroys in general the load-balance, that is the presentdecomposition is no longer a solution to (6).Remark 2.3 The preprocessor allows us to start o� with any data format and to decompose
 into any number p � Pmat of subdomains. The only data which are �xed throughout thepreprocessing are the de�nition of �M and the a-priori given re�nement information on �M !Remark 2.4 Since the rsb requires a full 2d-mesh it is always, i.e. also for DD{BEM, necessaryto generate a full 2d mesh ! At a �rst glance this may seem disadvantageous, especially if onealready starts with a dd-description of the problem. On the other hand a slightly improveddecomposition may give major improvements if time-dependent or optimization problemsinvolving repeated calls of the linear solver are to be solved.3 DD{Formulation and Parallel SolutionLet us consider a linear magnetic �eld problem of the form (1)-(2) for which a domain decom-position according to (4) is available. In particular, we assume that the index set I = IF [IB13
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���/���/*.fb *.triTri2DD *.ddFigure 2: The preprocessor can be started with any �le. The output is the dd{�le at thebottom.can be decomposed into two disjoint sets of indices IF and IB such that(supp S(:) [ supp H0(:)) \ 
i = ; 8i 2 IB; (7)diam(
i) < 1 8i 2 IB: (8)For each 
i (i 2 I) the index i belongs to one of the two index sets IB and IF accordingto the discretization method applied to 
i, where IB and IF stand for BEM and FEM,respectively. Note that the condition (8) is only technical and can be ful�lled by scaling theproblem appropriately.Following M.Costabel [6], G.C.Hsiao and W.L.Wendland [24] and others, we can rewritethe weak formulation of the boundary value problem (1)-(2) by means of partial integrationin the boundary element subdomains 
i; i 2 IB and by the use of Calder�on's representationof the full Cauchy data as a mixed DD coupled domain and boundary integral variationalproblem: Find (�; u) 2 V := ��U0 such thata(�; u; �; v) = hF; vi 8(�; v) 2 V; (9)where a(�; u; �; v) := aB(�; u; �; v) + aF (u; v)aB(�; u; �; v) := Xi2IB �i�hDiui; vii�i + 12h�i; vii�i + h�i;Kivii�i+h�i;Vi�ii�i � h�i;Kiuii�i � 12h�i; uii�i�aF (u; v) := Xi2IF Z
i �(x)rTu(x)rv(x) dxhF; vi := Xi2IF Z
i �S(x)v(x)�H0y(x)@v(x)@x + H0x(x)@v(x)@y � dxh�i; vii�i := Z�i �ivi ds and vi = vj@
i ; ui = uj@
i ; �i := @
i;with the well-known boundary integral operators Vi;Ki;Di de�ned by the relationsVi�i(x) := R�i E(x; y)�i(y) dsyKiui(x) := R�i @yE(x; y)ui(y) dsyDiui(x) := �@x R�i @yE(x; y)ui(y) dsy (10)14



and with the fundamental solutionE(x; y) = � 12� log jx� yj (11)of the Laplacian (see, e.g., [7]). The spaces U0 and � are de�ned by the relationsU0 := fu 2 H1(
�) : uj�BE 2 H1=2(�BE); uj@
0 = 0g� := �� = (�i)i2IB : �i 2 H�1=2(�i); i 2 IB	 =Qi2IB �i; (12)with �i = H�1=2(�i); i 2 IB . Further we use the notation �BE := Si2IB @
i n �D;�FE :=Si2IF @
i n �D;�C := �BE [ �FE and 
F := Si2IF 
i. Introducing standard norms [11]one can prove that the bilinear form a(.,.) is V{elliptic and V{bounded provided that thedomain decomposition satis�es the conditions (5),(8), see also [24]. Therefore, the existenceand uniqueness of the solution are a direct consequence of the Lax{Milgram theorem.The problem may be discretized using a standard nodal FE basis, corresponding basisfunctions for u on �BE , and suitable basis functions for approximating � on �BE (see, e.g.,[23,27]). This discretization results in a linear system0@K� �K�C 0KC� KC KCI0 KIC KI1A0@u�uCuI1A = 0@f�fCfI1A : (13)Here the index "�" denotes the unknowns associated with � on �BE . An index "C" denotesvector components corresponding to the nodal basis on �C , i.e., the coupling boundariesbetween the FE/FE, FE/BE, and BE/BE subdomains. The index "I" corresponds to thenodes belonging to the interior of subdomains 
i; i 2 IF . The nonsymmetric, positivede�nite system (13) can be approximately solved by Bramble/Pasciak's CG method [2]. Themethod requires a preconditioner C� which can be inverted easily and which ful�ls the spectralequivalence inequalities 
�C� � K� � 
�C�; with 
� > 1: Further, we have to �nd apreconditioner C2 for the matrix~K2 = �KC +KC�K�1� K�C KCIKIC KI �: (14)which we may construct byC2 = � IC KCIB�TI0 II �� CC 00 CI �� IC 0B�1I KIC II � (15)applying the standard FEM DD principles described in [13,14,16]. The complete method isgiven in detail in [23,27], see also [20].The parallel implementation of the PCG algorithm which runs completely in parallel withthe exception of the two scalar products and the preconditioning, is described in [27]. Animproved version has been presented in [11,23].The performance of the algorithm depends heavily on the right choice of the precon-ditioners C�; CC ; CI and the basis transformation BI . The matrices C�; CI and BI areblock-diagonal matrices with the blocks C�;i; CI;i and BI;i, respectively. In our experiments,the following components have turned out to be the most e�cient ones:
15



CI;i: (Vmn) Multigrid V-cycle with m pre- and n post-smoothing steps inthe Multiplicative Schwarz Method [12,14].C�;i: (mgV) �i �K�;i (I�;i�M�;i)�1. M�;i is the multigrid operator satisfyingthe conditions formulated in [26].BI;i: (HExt) Implicitly de�ned by hierarchical extension (formally EIC;i =�B�1I;iKIC;i) [16].CC : (S-BPX) Bramble/Pasciak/Xu type preconditioner [32].(BPS-D) Bramble/Pasciak/Schatz type preconditioner [3,8].(mgD)KC�(IC�MC)�1; (KC�uC ;vC) =Pi2I �ihDiui; vii, as describedin [5].For the components given above, optimal or almost optimal spectral equivalence re-sults have been proved [1,3,5,8,14,12,16,32], see [11] for an overview of the relevant results.Consequently, we can estimate the numerical e�ort Q to obtain a relative accuracy " byQ = O(h�2 ln lnh�1 ln"�1) in the (S-BPX) and (mgD) cases, i.e. almost optimal. In the(BPS-D) case, one has to add a factor lnh�1 [11]. If a BPX-type extension [28] is appliedinstead of (HExt) in a nested iteration approach, we can prove that Q = O(h�2), i.e., weobtain an optimal method.4 Numerical Results4.1 The Slit Problem Using Graded GridsAs an test problem we consider the Dirichlet boundary value problem�u(x) = 0 in
 and u(x) = r1=2 sin�=2 on @
 (16)with 
 being the square (�1; 1)� (�1; 1) with a slit ([0; 1]; 0) and (r; �) are the polar coordi-nates with respect to the origin.

Figure 3: The decomposition (D3) into 64 subdomains (left) and the resulting FEM mesh ofthe �rst grid (right).The components of the preconditioner have been chosen as follows:CC : mgD (multigrid)CI;i : V11BI;i : HExt:16
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0 10 20 30 40 50 60 70Figure 4: The local number of �nite elements (upper curves) and boundary elements (lowercurves) for 16 subdomains (D2) (left) and 64 subdomains (D3) (right) after the discretization.The BE{matrices were computed fully analytically using piecewise linear functions for thedisplacements and piecewise constant functions for the tractions [31].We present the results for two di�erent decompositions: an automatic decomposition into16 subdomains (D2) (see Fig. 1d) and an automatic decomposition into 64 subdomains (D3)(see Fig. 3), both resulting from a manual decomposition into 16 subdomains (D1) (see Fig. 1a)with a mesh-grading towards the origin with hmax=hmin > 100. The underlying discretizationfor (D3) is about as double as �ne as for (D2), such that the local problem size should beconstant, i.e., independent of p. BEM FEMmin max min max(D2) 25 26 68 (63) 68 (78)(D3) 20 25 65 (41) 66 (89)Table 1: The direct results of the preprocessor (number of BE/FE{elements, respectively)and the number of FE{elements (in parentheses) after applying the mesh{generator.The results of the preprocessing for (D2) and (D3) are given in Table 1, Fig. 4 shows theresulting local number of elements after remeshing the subdomains as it is realized in theparallel code.Looking at the results for (D2) and (D3) we observe constant iteration numbers withrespect to both, l and p. Even BEM and FEM results are similar. The values obtained forthe scaled e�ciency are quite satisfying taking into account that the process of decompositionhas been performed fully automatically for a non-standard graded mesh.4.2 The Induction MachineAs a second application, let us consider a nonlinear magnetic �eld problem. In many cases,the linear model is not su�cient for modelling electromagnetic phenomena. Therefore we takeinto account that for ferromagnetic materials the permeability depends on the absolute valueof the magnetic induction B, i.e. the material function �(x) has to be replaced by a materialfunction �(x; jBj) = �(x; jru(x)j) with H = �(:; jBj)B;17



(D2) 16 BEM (D3) 64 BEM (D2) 16 FEM (D3) 64 FEMI(�) CPU I(�) CPU l I(�) CPU I(�) CPU18 2.9 18 4.7 1 12 2.0 13 3.719 4.2 19 6.5 2 15 2.8 16 5.019 5.0 20 7.9 3 16 4.2 17 6.520 9.9 20 16.3 4 17 6.6 18 10.220 25.1 20 26.9 5 17 15.2 18 21.08897 32699 N(5) 136081 5507951.00 ! 0.86 e�. 1.00 ! 0.79Table 2: Iteration count (I(�), � = 10�6), CPU time (system generation and solution) inseconds for BEM and FEM discretizations and scaled e�ciency according to the CPU timeand the number of unknowns (N(5)) for the 5th level. The experiments were carried out ona GC{PowerPlus using one processor per subdomain.where H is the magnetic �eld strength, i.e., we replace �j by �j(jruj) in (3). We allowferromagnetic materials with non-constant permeability � to be in the FEM subdomains
i; i 2 IF only. The analysis of nonlinear magnetic �eld problems can be found in [17,18].We apply a Newton approach for linearization together with the "nested iteration" method.The latter means that we generate a multilevel sequence of coupled FE/BE discretizationsdenoted by the grid numbers q = 1; : : : ; l. We begin with solving the nonlinear system byNewton's method on the coarsest grid q = 1. Then we take the approximate solution on thegrid q� 1 interpolated onto the �ner grid q as an initial approximation for Newton's methodon the grid q, for q = 2; : : : ; l. This allows us to "catch" the nonlinearity on the coarsest grid,cf. [17]. The complete Parallel Nested Newton algorithm is described in [19{21].

Figure 5: Domain decomposition and level lines for the induction machine.The example under consideration, an induction machine (asynchronous motor), is a real-life application. It is challenging to both the DD preprocessing tool, and the solver, due toits very complicated interior geometry and the strong in
uence of saturation (i.e., a strongnonlinearity). Indeed, we have an air gap of 0.2 mm where the coe�cient has a jump by afactor of more than 1000, whereas the machine has a diameter of 45 mm.18



Table 3: Performance for the induction machineChoice for CC BPS-D S-BPXNewton iterations 1st grid 10 14CG iterations 1st grid 68 � � � 83 42 � � � 52Newton iterations 2nd grid 2 2CG iterations 2nd grid 43,55 36,45Newton iterations 3rd grid 2 2CG iterations 3rd grid 42,30 37,23Newton iterations 4th grid 2 2CG iterations 4th grid 13,82 34,59Newton iterations 5th grid 6 5CG iterations 5th grid 36,61,64,27,68,64 38,59,22,79,29Time (generation) 54.5 50.7Time (linear solver) 506.0 608.5Total time 560.5 659.2Time in seconds, GC-Power Plus, 64 processors; 64 FEM subdomains, 549 091 unknowns,choice for CI : V11, relative accuracy " = 10�6Starting with a triangulation of the machine consisting of 3520 triangular elements (withthe material class assigned to each triangle) given in a tri-data �le, we generate a decomposi-tion of the cross-section of the machine into 64 subdomains by applying the routinesDecompand Tri2DD. We display the resulting decomposition on the left-hand side of Figure 5.Looking at the decomposition, one might imagine that a "manual" decomposition couldresult in a "more symmetric", "nice" picture. But this would take many hours of engineer'stime, and thus contradicts the idea of accelerating �eld calculations by DD methods.Level lines are presented on the right-hand side of Figure 5, performance results for a pureFEM-DD method (IB = ;) in Table 3. Further numerical results applying the identical de-composition of the machine but other solvers (e.g., global parallel Newton multigrid methods)can be found in [22].4.3 The DamNow, we want to extend the ideas discussed above to problems of plane linear elasticity inwhich the displacement u(x) = (u1(x); u2(x))T satis�es formally the system of Lam�e equations��(x)�u(x)� (�(x) + �(x))grad divu(x) = 0 in 
u(x) = 0 on �D; P2l=1 �kl(u(x))nl = gk(x) on �N ; (k = 1; 2) (17)where 
 is a bounded Lipschitz domain, �kl(u) are the components of the stress tensor �(u)and n(x) = (n1(x); n2(x))T is the outward normal vector to �D [ �N = � := @
 (�D 6= ;)and � and �, �; � > 0; are the Lam�e coe�cients of the elastic material. In (17), g = (g1; g2)Tis the vector of boundary tractions. The extension of the theory presented above for potentialproblems to linear elasticity is straightforward. The equations and de�nitions can be found,e.g., in [11].As a test problem we consider a dam �lled with water as sketched in Figure 6. As indicatedthere, Dirichlet boundary conditions (b.c.) are given on �D (zero displacement) and Neumannb.c. on �N (the tractions are equal to zero, or they are chosen according to the water pressure).The Lam�e constants are given for rock by �r = 7:4e5MPa; �r = 1:7e6MPa and for concreteby �c = 1:2e6MPa; �c = 1:2e6MPa: 19
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Figure 7: The �rst-level mesh of (D4) and the resulting displacement (factor 100).We consider two automatic decompositions: one into 16 subdomains (D4) (as drawn inthe middle in Fig. 6) and one into 64 subdomains (D5) (as drawn on the right in Fig. 6),where for the latter the discretization on � is about as double as �ne for (D5) than for (D4).Both decompositions are the result of the automatic preprocessing started with an a{priorigraded grid towards the regions where high stresses are expected, the �rst-level mesh of (D4)is shown in Fig. 7 on the left.The original result of the preprocessor is given in Table 4, after transforming the descrip-tion into the dd{format and remeshing the subdomains we obtain the results documented inFig. 8. Although the performance is not optimal the overall performance bene�ts �nally fromthe "smooth" boundaries of the domains and the distortion of the load balance is acceptable.For the results presented in Table 5, the components of the preconditioner have been
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BEM FEMmin max min max(D2) 16 25 38 (31) 40 (53)(D3) 14 20 36 (18) 38 (63)Table 4: The direct results of the preprocessor (number of BE/FE{elements, respectively)and the number of FE{elements (in parentheses) after applying the mesh{generator.(D4) 16 BEM (D5) 64 BEM (D4) 16 FEM (D5) 64 FEMI(�) CPU I(�) CPU l I(�) CPU I(�) CPU47 3.9 53 24.1 1 32 3.7 30 19.151 5.1 56 27.6 2 42 4.8 37 21.553 8.8 57 33.8 3 49 6.6 41 24.654 24.3 58 45.1 4 53 14.2 44 32.154 83.7 60 92.7 5 55 40.8 47 58.211647 49146 N(5) 160287 6415941.00 ! 0.95 e�. 1.00 ! 0.70Table 5: Iteration count (I(�), � = 10�6), CPU time (system generation and solution) inseconds for BEM and FEM discretizations and scaled e�ciency according to the CPU timeand the number of unknowns (N(5)) for the 5th level. The experiments were carried out ona GC{PowerPlus using one processor per subdomain.chosen as follows:CC : S{BPXCI;i : V01 (as symmetric Multiplicative Schwarz method)BI;i : HExt:The BE{matrices were computed fully analytically using piecewise linear functions for thedisplacements and piecewise constant functions for the tractions [31]. Looking at the resultsfor (D4) and (D5) we observe almost constant iteration numbers with respect to l and p.The lower e�ciency in the FEM{case is also due to the higher local problem size for (D5)compared to (D4).5 ConclusionsWe have shown that the preprocessor ADDPre works very well for a wide range of problemsincluding practical problems from industry. The tool allows us to start o� with any descrip-tion of the problem and to realize the decomposition according to the number of processorsautomatically.Obviously the preprocessing tool is not restricted to DD solvers. It can be applied forparallel solvers based on DD ideas and data structure such as global multigrid methods andglobal BPX solvers, see [21,22,25], too.The Domain Decomposition methods can be extended to three dimensions. Further, therecursive spectral bisection method is based on graphs and thus it is independent of the prob-21
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