Automartic Mesh Generation
for 3D Objects

Ferdinand Kickinger
Institut fiir Mathematik
Johannes Kepler Universitat Linz

Abstract

In this paper, an automatic mesh generator for three dimensional objects is presen-
ted. This mesh generator produces uniform meshes locally fitted to the boudary and to
interfaces. Sometimes, such meshes are also called locally irregular. The computational
complexity of the mesh generator is of the order O(n), where n denotes the number of mesh
points. Therefore, the algorithm is suited for generating rather fine grids, quite efficiently.
Aspects of a-priori and a-posteriori adaptiv mesh refinements are also discussed.

Keywords: Automatic 3D mesh generator, locally irregular meshes, a-priori and a-

posteriori adaptive mesh refinement.
AMS(MOS) subject classification: 65N50, 65N55.

1 Introduction

This paper is devoted to the description of an automatic mesh generator in 2D and, above all,
3D. If we look arround for mesh-generators, we find a lot of them for two dimensions, which
are running very satisfyingly. There are algorithms for parallel generations of meshes and
we can produce graded grids. In three dimensions the situation in totaly different. Out of
the recent hardware development, the engeneering of three dimensional mesh generators has
started in the last few years. In three dimensions, we subdivide into semi-automatic mesh
stategies, and (full-) automatic strategies. The semi-automatic mesh generators typically
require some topological information about the geometry in the background, to produce
a mesh correctly and sucessfully. By using a (isoparametric, transfinite) mapping from a
simple geometry with a known mesh, to the origin geometry, part by part, the wanted mesh
appears on the geometry. The disadvantage of these methods is obviously, that we have
to do a lot of handwork, making these mappings, and putting the parts together. In (full-
Jautomatic stategies, the situation is more convienient. We put in the geometry, given in
different data models and get, after quite a while the more or less convienient mesh out. A
problem appearing at the point of putting a geometry into a mesh generator, is the coupling
with CAD- CAM-systems, which we need for doing calculations on complicated real world
problems. One strategy for doing such an automatical mesh generation in three dimensions
is the moving front technique. Here we start at a given surface mesh of the boundary and the
interfaces of the geometry. Cut layer by layer tetrahedrons (hexaedrons) off, untill there is
nothing left of the geometry. The disadvantage of this algorithms is, that we have to search in
the actual front for neighbourships, and collabing of the front. This search in the front raises
the complexity to the theoretical complexity of O(nlogn), where n denotes the number of
meshpoints. This result depends on the used search algorithm. In practical problems, we get
a real complexity of O(nPlogn) with p is a real number shortly bigger than one (p = 1.15 see
[22]). Our approach is based on producing meshes, which are locally fitted to the boundary.
This allows the optimal complexity of the algorithm. Part by part we build up meshes
for objects which become more and more complicated. Complicated in this context means
the stucture of the boundary. First we give an algorithm, that creates meshes for objects
with sufficient smooth boundary (€ C!). We then generalize the algorithm for acting on
boundarys with, so called, eritical points. This are points, where the surface is continious,

but not differentiable. Next, we catch critical lines, which are one dimesional subsets of the
boundary, where the surface is continious, but not differentiable. We end up with a method,
which is useable for objects, coming from real world problems.

We now start with the construction of an optimal mesh generator, for the generation of
tetrahedron / oktahedron meshes in three dimensions. As special case we obtain a generator
for two dimensions, producing meshes using triangles.

2 Definitions and Preliminary Results

The main idea for constructing the generator is cutting the R? into tetrahedrons and okta-
hedrons of edge length L. This results in a node structure, that can be written as follows:

Definition 1

Let D(h) be Z X Z x Z. (1)
For an arbitary point p = (i,7,k) € D
there is a corresponding point ¢ € R? as following :

(ir o k)Eh - (i + 3 + 3k, 85 + S22k, 22k). (2)

It is obvious, that the vertices above build up some tetrahedron/oktahedron structure.
Definition 2

The four Points p1,p2, ps, ps € D(h) are forming a Tetrahedron

0

the corresponding ¢1,qz, q3,qs € R3 fulfil

The siz Points p1,p2, ps, Pa, Ps, e € D(h) are forming an Oktahedron
(3
the corresponding q1, 42, 43, 44, 45, g6 € R® fulfil
h<|lg—qll <h-V2, i#j, i,j=1,2,3,4,56. (4)

The five Points p1, ps, ps, pa, ps € D(h) are forming a Pyramid
(3
the corresponding qi, G2, q3, G4, qs € R> fulfil
h<|g—ql <h-V2, i#j 14,j=1,2,3,4,5. (5)

Let in the following 3D-elements be Tetrahedrons, Oktahedrons or Pyramids.
We now intruduce a metric on D:

Definition 3

The distance dp(p1,p2) = 0 < p1 = (i1, J1, k1) = (i2, j2, k2) = p2

The distance dp(p1,p2) = 1 (near neigbours) <

<l —i2|+h—g2|+[k-k|<2 A
0 <| (é1 —42) + (J1 — J2) + (k1 — ko) [< 1.

The distance dp(p1,p2) = 2 (far neigbours) <
lts—da [+ ji—Ja [+ ki —k2|=3 A
0 <| (41 —t2) + (J1 — Jo) + (k1 — k) |[< 1.

the distance is 3 else. (6)

1 I I I I
0.8 "pi c2ell. dat " —]
0.6 _
0.4 =
0.2 .

O ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-0.2 —

-0. 4 I I I I
0 1 2 3 4 5

Figure 1: Tetrahedron, Oktahedron, Pyramid

It is easy to show that this is a metric. With this definition the following theorem gives
us an abstract condition if tetrahedron or not.

Theorem 1

1) Two points p1, pa € D(h) have distnace dp(p1,p2) =0 &
the corresponding points qi,qa € R® have distance dps(qy,q2) = 0.
2) Two points p1, pa € D(h) have distnace dp(p1,p2) =1 &
the corresponding points qi,qa € R® have distance dps(q1,q2) = h.
3) Two points p1, pa € D(h) have distnace dp(p1,p2) = 2 &
the corresponding points q1,qy € R? have distance dpa(q1,q2) = hv/2.
4) Two points py, pa € D(h) have distnace dp(p1,p2) =3 &
the corresponding points q1,qy € R? have distance dpa(qi,q2) > hv/2.
5) The four points p1,p2, ps, pa € D(h) are forming a Tetrahedron
)
dp(pi,p;) =1, i#j, 1,7=1,2,3,4 (7)
6) The siz points p1, p2, 3, P4, Ps, Pe € D(h) are forming a Oktahedron
)
1 <dp(pi,p;) <2, i#7j, t,57=1,2,3,4,5,6. (8)
7) The five points p1, p2, ps, pa, ps € D(h) are forming a Pyramid
)

1§dD(p27p])§27 Z#]v 27]:172737475 (9)

Proof: trivial.
Now we are able to start with generating surface meshes of sufficient smooth (C*) surfaces.
3 Surface Mesh Generation for Sufficiently Smooth Surfaces

Let in the following ® be a surface in space, given by explicit or implicit representation. We
do not care about details, we just request some smoothness (C!), and a projector p, that puts
a point = "close” to ® onto ® such that this point z has minimal distance to ®.

We now define a surface in the discret case (with elements in D(/)). The aim is, to find

such a surface in D(h) "close” to ®.

Similar to tetrahedron and oktahedrons, we can define 2D-elements as following:

Definition 4

The three points p1,p2, ps € D(h) are forming a Triangle

0

the corresponding q1,q2,q3 € R? fulfil
lgi —gill=h, i#j, 4,j=123.
Definition 5

The four points p1,pz, ps, pa € D(h) are forming a Quadrilateral

0

the corresponding qi,qa,q3, p4 € R> fulfil

h<lla =gl <V2) i ij=1,2,34 A
each corresponding point ¢; has distance h to q;, qi, N

¢ has distance h\/(2) to qi, 1,7,k 1=1,2,3,4, i#j#k#I
Definition 6

The neigbourhood of order 1 of a point (Nyi(p)) p € D(h)
are all elements g € D(h) with distance dp(p,q) = 1.

Definition 7

The neigbourhood of order 2 of a point (Ng(p)) p € D(h)
are all elements ¢ € D(h) with distance 1 < dp(p,q) < 2.

Definition 8

A point p € D(h) has closed neigbourhood in

S:((Zlvq%--'v(Zn)v qZGD(h)<:>
all points ¢; € SA € Na(p) have two points

q#G#q€SNE Ny p)A € Ni(a:)
Definition 9
A list of points S = (p1,pas ..., pn), Pi € D(R)
is called surface in D(h) <

1) there are no 3D-elements in S

2) each point p; € 5 has closed neigbourhood.
Theorem 2

The following algorithm calculates out the surface in D(h)

beeing closest to ¢

(10)

(11)

(12)

(13)

(14)

(16)

With this definitions, we can compute and implement the following algorithm for calcu-

lating surface meshes of closed C? surfaces.

?Closest” in this context means a distance between two surfaces in space, where the first

is ® and the second the induced surface by 5, with linear boundary at triangles, and bilinear

boundary at quadrilaterals.

Algorithm 1 Surface Meshing

1. START

(a) Take an arbitary point p on the surface ®.
(b) Search for a point p € D with corresponding point ¢ beeing closest to p.
(c¢) Search in the Na(p) for a point p € D beeing closest to ®.

(d) Take p as starting value for the recursiv part.
2. RECURSIVE PART

(a) The starting value we call p
(b) We take the corresponding ¢ to p and project it on ®, and add this new point
in the meshpointlist.
(¢) While (p has no closed neighourhood)
e Search in the N3(p) for the point p, which has minimal distance to @,
and no 3D-elements are build with prior points.

o Call recursive part with starting value p.

With this algorithm, we can calculate, for example, the surface-mesh of a sphere and a
torus, shown in Figure 6 and 7.

The next point is, that most of the problems which have to be meshed, have not a surface
® € C!. Real world objects are mostly piecewise C!. The lines and points of being ~C! are
called Critical Lines and Critical Points.

4 Surface Meshes in Critical Points

The typical problem in this case is building up a surface mesh of a cone, where the problems
occurs in its peak. To give a solution for this problems, we have to explain, what collabing
of points mean.

Definition 10

Two Points p1,ps € D(h), dp(p1,p2) =1 are collabed
if, per definition, the corresponding points ¢1,qs € R3are equeal (17)

This means for example, that from now on, the point p; € D(h) has the corresponding
point as p;. What we get out, is a change in the tetrahedon/oktahedron structure. Picture 2
shows what happens in the 2D case.

The Neighourhoods of the two points py,p; must be changed too. The new Ny(p1) =
N3(p2) is the union of neighourhoods of py, ps, the same for Ny. With this modification, all
the other definitions hold, especialy the definition of 2D- and 3D-elements and the closed
neighourhood. Now its clear what we do in a critical points p:

Algorithm 2 Critical Point Meshing
e Search for a point p € D with corresponding point ¢ beeing closest to p.
e Project this point onto p.
e Collab enough points arround p.

Enough points mean, as much as we need to catch the geometry.
Now we are able to build up a mesh of an infinite cone shown in Figure 8.

"pic2el2.d —

COOo PRk
ONBOORNAO®

'
=
o
=
N
w
I
(¢}
(o))
~

Figure 2: Collabing of points

5 Surface Mesh Along a Critical Line

This part of generating a mesh for three dimensional objects is the most difficult. In principal
the approach is similar to critical points. We go along the critical line, and collab points
€ D(h) "near” to the line into groups.

In the following, let the critical line be given in implizit or explizit representation for a
curve in space (¢ € Cl). The following algorithm will explain roughly how we deal with this
problem.

Algorithm 3 Critical Line Meshing

1. START

e Search for a point p € D with corresponding point ¢ beeing closest to ¢.
e Search in the Ni(p) for a point p € D beeing closest to ®.

o Take p as starting value for the recursiv part.
2. RECURSIVE PART

(a) The starting value we call p
(b) if (p — py < h - param) and we have not visited this point yet

e if (p is near a group of collabed points collab it too)
e else (build up a new group)
e Call recursive part with starting value all p € Ny(p).

p¢ means the projection of p onto ¢ and param stands for a parameter of about one, that
depends on the angle between to (ore more) surfaces (€ C!) ending up in the critical line. (If
the angel is small the parameter is small, if the angel is big, the parameter is big (max.: 2).)

Combining all of the above algorithms, we can generate surface meshes of the following
objects (Figure 9,10,11).

6 Building up the Interiour Mesh

Now we can create a surface mesh for an given object consisting of triangles and quadrilaterals.
This mesh can be used as a border for an also recursiv algorithm, that puts all interiour nodes

into the mesh vertex list. If we have more than one material, we apply this algorithm for each
material.

Algorithm 4 Interiour Mesh

1. START

Search for a point p € D with corresponding point ¢ in the interiour of the
material.

2. RECURSIVE PART

(a) The starting value we call p
(b) if (we have not visited this point yet) (also in the surface mesh generation)

e Call recursive part with starting value: all p € N(p).

7 Computational Time
We can write down the following steps for generating a mesh of a 3D-object.

e Put all critical points into the mesh

e Put all critical lines into the mesh

o Generate the surface mesh of the C! pieces
¢ Building up the 2D-elements

¢ Smoothing the 2D-elements

¢ Building up the interior mesh

¢ Building up the 3D-elements

¢ Smoothing the 3D-elements
The following formular gives approximately the complexity of the whole algorithm.

T=c-L-ht4e- S h?tes-V-h2 (18)

¢1,c9,c3 are positiv constants, bounded and independent of A,

L means the length of the critical lines,
S is the quantitativ surface of the object,
V is the volume of the object.

Note, that we take a three dimensional array of integers as analogon for D(h). In this
array we put in, if visited, the number of the gridnode in mesh-point list. This results in
the optimal complexity of order O(n). We do not need to check any surrounding like in
moving-front algorithms.

One of the disadvantages is, that we have to produce also fine grids at areas where we do
not need them. The solution therefore is a-priori and a-posteriori mesh adaption.

3 I I I I
"pic2el3d.dat" —

Figure 3: Refinemet of 2D elements

8 Mesh Adaption

First we have to look on our elements (2D or 3D) if we refine them. Suppose we have a
discrete function given in each meshpoint, that gives us the order of refining (order of refining
n means, that the discretisation parameter must be i -2!7"). What we do with triangels and
quadrilaterals we see in Figure 3.

For the case of maximal refinement parameter 2, Figure 3 shows us the different cases
in the 2D-case. If we concentrate on the rule, that an edge is only refine if both ends have
refinement parameter 2, nothing can go wrong (dealing with quadrilaterals we note, that if
at least one edge is refined, we add the centerpoint). In the 3D-case it is similar (see Figure
4).

For the case of maximal refinement parameter 2, Figure 4 shows us the different cases in
3 dimensions. The same rule as above holds. (dealing with oktahedrons and pyramids we
note, that if at least one edge is refined, we add the centerpoint). In the 3D-case it is similar
(see Figure 4). Let us call the case where every edge is halved total refinement.

Now we are able to increase the maximum discretisation parameter. By a recursive use
of the above cases we can rewrite this in form of an algorithm.

Note, that in the case of maximum discretisation parameter > 2, all values > 2 have to
be surrounded by a value > 2. If a given refinement function does not fulfil this condition,
we have to do one step of "smoothing” by replacing all 1s in the surrounding of values > 2
by 2s.

Algorithm 5 Adaptiv Refinement
e Parameters: refinement parameter for each node
o Whatever for an element we have to refine
e if (the refinement information is included in one of the above cases) apply the case

e clse make a total refinement of the element, and make a recursive call of this pro-
cedure with every new element resulting of the refining. As refinement parameter
for the nodes take

2.5 T T T T
"pic2eld.dat" —

2 -
1.5 .

1 -
0.5

0

0 1 2 3 4 5

Figure 4: Refinemet of tetrahedrons

the refinement parameter -1 if it is also a node of the non refined element

— else if the refinement parameters of the nodes in the non refined grid, out of
this new node was created by halvening, are equeal, it is refinement parameter
-1 too.

— else (the refinementparameters are different) take the minimum of the ”old”
parameters.

when refining quadrilaterals, oktahedrons and pyramids, the center point gets
as refinement parameter the minimum of the "old” parameters.

In Figure 12 we see two examples of adaptiv refinements in the 2D-case.

Now we are able to discuss a-prori and a-posteriori refinement strategies for our mesh
generator. In the a-priori case, we add to each node in our three dimensional array, that
is modelling D(h) some refinement information. That means, we substitute this array of
Integers, by an array of arrays of Integers, which are dynamicly allocated. This means, where
the geometry of our object requires a smaller discretisation parameter than h, we refine as
much as we need. Note that this nefining does not change anything in using the above
algorithms. The above definitions hold also for this adapted mesh structure. A-posteriori
refining is much easier if we do not care about how we get the refining information. Guess we
have this knowledge, then we have ”only” to go through the element list, and refine element
by element.

9 The Code NAOMI, FEM3DSYM and Numerical Tests

The mesh generating algorithms described in the proceding sections were implemented in
C'++. Further we have developed a finite element code together with an algebraic multigrid
solver (see [27] and [28] for deatails). The resulting code is called FEM3DSYM, standing
for Finite Element Package for Symmetric Problems, and NAOMI, standing for Numerical
Automatical Optimal Meshing Instrument. This Package is able to generate meshes for a
combination of shperes, zylinders, cones, toris and planes. After meshing, we build up the fi-
nite element equations using tetrahedrons, pyramids, oktaherons, triangles and quadrilaterals

(see [28]). The algebraic multigrid solver used in the package is presented in [28]. A detailed
description of the programs used can be found in [27].

In the following, we generate meshes for different 3D-objects with increasing complexity
in the boundary structure. Using these meshes, we then solve the following Dirichlet problem
for the Poisson equation:

—Au=1in Qand u=273.150n I' = 09. (19)

All numerical experiments were tested out on a Pentium with 100 Mhz and 32 MByte
RAM. In the following tables, the time values are given in seconds.

Example 1 Sphere

The first test is a sphere with radius » = 0.2. The objekt and the mesh (A = 0.04) is given in
Figure 6.

| Sphere | h=.04 | h=.02 [h=.01 |
Meshpoints 948 6748 | 50683
3D elements || 2225 17911 | 142999
2D elements | 693 2772 11086

Time mesh 1 4 33
Time matrix || 1 6 60
Time solver 1 6 120

Example 2 Torus

The next test example is a torus with outer radius ry = 0.175 and inner radius ro = 0.75.
The torus and the mesh (h=0.02) are presented in 7.

| Torus | h=.04 | h=.02 [h=.01 |
Meshpoints 637 4301 | 30771
3D elements || 1266 10495 | 82842
2D elements || 700 2831 11604

Time mesh 1 4 28
Time matrix || 1 3 30
Time solver 1 4 26

Example 3 Cone

The third test example is a cone with radius r = 0.15 and height A = 0.3. The cone and
the mesh (h=0.02) are given in Figure 8.

| Cone | h=.04 | h=.02 [h=.01 |
Meshpoints 228 1615 11079
3D elements || 495 4002 29736
2D elements || 303 1193 4672

Time mesh 1 3 19
Time matrix || 1 2 10
Time solver 1 1 10

10

Example 4 Hezxzaedron with Torus

The next test example has a surface with edges. The geometry and the mesh (h=0.014)
is drawn in Figure 9.

| Testobj. 1 || h=.02 | h=.014 | h=.012 |
Meshpoints 8368 23853 39551
3D elements || 22426 | 65277 109604
2D elements || 4514 | 9663 39551

Time mesh 7 18 29
Time matrix || 7 23 39
Time solver 8 24 38

Example 5 Zylinder with Torus

The last test example consists of a cylinder intersected by a torus. The geometry an the
mesh (h=0.01) is presented in Figure 10.

| Testobj. 2 | h=.02 | h=.01 |
Meshpoints 3586 | 28360
3D elements || 9488 78758
2D elements || 2192 9309

Time mesh 4 27
Time matrix || 3 28
Time solver 3 28

Finally we applied our mesh generator to a more sophisticated object called Motor Block.
The geometry and the mesh are given in Figure 11. At some places, the mesh seems to
be inconsistent (see also Figure 10). However, this comes out of projecting tree nodes of a
quadrilateral onto an edge.

The complexity estimate given in the previous section for the mesh generator is confirmed
by numerical results presented in the tables above. At least for fine grids, we observe that

Nh R~ M, h, H are two different mesh parameter. (20)
Ny tmeshg

The same is true for the matrix generation and the algebraic multigrid solver. Terefore,
all components of the package show an optimal behaviour with respect to the CPU-time in
practice too.

10 Further Goals in Automatic Mesh Generation

Usage of Splines in Geometrical Modelling

The automatic mesh generator for tree dimensions, implemented in the C++ program
NAOMI produces quite satiesfying meshes. The restriction on the possible geometries like
sphere, cone, cylinder, plane, ... is not very convienient. This leads to a coupling with CAD,
CAM systems. As we see, we require only a projector, that puts a point near to a given surface
or curve onto this surface or curve. Also the use of splines in the geometrical modelling is a
thing of interest.

11

Implementation of a-prior1 and a-posteriort Mesh Adaption

Further, if we want to calculate electrical machines, we have to implement a-priori and

a-posteriori mesh adaption. As a special case of the 3D mesh generator, a strategie for two

dimensions appear. In this case, we have already implemented the two strategies. For results

see

[28] or the appendix.

Parallelization of the Mesh Generator

Doing serious calculations in three dimensions, we have to think about parallelization,

to get satisfying results and to deal with computer ressources, without them, we can not
calculate any complex three dimensional geometry.

References

[1] R. Dautray J.-L. Lions: Mathematical Analysis and numerical Methods for
Science and Technology Vol 1. Springer-Verlag Berlin, 1990.

[2] V. Girault, P.-A. Raviart: Finite Element Approximation of the Navier-Stokes
Equations Springer-Verlag Berlin, 1979.

[3] T. Rossi: Fictious Domain Methos. University of Jyviskyld, 1995.

[4] A. A. Reusken: A Multigrid Method Based on Incomplete Gaussian ELimina-
tion. Eindhoven University of Technology, Department for Mathematics and Computer
Science, RANA 95-13, 1995.

[5] J. H. Bramble, J. E. Pasciak, J. Xu: Parallel Multilevel Preconditioners. Mathe-
matic of Computation, 55(191):1-22, 1990.

[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Elements. Springer Verlag, 1991.

[7] J. W. Ruge, K.Stiiben Algebraic Multigrid (AMG). Multigrid Methods (St. Mc
Cormick, ed.), Frontiers in Applied Mathematics, Vol 5, STAM, Philadelphia 1986.

[8] P.M. de Zeeuw: Matrix Dependent Prolongations and Restrictions in a Black
Box Multigrid. J. Comp. and Appl. Mathematics 33, 1-27 1990.

[9] F. Chatelin and W.L. Miranker: Acceleration by Aggregation of Successive Ap-
proximation Methods. LAA 43, 17-47 1982.

[10] W. Hackbusch Iterative Loser grofier schwachbesetzter Gleichungssysteme
Teubner Studienbiicher Mathematik, 1993.

[11] Ch. GroBmann H.-G. Roos: Numerik partieller Differentialgleichungen Teubner
Studienbiicher Mathematik, 1994.

[12] S. Margenov, J. Maubach: Optimal Algebraic Multilevel Preconditioning for

Local Refinement along a Line. Numerical Linear Algebra with Application 2 (4),
347-361, 1995.

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

B. Heise: Parallel solvers for linear and nonlinear exterior magnetic field pro-
blems based upon FE/BE formulations. Institutsbericht Nr. 486, Universitat Linz,
Institut fiir Mathematik, 1995.

B.Heise: Comparison of Parallel Solvers for Nonlinear Ellipic Problems Based
on Domain Decomposition Ideas. Institutsbericht Nr. 494, Universitat Linz, Institut
fiir Mathematik, 1995.

B. Heise: A Mized Variational Formulation for 3D Magnetostatics and Its Finite Fle-
ment Discretisation. Tecnical Report 96-3, Universitit Linz, Institut fir Mathematik,
Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.

J. Xu The Auxiliary Space Method and optimal Multigrid Preconditioning
Techniques for Unstructured Grids. Computing, 1996 (to appear).

P. Vanek, J. Krizkova: Two-Level Method on Unstructured Meshes With Con-
vergence Rate Independent of the Coarse-Space Size. Report No. 35 University
of Coorado at Denver, Center for Computational Mathematics, 1995.

P. Vanek, J. Mandel , M. Brezina: Algebraic Multigrid by Smoothed Aggregation
for Second and Fourth Order Elliptic Problems . Computing 56, 179-196, 1996.

P. Vanek, J. Krizkova: Algebraic Multigrid on Unstructured Meshes. Report No.
34 University of Coorado at Denver, Center for Computational Mathematics, 1994.

T. Grefiner, A. Schneider A 2-D Grid Editing Package. Report no. 15, Universitét
Bonn, Institut fiir Mathematik, 1995.

F. Kickinger: Algebraic Multigrid for Elliptic Problems of Second Order. Tec-
nical Report 96-2, Universitat Linz, Institut fiir Mathematik, Arbeitsgruppe Numerischa
Mathematik und Optimierung, 1996.

H. Jin and R. I. Tanner: Generation of unstructured tetrahedral meheshes by
advancing front tequnique. International Journal of Numerical Methods in Engenee-
ring , Vol 38 , 1995.

C. Yerker, I. Zeid: Automatic Three-Dimensional Finite Element Mesh Gene-
ration via Modified Ray Casting. International Journal of Numerical Methods in
Engeneering , Vol 31 , 1991.

H. Jin and R. I. Tanner: Unstructured Tetrahedral Mesh Generation for Three-
Dimensional Viscous Flow. International Journal of Numerical Methods in Engenee-
ring , Vol 39 , 1996.

W. Hackbusch, S. A. Sauter: Adaptive Composite Finite Elements for the Solu-
tion of PDEs containing non-uniformly distributed Micro-Scales. Bericht 95-2,
Berichtsreihe des Mathematischen Seminar Kiel, Universitat Kiel.

A. Ecker and W. Zulehner:On the Smoothing Property for the Non-Symmetric
Case. Institutsbericht Nr. 489 Universitat Linz, Institut fiir Mathematik, 1995.

F. Kickinger: Automatic Mesh Generation for 3D Objects. Tecnical Report 96-1,
Universitdat Linz, Institut fiir Mathematik, Arbeitsgruppe Numerische Mathematik und
Optimierung, 1996.

F. Kickinger: Algebraic Multigrid for Discrete Elliptic Second Order Problems
a program description. Tecnical Report 96-5, Universitdt Linz, Institut fiir Mathematik,
Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.

13

.1 T T T T T T T T

"rand. txt" —

0.55 0.6 0.65 0.7 0.75 0.8 0.8 0.9 0.95 1

Figure 5: NAOMI - numerical automatical optimal meshing instrument

Meshes

Figure 6 - -- Sphere

Figure 7 --- Torus

Figure 8 - -- Cone

Figure 9 - - - Hexaedron with Torus

Figure 10 - - - Cylinder with Torus

Figure 11 - - - Hexaedron with Zulinders and Toris
Figure 12 - - - Local refinement in the 2D-case

Meshes generated by NAOMI

14

Figure 6: Sphere

15

Figure 7: Torus

16

Figure 8: Cone

17

Figure 9: Testobjectl

18

Figure 10: Testobject2

19

Figure 11: Testobject3

20

Figure 12: Local refinement in the 2D case

21

