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Abstract

The Domain Decomposition Method (DD) is a powerful tool for constructing effi-
cient parallel solvers for Partial Differential Equationd (PDEs) which are well suited to
run on Multiple Instruction Multiple Data (MIMD) computers. However, the efficiency
of DD solvers depends heavily on the underlying decomposition of the domain of inter-
est into subdomains. In this paper, we introduce the Adaptive Domain Decomposition
Preprocessor ADDPre which realizes an automatic decomposition of the domain under
consideration into p subdomains, where p is the number of processors to be used. We
discuss both, the codes being involved and the data—formats being used for describing the
decomposition of the problem.

Numerical examples, demonstrating the performance of the prepreocessor as well as
the efficiency of the parallel solver are presented.
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1 Introduction

Nowadays, Domain Decomposition (DD) algorithms are of great interest, since they are the
basic tool for constructing algorithms which are well suited to run on Multiple Instruction
Multiple Data (MIMD) parallel computers with message-passing. These parallel machines
provide sufficient CPU power and sufficiently large storage capacity as it is necessary for the
numerical simulation of complex processes. Another important aspect is that DD methods
allow us to "marry” the advantages of the Finite Element Method (FEM) to those of the
Boundary Element Method (BEM) via a unified coupled variational formulation [6,11,24,27].

Therefore, efficient parallel solvers for large systems of algebraic equations resulting from,
e.g., the finite element (FE), the boundary element (BE), or a coupled FE/BE discretization
of the partial differential equation, have been developed [11 16,19 23,27.31].

To achieve the inherent high parallel efficiency of the solvers it is necessary to distribute
the work to the p processors of the parallel computer with a good load balance. The latter
means that the total waiting time, i.e., the sum over all processors of the time that a processor
has to wait idle for the others, should be small. As an example, in the FEM-DD for linear
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elliptic problems, almost equal numbers of nodes, elements, and coupling boundaries should
be assigned to each processor. Such a distribution can be set manually for academic test
examples only.

A powerful tool for the distribution of an initial mesh represented by a graph is the
recursive spectral bisection method (rsb) [4,30]. We will apply an improved version that
allows us to decompose a naturally given (by the material coefficients) initial decomposition
consisting of P,,,; subregions of different size into an arbitrary number p of final well-balanced
subdomains. First, we determine the number of subdomains in which each subregion is to
be decomposed (it needs not to be a power of 2), then we apply the modified rsb to each
subregion.

Further, complicated coupling boundaries between the subdomains can reduce the effi-
ciency of the DD based solvers mentioned above. Thus, it is desirable to smooth the coupling
boundaries that separate subdomains inside a subregion. For that purpose, a new preprocess-
ing tool has been developed. The coupling boundaries that separate subregions with different
coefficients remain unchanged in the standard DD methods.

As a third aspect, adaptive refinement strategies can lead to load-imbalance on the fine
grids. Therefore, we provide the possibility to generate an a-priori refined mesh in the pre-
processing. If this mesh is used as an input for the spectral bisection method, there will be a
quasi-static load balance on the fine grids.

In this paper, we consider a potential problem arising, e.g., from magnetostatics, as a test
problem, which can be written formally as follows

8H0y (.I) _ 8H0X (.I)

ox dy
w(z) = 0, ze€lp=T:=0900. (2)

—div (v(z)Vu(z)) = S(z)+

z € (1)

Here, © is a bounded domain, and v denotes a piecewise constant coefficient function which
defines an a-priori decomposition of the domain €2 by

Pmat _
O=J 9, with ;nQ;=0 Vi#j and v(z)=v; for z€Q; (3)
j=1

For the physical model, and for Hoy and Hgy, which stand for sources associated with permanent
magnets, we refer to [17,18,20,23].

The rest of the paper is organized as follows. In Section 2, we describe the preprocessing
tools in detail. In Section 3, we give a short overview of the parallel algorithm for solving
the problem stated above using this decomposition. Numerical result concerning both, the
preprocessor and the parallel solver are presented in Section 4. We conclude the paper with
some remarks in Section 5.

2 Preprocessing

Having in mind to use a multiprocessor computer to solve DD-equations the most natural idea
is to use one processor per subdomain. In our case we assume that the number of processors
(p) to be used is (much) larger than the number of a-priori given material-defined domains,
i.e., we have p > Pp,4:. Thus, we wish to decompose the domains Q further, which leads
finally to -
QO=J2, with Q=) Vi=1... P (4)
i€T i€T;

where the sets of indices are given by



Pmat
LicZ={l,....p}, |JZ,=T, LnZy=0 Vj#k,
Jj=1

i.e., the subdomains Qj determined by the materials may be decomposed further (see, e.g., [15]).
We assume that there exist open balls B, and By, (i € Z) with positive radii r; and 7;, such
that

B, CQ;CBr, and 0<c<7/r;<¢ Viel (5)

with fixed (i-independent) constants ¢ and €.

The task of decomposing €2 into p subdomains starting with a fixed discretization of the
interfaces 'y := U;D;”'{”BQJ- aiming at a load-balanced decomposition is not trivial. Actually
we seek such a decomposition for an a-priori defined discretization of the boundary which
minimizes the imbalance between the processors, i.e.,

max {Bi N;}/ _nllin {Bi Ni} — Minimum (6)
1=1,...,p t=1,..,p

where N; (i = 1,...,p) is the number of local elements arising after the decomposition and
B; is a piecewise constant (over Q) weight function representing the work per element.

In the following we describe the data formats, the file types, the tools and, finally, the
preprocessor ADDPre.

2.1 Data Formats

Throughout the process of preprocessing we are concerned with two types of describing data:
dd-data and tri-data. Both of them describe the geometry of the problem (shape of the
domain, material interfaces) as well as the discretization (density and grading of the mesh).
Each of them consists of certain classes of objects which are defined hierarchically.

type object definition
crosspoints coordinates
geometrical edges | two crosspoints, (midpoint), refinement parameter,
dd-data (boundary condition)
faces geometrical edges, material pointer
subdomains faces
points coordinates
tri data edges two points, (midpoint), (boundary condition)
triangles edges, material pointer

The main difference between the two data types is how the discretization is being repre-
sented. The dd-data describe the refinement only on the interfaces (as it is sufficient for a
BEM discretization), whereas the tri-data describe the full 2d-discretization (as it is required
for a FEM discretization) and are thus, in some sense, the 2d-realization of the refinement
information contained in the dd-data.

The following parameters are used to describe the refinement on the geometrical edges:

nn — Number of inner nodes on an edge for the coarsest grid,
kind — Kind of discretization,
1 — Ratio 1 of element sizes for the coarsest grid.



For simplicity we define additionally:
ne — Number of elements on an edge for the coarsest grid,

where ne = nn + 1 holds. The parameter kind has the range [1,..., 3], where the numbers
define the coarsest grid as follows.

e kind = 1: Uniform discretization.

a a
| | | | | | ry = 1.0
e kind = 2: Compression towards the starting point.
a b b
e | o=
a
e kind = 3: Compression towards the end point.
b a b
| | " =l
a

Internally these three cases are reduced to one (grading into one direction) by introducing
the length h; of the first interval and for the ratio ¢; of neighboured intervals.

hq hne

>

ne

The paramters are defined by

@ = "

L Z/ne iff g =r1 =10
A l q‘fj,f}] otherwise.
1

where [.] denotes the integer part and r is assumed not to be one, i.e. the uniform discretization
is excluded.

Further grids are obtained by dividing each interval into two subintervals such that one
gets a grading with the ratio which is the square root of the previous ratio. That is if two
neighboured (old) intervals do have the ratio g; the two subintervals will have the ratio |/g;.

Remark 2.1 All edges may be straight lines or arcs of a circle. In the latter case an additional
point (midpoint) defines this edge. This information would then be inherited throughout all
stages of further refinement.

2.2 The files

Alltogether three types of files are being used during the preprocessing. There are *.{ri, *.dd
and *.fb files. The first two contain the full geometrical information based on triangles and
dd-data, respectively, whereas the third type is being used for auxiliary data. In the following
we are going to describe the structure of the files.



2.2.1 The *.tri Files

The *.tri file contains at least 4 data blocks which are a block of constants, the coordinates
of the nodes, the description of the edges and the description of the triangles. Additionally
these files may contain a block describing the boundary conditions.
The file starts with 7 integer numbers which have the following meaning:
1.) np number of points

2.) ne number of edges

3.) nt number of triangles

4.) nf number of degrees of freedom

5.) nd number of edges with Dirichlet boundary conditions
6.) mnn  number of points with Neumann boundary conditions

7.) ns number of subdomains.
What follows is the description of the nodes, edges, triangles and, possibly, boundary
conditions in the following form.

1. NODES This block contains the coordinates (double precision) of all nodes.

number of the node
1st coordinate of the ith node
2nd coordinate of the ith node

Here, 4 runs from 1 to np. The nodes are ordered such that the vertices of the triangles
are given first followed by the mid-points defining curved edges that may occur.

2. EDGES This block describes the edges via their bounding nodes.

Number of the edge

starting point of the ith edge
ending point of the ith edge
midpoint of the ith edge
type of the edge

Here, i runs from 1 to ne. The edges can be straight lines (type = 0, midpoint=0) are
may be arcs of some circle. In the latter case (type = 1) the edges are being defined
uniquely by giving their mid-points.

3. TRIANGLES This block describes the edges via their bounding edges.

Number of the triangle

1st, 2nd, 3rd edge describing the ith triangle
subdomain-id of the ith triangle

(original) material-id of the ith triangle

Here, i runs from 1 to nt.

4. BOUNDARY This block describes given boundary conditions.

Number of the edge

value at the starting point
value at the ending point
value at the mid-point

Here, i runs from 1 to nd 4 nn.



2.2.2 The *.dd Files

The *.dd file contains several blocks each of them describing a certain part of the global
geometry. The headline every block starts with must consist of the following data.

(a) Codeword (string, 8 letters).
The codeword determines which kind of data are contained in the block.

(b) Type (string, 1 letter).
Here, the type, independent of its actual length, of the data following the headline has
to be defined. There are two options available:

1 - integer data
R - real data.

(c) Length (integer, 4 byte).
This number determines the length of the type named in (b).

(d) Size (integer, 4 Byte).
This number tells how many data of the type (b) and length (c) are contained in the
block after the headline.

After the headline the block must contain exactly as many data as determined by the numbers
stated above. The sequence of the blocks is not fixed, whereas each block has a special
structure which is described next.

The codewords the blocks start with are eight letters long, where () stands for space bar.

(1) Codeword: NKONST,,
Type: I
Length: 4
This block contains global data in the sequence given below.

1.)  Number nGeom of geometrical nodes.

2.)  Number nEdges of geometrical edges.

3.)  Number nFaces of geometrical faces.

4.)  Number nDomain of subdomains.

5.) Dimension nDim of the coordinate system.

6.) Maximum number nPoly of geometrical edges describing a subdomain.
7.)  Number of degrees of freedom per node.

8.) Maximum number nSub of faces belonging to one subdomain.

9.) Number nBound of edges with boundary conditions.
10.) Number nMat of materials.

(2) Codeword: NODES,

Type: R
Length: 4 (or 8)
Size: 4 x number nGeom of nodes

This block contains the coordinates of the geometrical nodes in the following order.

number of the node

1st coordinate of the ith node
2nd coordinate of the ith node
3rd coordinate of the ith node




Here, i runs from 1 to nGeom. Note that the nodes must be ordered in such a way, that
the numbers i=1,...,nCrP stand for the crosspoints and i=nCrP+1.... nGeom stand for
the midpoints that may be present.

(3) Codeword: EDGES_

Type: I
Length: 4
Size: 6 * number nEdges of the geometrical edges

The block defines the geometrical edges via the geometrical nodes.

Number of the edge

starting crosspoint of the ith edge
end crosspoint of the ith edge
midpoint of the ith edge

type of the edge

pointer

The variable i runs from 1 to nEdges. The following types of edges are defined:

1 : straight line
2 ¢ arcof acircle
(4) Codeword: FACES,
Type: I
Length: 4
Size: (34+nPoly) * number of subdomains

The block defines the geometrical faces via the geometrical edges.

number of the subdomain
number of the edges describing the subdomain
number edge(1) ,..., Number edge(nPoly)

original material-id

Here, i runs from 1 to nFaces. If the number of edges describing the face is less than
nPoly, then the remaining numbers are set to zero.

(5) Codeword: MAPPING2

Type: I
Length: 4
Size: (34+nSub) * number nDomain of subdomains

The block contains the mapping of the subdomains onto the array of processors and
classifies the kind of the problem which is to be solved on the subdomain.

number of the processor

number of faces belonging to this subdomain

number face(1),...,face(nSub)

classification of the problem to be solved in the ith subdomain

Here, i runs from 1 to nDomain. If the number of faces describing the subdomain is less
than nSub, then the remaining numbers are set to zero. The classification is defined by:



-2 :  BEM-computation, exterior domain
-1 : BEM-computation, interior domain
1 : FEM-computation.

Codeword: BOUNDARY

Type: R
Length: 4 (or 8)
Size: (3+6*nFhg) * number nBound of the geometrical edges with b.c.

The block contains the values which are necessary to describe the boundary conditions
along the edges.

number of the edge (see EDGES) of the ith edge with b.c.
kind of the boundary conditions

pointer

valuel starting node, valuel end node, valuel midpoint
value2 starting node, valuel end node, value2 midpoint

The variable i runs from 1 to nBound. The value of kind ranges between 1 and 5 and is
defined as:

1 : essential boundary conditions
2 : natural boundary conditions (flowing condition)
3 : natural boundary conditions (transition condition).

The variable pointer can be used to define a more complicated behaviour of the values of
the boundary conditions than the linear one, which is assumed as standard. The second
values are the transition coefficients in the case of boundary conditions of the 3rd kind.
Otherwise they are not being used. The values of the midpoint will be ignored if the
edge is a straight line.

Codeword: MATERIAL

Type: R
Length: 4 (or 8)
Size: 8 * number nMat of materials

The block contains the coefficients of the differential equation, which are constant over
the subdomains

T ki1 ko -
—V'u(z) <k21 k22> Vu(z) + (b1,b2)Vu(z) + cu(z) = f

‘kn,km,km, kaa, b1, ba, ¢, £ ‘

Here, i runs from 1 to nMat (=nDomain).

Codeword: REFINEOQ,,

Type: R
Length: 4 (or 8)
Size: 5 * number nEdges of geometrical edges

This block defines the a-priori strategy for refining the edges.



number of the edge (see EDGES)

kind of discretization of the ith edge
number of inner points on the ith edge
ratio 1

ratio 2

Here, i runs from 1 to nEdges.

(9) Codeword: MAIDX,,,
Type: I
Length: 4
This block contains a integer field MAIDX(3,nDomain), where nDomain is the number
of subdomains.

For subdomain 4 there is given:

Number of the element subroutine to be used for the ith subdo-
main.

Number of data of the field DATMA [10] necessary for it.

Start index of data in the array DATMA.

Here, i runs from 1 to nMat.

2.2.3 The *.fb Files

The *.fb files contain auxiliary data as additional cross-points and material-describing data.
The file has the same structure as the x.dd files.

(1) Codeword: NKONST,,
Type: I
Length: 4
This block contains global data in the sequence given below.
1.)  Number ncross of nodes.

2.)  Number nMater of materials.
3.)  Number nMAIDX of MAIDX-data.

(2) Codeword: NODES,_

Type: R
Length: 4 (or 8)
Size: 4 x number nGeom of nodes

(3) Codeword: MATERIAL

Type: R
Length: 4 (or 8)
Size: 8 * number nMat of materials

(4) Codeword: MAIDX,,
Type: I
Length: 4

Except of the first block, the definition is analogous to the description given in the previous
section.



2.3 The Codes

The preprocessor ADDPre uses three main tools which are AdapMesh, Decomp and Tri2DD.
Now, we will describe these tools including the main ideas they are based on.

2.3.1 AdapMesh

AdapMesh converts dd-data into tri-data. This code applies an improved version of the mesh
generator ParMesh [9] to each of the given subdomains in parallel or sequentially one after
another. The resulting global mesh is conforming along the interfaces since the discretization
at these interfaces has been predescribed.

Additionally, it is possible to adapt the refinement to singularities, i.e., one has to change
the refinement parameter which are given in the input dd-file before starting the mesh gen-
erator. For this purpose, a possibly sequential coarse grid calculation could give rise to the
right choice of the new refinement parameter.

2.3.2 Decomp

The program Decomp decomposes a domain € containing P,,,; single-material domains ﬁk
into an arbitrary number of subdomains p > P,,4; so that in analogy to (4)

_ Pmaf Pk Pm,a.t

Prmat P
= Ua=UUm=Us »=>n
k=1 i=1 k=1

k=1 =1

holds, where p; denotes the number of subdomains into which a single-material domain ﬁk
will be decomposed and ﬁk = @ Q; is fulfilled. So each subdomain €; belongs to exactly one
material. In the context aboveZtLe term material is not just restricted to different material
constants but is also extended to different type of differential equations describing the local
problem or different techniques for solving.

The decomposition of the domain €2 cannot be done by pure geometric information of the
domain Q. For the sake of decomposition we need a triangular element grid and decompose
this grid. This grid will be read in by the program as a *.tri file. Each element has to be
characterized by the number of the material it belongs to.

Let N denote the number of elements in the whole domain €2, J/\}k the number of elements
in the single-material domains ﬁk and N; the number of elements in the subdomains €2;. Then
we can rewrite the relations between the domains into relations of the numbers of elements

Prat R Prmat Dk Pmat
> Ny=)> >N = ZNV, p—Zpk.
k=1 k=1 =1

For explaining the technique used for decomposing the grid we first assume that we have

just one material in the whole domain, e.g. Q = Q and Pp,ot = 1. In the case of a decompo-
sition into p = 2%, s € N subdomains the usual recursive spectral bisection method (rsb) is
available [30]. For distributing the grid into an arbitrary number of subdomains we adapted
an idea of Clemens Brand [4]. The aim of all those decompositions is to distribute the ele-
ments in such a way that each subdomain possesses the same (or nearly the same) number of
elements (N; = N/p).

In the case of P, > 1 we handle each material domain ﬁk (k=1,Pmat) separately as
described above. Now the difficulty is to determine a—priori the number of subdomains p; per
material domain. The proper calculation for a distribution into p subdomain is done by the
following algorithm:

10



(1) Initialization: p:= Ppat , pe =1, Ny := Ny Vk =1, Ppar

(2) WHILE (5 <p) DO Find j: Nj = max_N;
1= ""’p
Set ]_)!:]_)—Fl,NI—)::N]'/Q,N]' ::N]'/Q
DONE

A load balanced distribution should also take into account that different material domains
may yield to different numerical efforts. So a weighted distribution of the elements is necessary
which fulfills the condition

max{(;N;} / min{s;N;} — Minimum
1=1,p i=1,p

The weights §; denote the average arithmetical work per element for solving the local problem
in a subdomain €2;. That means, e.g., nonlinear behaviour of the material constants in the
subdomain §2; will be reflected by a larger ;. To include this weighting condition in the
algorithm above all N; have to be declared as REAL and the third initialization statement
has to be changed into Ny := ﬁkl/\}k.

As a result each triangle obtains the number of the subdomain it belongs to. This infor-
mation will be written as a *.tri file.

Remark 2.2 The decomposition above is element based. Because of the fact that most of
the numerical algorithms solving large systems of equations (resulting from partial differen-
tial equations) are node based, the decomposition above does not reflect the numerical load
balance correctly but it works sufficiently good. Additionally no load balancing concerning
communication is taken into account but one great advantage of the rsb is the minimization
of the subdomain boundaries. In some practical problems with a rather strange geometry of
the material domains, e.g., long stripes, the communication balance is a -priori very poor.

2.3.3 Tri2DD

Tri2DD converts tri-data into dd-data. Hereby, interfaces between different materials and the
refinement information at these interfaces are fully maintained. On the other hand interfaces
within one material are to be smoothed to get "simple” polygons as subdomains. The aim
is to obtain smooth interfaces between subdomains belonging to the same material and to
minimize the global number of crosspoints without destroying the load balance generated by
Decomp.

The algorithm can be described as follows.

11



1. Find, for each subdoamin, the local sequence of boundary edges. Define these edges
as 'free’.

2. Find primary crosspoints (cp).

a) cp defined in the fb file.

b) points which are the intersection of at least three subdomains, where boundary
conditions are interpreted as (virtual) subdomains.

3. DO for all subdomains

WHILE there are 'free’ (local) boundary edges
a) Find a local cp P; which is a vertex of a ’free’ boundary edge. If there is no
such cp then define some vertex P; of a ’free’ edge as cp.
b) Start at P;, go along the 'free’ boundary edges UNTIL for two subsequent
points Py, P
i) Pyisacp
i) P, P, would be accepted as new geometrical edge, whereas P, P; would
not be accepted as new geometrical edge. Then define P, as new cp.

c) Define P; P, as new geometrical edge and set the corresponding boundary
edges to ’busy’. Define refinement parameter for the new geometrical edge
according to the boundary edges.

END WHILE
END DO

4. Renumber new crosspoints.

This algorithm is finite since in each iteration at least one ’free’ boundary edge is set to
’busy’. An open question is how to decide whether a virtual edge P; P is to be accepted as
new geometrical edge or not. For this purpose we distinguish between two cases:

C1: The boundary edges describe an interface between two different materials.

C2: The boundary edges describe an interface between two subdomains which belong to the
same material.

The following criteria are applied:
C1: If the new edge describes exactly the interface it is allowed.

C2: The new edge must intersect all polygons defined by the boundary points between P; Ps.
If this is not the case, or if it intersects a second material it is not allowed.

The refinement parameter are determined such that they reflect the behaviour of the
boundary edges (length and grading) as good as possible.

2.4 The Preprocessor ADDPre

The complete algorithm can now be formulated as follows.

12



0. Create (manually) a dd-description of the problem and state a-priori refinement in-
formation on the boundaries (see Fig. 1a).

1. Use AdapMesh to convert the dd-data into tri-data. (see Fig. 1b).

2. Use Decomp to decompose the domain, i.e., to assign each triangle to one of the
subdomains (see Fig. 1c).

3. Use Tri2DD to convert the tri-data back into dd-data (see Fig. 1d).

4. Stop or, if desired, modify the refinement information in the dd-file and goto (1.).

Starting off with any of the data formats the preprocessor has to maintain the original informa-
tion throughout all stages ending up with a dd-file which describes finally the decomposition
of our domain into subdomains according to the a-priori given refinement information.

)
K
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I
\

.
N
N

AVAVAVA
\7AVAVAVAVA

)
P\,
PAANNNNIN,

]

Figure 1: The 4 stages (a d from left to right) of preprocessing starting with an initial
decomposition (D1) on the left and ending up with a load-balanced decomposition (D2) on
the right.

The preprocessor performs a quasi-static decomposition. It is possible to restart the
preprocessing optionally in step (4). This may be necessary if the refinement information
(grading or density of the mesh) have been modified, e.g., according to the bahaviour of the
solution obtained from a coarse grid calculation. The a-posteriori change of the refinement
information, i.e., of the discretization, destroys in general the load-balance, that is the present
decomposition is no longer a solution to (6).

Remark 2.3 The preprocessor allows us to start off with any data format and to decompose
Q into any number p > Pp,,; of subdomains. The only data which are fixed throughout the
preprocessing are the definition of I'j; and the a-priori given refinement information on I"ps !

Remark 2.4 Since the rsb requires a full 2d-mesh it is always, i.e. also for DD-BEM, necessary
to generate a full 2d mesh ! At a first glance this may seem disadvantageous, especially if one
already starts with a dd-description of the problem. On the other hand a slightly improved
decomposition may give major improvements if time-dependent or optimization problems
involving repeated calls of the linear solver are to be solved.

3 DD-Formulation and Parallel Solution

Let us consider a linear magnetic field problem of the form (1)-(2) for which a domain decom-
position according to (4) is available. In particular, we assume that the index set Z = Zp UZp

13



Decomp

( *.fb] ( *.m:] ( *.m:]
Tri2DD —»( * dd]—» AdapMesh

Figure 2: The preprocessor can be started with any file. The output is the dd file at the
bottom.

can be decomposed into two disjoint sets of indices Zr and Zg such that

(supp S(.) Usupp Ho(.)) NQ; =0 Vi€ Ip, (7)
diam(Q) <1 Vi € Iy (8)

For each Q; (i € Z) the index i belongs to one of the two index sets Zp and Zp according
to the discretization method applied to €;, where Zp and Zp stand for BEM and FEM,
respectively. Note that the condition (8) is only technical and can be fulfilled by scaling the
problem appropriately.

Following M.Costabel [6], G.C.Hsiao and W.L.Wendland [24] and others, we can rewrite
the weak formulation of the boundary value problem (1)-(2) by means of partial integration
in the boundary element subdomains €2;, ¢+ € Zg and by the use of Calderén’s representation
of the full Cauchy data as a mixed DD coupled domain and boundary integral variational
problem: Find (A, u) € V := A x Uy such that

a(huin, o) = (o) Vin.v) € V. )
where
a(Mu;n,v) = ag(\u;n,v)+ap(u,v)
1
ap(\uin,v) = Y v {(Dz’uz‘,vﬁri + 5 i v + (A, Kividr, +
1€TR

1
(ni, Vixidr, — (mi, KCiug)r, — §<m,uz‘)ri}

ap(u,v) = Z/QV(m)VTu(m)Vu(m)dm

1€TR i
ov(x ov(x
o) = Y[ (8@ - Huy ()25 4 o) 252
, Q. ox Oy
1€ELR 4
(MNi,vi)r, = / Aivids and v; = v]gq,, ui = ulsg,, [i:= 0Q;,
I
with the well-known boundary integral operators V;, KC;, D; defined by the relations
Vidi(z) = [E(z,y)Nily) dsy
r;
Kiui(z) = f 0yE(z,y)u;i(y) dsy (10)
r;
Diui(z) = =0y [ 0,E(z,y)ui(y) ds,
Iy
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and with the fundamental solution
1
£(a,y) = —5-loglz — v/ (1)
s
of the Laplacian (see, e.g., [7]). The spaces Uy and A are defined by the relations

U, := {11, € H! (Q,) : “‘|FBE € H]/Q(FBE),U|3QO = 0} (12)
A = {A=(Niez, : M € H AT, i € Ip} = [Tier, Mis
with A; = Hil/Q(FZ’), 1 € Zp. Further we use the notation I'ggp := UiEIB o), \ I'p,Tpg =
UieIp 0 \Tp,Tc :=Tprg Ulpg and Qp = UiEIF Q;. Introducing standard norms [11]
one can prove that the bilinear form a(.,.) is V—elliptic and V-bounded provided that the
domain decomposition satisfies the conditions (5),(8), see also [24]. Therefore, the existence
and uniqueness of the solution are a direct consequence of the Lax—Milgram theorem.

The problem may be discretized using a standard nodal FE basis, corresponding basis
functions for v on I'gg, and suitable basis functions for approximating A on I'gp (see, e.g.,
[23,27]). This discretization results in a linear system

Ky —Kyxe O u\ o
Ko Kc Keop uc | = f(j . (13)
0 K[(j K[ uy fI

Here the index "A” denotes the unknowns associated with A on I'gg. An index ”C” denotes
vector components corresponding to the nodal basis on I'¢, i.e., the coupling boundaries
between the FE/FE, FE/BE, and BE/BE subdomains. The index ”I” corresponds to the
nodes belonging to the interior of subdomains €;, ¢ € Zp. The nonsymmetric, positive
definite system (13) can be approximately solved by Bramble/Pasciak’s CG method [2]. The
method requires a preconditioner C')y which can be inverted easily and which fulfils the spectral
equivalence inequalities 1/\0/\ < Kp < 4)Ch, with Yy > 1. Further, we have to find a
preconditioner C5 for the matrix

- (Kc + KoaKy 'Kc KOI) (14)

K =
2 Kic K

which we may construct by

([ Ic KBt Ce 0 I 0
02< 0 Iy 0 Or B 'Kic I (15)

applying the standard FEM DD principles described in [13,14,16]. The complete method is
given in detail in [23,27], see also [20].

The parallel implementation of the PCG algorithm which runs completely in parallel with
the exception of the two scalar products and the preconditioning, is described in [27]. An
improved version has been presented in [11,23].

The performance of the algorithm depends heavily on the right choice of the precon-
ditioners Cy, C¢, C; and the basis transformation B;. The matrices Cy, C; and B; are
block-diagonal matrices with the blocks Cy ;, Cr; and By ;, respectively. In our experiments,
the following components have turned out to be the most efficient ones:
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Cri: (Vmn) Multigrid V-cycle with m pre- and n post-smoothing steps in
the Multiplicative Schwarz Method [12,14].

Chri: (mgV) 0;- Ky i (In;i— MAJ;)’]. M, ; is the multigrid operator satisfying
the conditions formulated in [26].

Bri:  (HExt) Implicitly defined by hierarchical extension (formally Frc; =
-1
—B;, Kic,) [16].

Cc: (S-BPX) Bramble/Pasciak/Xu type preconditioner [32].
(BPS-D) Bramble/Pasciak/Schatz type preconditioner [3,8].
(ng) KC* (IC—Mc)il, (Kc* uc, Vc) = ZiGI Vi<Dz'Ui, ’Ul‘>, as described

in [5].

For the components given above, optimal or almost optimal spectral equivalence re-
sults have been proved [1,3,5,8,14,12,16,32], see [11] for an overview of the relevant results.
Consequently, we can estimate the numerical effort () to obtain a relative accuracy & by
Q = O(h 2 Inlnh~ " Ine ') in the (S-BPX) and (mgD) cases, i.e. almost optimal. In the
(BPS-D) case, one has to add a factor Inh~' [11]. If a BPX-type extension [28] is applied
instead of (HExt) in a nested iteration approach, we can prove that Q = O(h™2), i.e., we
obtain an optimal method.

4 Numerical Results

4.1 The Slit Problem Using Graded Grids

As an test problem we consider the Dirichlet boundary value problem
Au(z) =0 inQ and u(z)=r"?sing/2 ondQ (16)

with Q being the square (—1,1) x (—1,1) with a slit ([0, 1],0) and (r, ¢) are the polar coordi-
nates with respect to the origin.

JARY
VI

Figure 3: The decomposition (D3) into 64 subdomains (left) and the resulting FEM mesh of
the first grid (right).

The components of the preconditioner have been chosen as follows:
Cc: mgD (multigrid)

Cri: VIl
B[ﬂ;l HEXxt.
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Figure 4: The local number of finite elements (upper curves) and boundary elements (lower
curves) for 16 subdomains (D2) (left) and 64 subdomains (D3) (right) after the discretization.

The BE matrices were computed fully analytically using piecewise linear functions for the
displacements and piecewise constant functions for the tractions [31].

We present the results for two different decompositions: an automatic decomposition into
16 subdomains (D2) (see Fig. 1d) and an automatic decomposition into 64 subdomains (D3)
(see Fig. 3), both resulting from a manual decomposition into 16 subdomains (D1) (see Fig. 1a)
with a mesh-grading towards the origin with hy,45/hmin > 100. The underlying discretization
for (D3) is about as double as fine as for (D2), such that the local problem size should be
constant, i.e., independent of p.

BEM FEM

min | max min max

(D2) | 25 | 26 |68 (63) | 68 (78)
(D3) | 20 | 25 |65 (41) | 66 (89)

Table 1: The direct results of the preprocessor (number of BE/FE elements, respectively)
and the number of FE—elements (in parentheses) after applying the mesh—generator.

The results of the preprocessing for (D2) and (D3) are given in Table 1, Fig. 4 shows the
resulting local number of elements after remeshing the subdomains as it is realized in the
parallel code.

Looking at the results for (D2) and (D3) we observe constant iteration numbers with
respect to both, [ and p. Even BEM and FEM results are similar. The values obtained for
the scaled efficiency are quite satisfying taking into account that the process of decomposition
has been performed fully automatically for a non-standard graded mesh.

4.2 The Induction Machine

As a second application, let us consider a nonlinear magnetic field problem. In many cases,
the linear model is not sufficient for modelling electromagnetic phenomena. Therefore we take
into account that for ferromagnetic materials the permeability depends on the absolute value
of the magnetic induction B, i.e. the material function v(z) has to be replaced by a material
function v(z, |B|) = v(z, |Vu(z)|) with

H = (.,[B|)B,

17



(D2) 16 BEM | (D3) 64 BEM (D2) 16 FEM | (D3) 64 FEM
Ie) | CPU | I(e) | CPU | 1 Ie) | CPU | I(e) | CPU
18 2.9 18 47 1 12 2.0 13 3.7
19 4.2 19 6.5 2 15 2.8 16 5.0
19 5.0 20 7.9 3 16 4.2 17 6.5
20 9.9 20 | 16.3 4 17 6.6 18 10.2
20 | 25.1 20 | 26.9 5 17 | 15.2 18 | 21.0
8897 32699 N(5) 136081 550795
1.00 — 0.86 eff, 1.00 — 0.79

Table 2: Iteration count (I(e), e = 107°%), CPU time (system generation and solution) in
seconds for BEM and FEM discretizations and scaled efficiency according to the CPU time
and the number of unknowns (N(5)) for the 5th level. The experiments were carried out on
a GC—PowerPlus using one processor per subdomain.

where H is the magnetic field strength, i.e., we replace v; by v;(|Vu|) in (3). We allow
ferromagnetic materials with non-constant permeability v to be in the FEM subdomains
Q;,i € Zp only. The analysis of nonlinear magnetic field problems can be found in [17,18].
We apply a Newton approach for linearization together with the "nested iteration” method.
The latter means that we generate a multilevel sequence of coupled FE/BE discretizations
denoted by the grid numbers ¢ = 1,....l. We begin with solving the nonlinear system by
Newton’s method on the coarsest grid ¢ = 1. Then we take the approximate solution on the
grid ¢ — 1 interpolated onto the finer grid ¢ as an initial approximation for Newton’s method
on the grid g, for ¢ = 2,...,[l. This allows us to ”catch” the nonlinearity on the coarsest grid,
cf. [17]. The complete Parallel Nested Newton algorithm is described in [19 21].

Figure 5: Domain decomposition and level lines for the induction machine.

The example under consideration, an induction machine (asynchronous motor), is a real-
life application. It is challenging to both the DD preprocessing tool, and the solver, due to
its very complicated interior geometry and the strong influence of saturation (i.e., a strong
nonlinearity). Indeed, we have an air gap of 0.2 mm where the coefficient has a jump by a
factor of more than 1000, whereas the machine has a diameter of 45 mm.
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Table 3: Performance for the induction machine

Choice for C¢ BPS-D S-BPX
Newton iterations 1st grid 10 14
CG iterations 1st grid 68 ---83 42---52
Newton iterations 2nd grid 2 2
CG iterations 2nd grid 43,55 36,45
Newton iterations 3rd grid 2 2
CG iterations 3rd grid 42,30 37,23
Newton iterations 4th grid 2 2
CG iterations 4th grid 13,82 34,59
Newton iterations 5th grid 6 5
CG iterations 5th grid 36,61,64,27,68.64 | 38,59,22,79,29
Time (generation) 54.5 50.7
Time (linear solver) 506.0 608.5
Total time 560.5 659.2

Time in seconds, GC-Power Plus, 64 processors; 64 FEM subdomains, 549 091 unknowns,
choice for C7: V11, relative accuracy € = 1076

Starting with a triangulation of the machine consisting of 3520 triangular elements (with
the material class assigned to each triangle) given in a tri-data file, we generate a decomposi-
tion of the cross-section of the machine into 64 subdomains by applying the routines Decomp
and Tri2DD. We display the resulting decomposition on the left-hand side of Figure 5.

Looking at the decomposition, one might imagine that a "manual” decomposition could
result in a "more symmetric”, "nice” picture. But this would take many hours of engineer’s
time, and thus contradicts the idea of accelerating field calculations by DD methods.

Level lines are presented on the right-hand side of Figure 5, performance results for a pure
FEM-DD method (Zg = () in Table 3. Further numerical results applying the identical de-
composition of the machine but other solvers (e.g., global parallel Newton multigrid methods)
can be found in [22].

4.3 The Dam

Now, we want to extend the ideas discussed above to problems of plane linear elasticity in
which the displacement u(z) = (u1(x),us(z))” satisfies formally the system of Lamé equations

—u(z)Au(z) — (AM(z) + p(z))grad divu(z) =0 in Q
Sy on(u(z))n = gi(z) on Ty, (k=1,2)

where 2 is a bounded Lipschitz domain, ok (u) are the components of the stress tensor o(u)
and n(z) = (n1(x),n2(x))" is the outward normal vector to Tp UT'y =T := 9Q (['p # 0)
and X and g, A, > 0, are the Lamé coefficients of the elastic material. In (17), g = (g1, ¢2)"
is the vector of boundary tractions. The extension of the theory presented above for potential
problems to linear elasticity is straightforward. The equations and definitions can be found,

u(z) = 0 on T'p, (7

e.g., in [11].

As a test problem we consider a dam filled with water as sketched in Figure 6. As indicated
there, Dirichlet boundary conditions (b.c.) are given on I'p (zero displacement) and Neumann
b.c. on 'y (the tractions are equal to zero, or they are chosen according to the water pressure).
The Lamé constants are given for rock by p, = 7.4ebMPa, A, = 1.7e6MPa and for concrete
by p. = 1.2e6MPa, A, = 1.2e6MPa.
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Figure 6: The dam (left) and its decomposition into 16 subdomains (D4) and 64 subdomains
(D5).
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Figure 7: The first-level mesh of (D4) and the resulting displacement (factor 100).

We consider two automatic decompositions: one into 16 subdomains (D4) (as drawn in
the middle in Fig. 6) and one into 64 subdomains (D5) (as drawn on the right in Fig. 6),
where for the latter the discretization on I' is about as double as fine for (D5) than for (D4).
Both decompositions are the result of the automatic preprocessing started with an a—priori
graded grid towards the regions where high stresses are expected, the first-level mesh of (D4)
is shown in Fig. 7 on the left.

The original result of the preprocessor is given in Table 4, after transforming the descrip-
tion into the dd format and remeshing the subdomains we obtain the results documented in
Fig. 8. Although the performance is not optimal the overall performance benefits finally from
the ”smooth” boundaries of the domains and the distortion of the load balance is acceptable.

For the results presented in Table 5, the components of the preconditioner have been

55 T T T T T T T 65
50 60 1
55 1
45 50 J
40 ¢ 45 1
40 ]
35+
35 1
30 30 1
25 | | 25 ]
200 S . BT B LR PN \ ]
15 L L b L L L L 10 L L L L L L
0 2 4 6 8 10 12 14 16 0 10 20 30 40 50 60 70

Figure 8: The local number of finite elements as output of Decomp (left) and after running
Tri2DD and AdapMesh (right) for (D5).
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BEM FEM

min | max min max

(D2) | 16 | 25 |38 (31) | 40 (53)
(D3) | 14 | 20 |36 (18) | 38 (63)

Table 4: The direct results of the preprocessor (number of BE/FE—elements, respectively)
and the number of FE—elements (in parentheses) after applying the mesh—generator.

(D4) 16 BEM | (D5) 64 BEM (D4) 16 FEM | (D5) 64 FEM
Ie) | CPU | I(e) | CPU | 1 Ie) | CPU | I(e) | CPU
47 3.9 53 | 241 1 32 3.7 30 19.1
51 5.1 56 | 27.6 2 42 4.8 37 | 215
53 8.8 57 | 33.8 3 49 6.6 41 24.6
54 | 243 | 58 | 45.1 4 53 142 | 44 | 321
54 | 837 | 60 | 92.7 5 55 | 408 | 47 | 58.2
11647 49146 N(5) 160287 641594
1.00 — 0.95 eff. 1.00 — 0.70

Table 5: Tteration count (I(e), ¢ = 107%), CPU time (system generation and solution) in
seconds for BEM and FEM discretizations and scaled efficiency according to the CPU time
and the number of unknowns (N(5)) for the 5th level. The experiments were carried out on
a GC—PowerPlus using one processor per subdomain.

chosen as follows:

Cc: S BPX
Cr;: V01 (as symmetric Multiplicative Schwarz method)
B[ﬂj . HExt.

The BE matrices were computed fully analytically using piecewise linear functions for the
displacements and piecewise constant functions for the tractions [31]. Looking at the results
for (D4) and (D5) we observe almost constant iteration numbers with respect to [ and p.
The lower efficiency in the FEM-case is also due to the higher local problem size for (D5)
compared to (D4).

5 Conclusions

We have shown that the preprocessor ADDPre works very well for a wide range of problems
including practical problems from industry. The tool allows us to start off with any descrip-
tion of the problem and to realize the decomposition according to the number of processors
automatically.

Obviously the preprocessing tool is not restricted to DD solvers. It can be applied for
parallel solvers based on DD ideas and data structure such as global multigrid methods and
global BPX solvers, see [21,22,25], too.

The Domain Decomposition methods can be extended to three dimensions. Further, the
recursive spectral bisection method is based on graphs and thus it is independent of the prob-
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lem dimension. Applying a suitable mesh generator (see, e.g. [29]), the complete preprocessing
procedure can be extended to three-dimensional problems as well.
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