
Automatic Mesh Generationfor 3D ObjectsFerdinand KickingerInstitut f�ur MathematikJohannes Kepler Universit�at LinzAbstractIn this paper, an automatic mesh generator for three dimensional objects is presen-ted. This mesh generator produces uniform meshes locally �tted to the boudary and tointerfaces. Sometimes, such meshes are also called locally irregular. The computationalcomplexity of the mesh generator is of the order O(n), where n denotes the number of meshpoints. Therefore, the algorithm is suited for generating rather �ne grids, quite e�ciently.Aspects of a-priori and a-posteriori adaptiv mesh re�nements are also discussed.Keywords: Automatic 3D mesh generator, locally irregular meshes, a-priori and a-posteriori adaptive mesh re�nement.AMS(MOS) subject classi�cation: 65N50, 65N55.1 IntroductionThis paper is devoted to the description of an automatic mesh generator in 2D and, above all,3D. If we look arround for mesh-generators, we �nd a lot of them for two dimensions, whichare running very satisfyingly. There are algorithms for parallel generations of meshes andwe can produce graded grids. In three dimensions the situation in totaly di�erent. Out ofthe recent hardware development, the engeneering of three dimensional mesh generators hasstarted in the last few years. In three dimensions, we subdivide into semi-automatic meshstategies, and (full-) automatic strategies. The semi-automatic mesh generators typicallyrequire some topological information about the geometry in the background, to producea mesh correctly and sucessfully. By using a (isoparametric, trans�nite) mapping from asimple geometry with a known mesh, to the origin geometry, part by part, the wanted meshappears on the geometry. The disadvantage of these methods is obviously, that we haveto do a lot of handwork, making these mappings, and putting the parts together. In (full-)automatic stategies, the situation is more convienient. We put in the geometry, given indi�erent data models and get, after quite a while the more or less convienient mesh out. Aproblem appearing at the point of putting a geometry into a mesh generator, is the couplingwith CAD- CAM-systems, which we need for doing calculations on complicated real worldproblems. One strategy for doing such an automatical mesh generation in three dimensionsis the moving front technique. Here we start at a given surface mesh of the boundary and theinterfaces of the geometry. Cut layer by layer tetrahedrons (hexaedrons) o�, untill there isnothing left of the geometry. The disadvantage of this algorithms is, that we have to search inthe actual front for neighbourships, and collabing of the front. This search in the front raisesthe complexity to the theoretical complexity of O(n logn), where n denotes the number ofmeshpoints. This result depends on the used search algorithm. In practical problems, we geta real complexity of O(np logn) with p is a real number shortly bigger than one (p = 1:15 see[22]). Our approach is based on producing meshes, which are locally �tted to the boundary.This allows the optimal complexity of the algorithm. Part by part we build up meshesfor objects which become more and more complicated. Complicated in this context meansthe stucture of the boundary. First we give an algorithm, that creates meshes for objectswith su�cient smooth boundary (2 C1). We then generalize the algorithm for acting onboundarys with, so called, critical points. This are points, where the surface is continious,1



but not di�erentiable. Next, we catch critical lines, which are one dimesional subsets of theboundary, where the surface is continious, but not di�erentiable. We end up with a method,which is useable for objects, coming from real world problems.We now start with the construction of an optimal mesh generator, for the generation oftetrahedron / oktahedron meshes in three dimensions. As special case we obtain a generatorfor two dimensions, producing meshes using triangles.2 De�nitions and Preliminary ResultsThe main idea for constructing the generator is cutting the R3 into tetrahedrons and okta-hedrons of edge length h. This results in a node structure, that can be written as follows:De�nition 1 Let D(h) be Z� Z� Z: (1)For an arbitary point p = (i; j; k) 2 Dthere is a corresponding point q 2 R3 as following :(i; j; k)=̂h � (i+ 12j + 12k; p32 j + 12�p3k; p2p3k): (2)It is obvious, that the vertices above build up some tetrahedron/oktahedron structure.De�nition 2The four Points p1; p2; p3; p4 2 D(h) are forming a Tetrahedronmthe corresponding q1; q2; q3; q4 2 R3 ful�lkqi � qjk = h; i 6= j; i; j = 1; 2; 3; 4: (3)The six Points p1; p2; p3; p4; p5; p6 2 D(h) are forming an Oktahedronmthe corresponding q1; q2; q3; q4; q5; q6 2 R3 ful�lh � kqi � qjk � h � p2; i 6= j; i; j = 1; 2; 3; 4; 5; 6: (4)The �ve Points p1; p2; p3; p4; p5 2 D(h) are forming a Pyramidmthe corresponding q1; q2; q3; q4; q5 2 R3 ful�lh � kqi � qjk � h � p2; i 6= j; i; j = 1; 2; 3; 4; 5: (5)Let in the following 3D-elements be Tetrahedrons, Oktahedrons or Pyramids.We now intruduce a metric on D:De�nition 3The distance dD(p1; p2) = 0, p1 = (i1; j1; k1) = (i2; j2; k2) = p2The distance dD(p1; p2) = 1 (near neigbours),1 �j i1 � i2 j + j j1 � j2 j + j k1 � k2 j� 2 ^0 �j (i1 � i2) + (j1 � j2) + (k1 � k2) j� 1:The distance dD(p1; p2) = 2 (far neigbours),j i1 � i2 j + j j1 � j2 j + j k1 � k2 j= 3 ^0 �j (i1 � i2) + (j1 � j2) + (k1 � k2) j� 1:the distance is 3 else. (6)2
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Figure 1: Tetrahedron, Oktahedron, PyramidIt is easy to show that this is a metric. With this de�nition the following theorem givesus an abstract condition if tetrahedron or not.Theorem 11) Two points p1; p2 2 D(h) have distnace dD(p1; p2) = 0,the corresponding points q1; q2 2 R3 have distance dR3(q1; q2) = 0:2) Two points p1; p2 2 D(h) have distnace dD(p1; p2) = 1,the corresponding points q1; q2 2 R3 have distance dR3(q1; q2) = h:3) Two points p1; p2 2 D(h) have distnace dD(p1; p2) = 2,the corresponding points q1; q2 2 R3 have distance dR3(q1; q2) = hp2:4) Two points p1; p2 2 D(h) have distnace dD(p1; p2) = 3,the corresponding points q1; q2 2 R3 have distance dR3(q1; q2) > hp2:5) The four points p1; p2; p3; p4 2 D(h) are forming a TetrahedronmdD(pi; pj) = 1; i 6= j; i; j = 1; 2; 3; 4: (7)6) The six points p1; p2; p3; p4; p5; p6 2 D(h) are forming a Oktahedronm1 � dD(pi; pj) � 2; i 6= j; i; j = 1; 2; 3; 4; 5; 6: (8)7) The �ve points p1; p2; p3; p4; p5 2 D(h) are forming a Pyramidm1 � dD(pi; pj) � 2; i 6= j; i; j = 1; 2; 3; 4; 5: (9)Proof: trivial.Now we are able to start with generating surface meshes of su�cient smooth (C1) surfaces.3 Surface Mesh Generation for Su�ciently Smooth SurfacesLet in the following � be a surface in space, given by explicit or implicit representation. Wedo not care about details, we just request some smoothness (C1), and a projector p, that putsa point x "close" to � onto � such that this point �x has minimal distance to �.3



We now de�ne a surface in the discret case (with elements in D(h)). The aim is, to �ndsuch a surface in D(h) "close" to �.Similar to tetrahedron and oktahedrons, we can de�ne 2D-elements as following:De�nition 4The three points p1; p2; p3 2 D(h) are forming a Trianglemthe corresponding q1; q2; q3 2 R3 ful�lkqi � qjk = h; i 6= j; i; j = 1; 2; 3: (10)De�nition 5The four points p1; p2; p3; p4 2 D(h) are forming a Quadrilateralmthe corresponding q1; q2; q3; p4 2 R3 ful�lh � kqi � qjk � hp(2); i 6= j; i; j = 1; 2; 3; 4: ^each corresponding point qi has distance h to qj ; qk;^qi has distance hp(2) to ql; i; j; k; l= 1; 2; 3; 4; i 6= j 6= k 6= l (11)De�nition 6The neigbourhood of order 1 of a point (N1(p)) p 2D(h)are all elements q 2 D(h) with distance dD(p; q) = 1: (12)De�nition 7The neigbourhood of order 2 of a point (N2(p)) p 2D(h)are all elements q 2 D(h) with distance 1 � dD(p; q) � 2: (13)De�nition 8A point p 2 D(h) has closed neigbourhood inS = (q1; q2; : : : ; qn); qi 2 D(h),all points �qi 2 S^ 2 N2(p) have two points_q 6= �q 6= �qi 2 S^ 2 N2(p)^ 2 N1(�qi) (14)De�nition 9A list of points S = (p1; p2; : : : ; pn); pi 2 D(h)is called surface in D(h) ,1) there are no 3D-elements in S2) each point pi 2 S has closed neigbourhood. (15)Theorem 2The following algorithm calculates out the surface in D(h)beeing closest to � (16)With this de�nitions, we can compute and implement the following algorithm for calcu-lating surface meshes of closed C2 surfaces."Closest" in this context means a distance between two surfaces in space, where the �rstis � and the second the induced surface by S, with linear boundary at triangles, and bilinearboundary at quadrilaterals. 4



Algorithm 1 Surface Meshing1. START(a) Take an arbitary point p on the surface �.(b) Search for a point �p 2 D with corresponding point �q beeing closest to p.(c) Search in the N2(�p) for a point _p 2 D beeing closest to �.(d) Take _p as starting value for the recursiv part.2. RECURSIVE PART(a) The starting value we call p(b) We take the corresponding q to p and project it on �, and add this new pointin the meshpointlist.(c) While (p has no closed neigbourhood)� Search in the N2(p) for the point p̂, which has minimal distance to �,and no 3D-elements are build with prior points.� Call recursive part with starting value p̂.With this algorithm, we can calculate, for example, the surface-mesh of a sphere and atorus, shown in Figure 6 and 7.The next point is, that most of the problems which have to be meshed, have not a surface� 2 C1. Real world objects are mostly piecewise C1. The lines and points of being :C1 arecalled Critical Lines and Critical Points.4 Surface Meshes in Critical PointsThe typical problem in this case is building up a surface mesh of a cone, where the problemsoccurs in its peak. To give a solution for this problems, we have to explain, what collabingof points mean.De�nition 10Two Points p1; p2 2D(h); dD(p1; p2) = 1 are collabedif, per de�nition, the corresponding points q1; q2 2 R3are equeal (17)This means for example, that from now on, the point p1 2 D(h) has the correspondingpoint as p1. What we get out, is a change in the tetrahedon/oktahedron structure. Picture 2shows what happens in the 2D case.The Neigbourhoods of the two points p1; p2 must be changed too. The new N1(p1) =N2(p2) is the union of neigbourhoods of p1; p2, the same for N2. With this modi�cation, allthe other de�nitions hold, especialy the de�nition of 2D- and 3D-elements and the closedneigbourhood. Now its clear what we do in a critical points p:Algorithm 2 Critical Point Meshing� Search for a point �p 2 D with corresponding point �q beeing closest to p.� Project this point onto p.� Collab enough points arround �p.Enough points mean, as much as we need to catch the geometry.Now we are able to build up a mesh of an in�nite cone shown in Figure 8.5
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Figure 2: Collabing of points5 Surface Mesh Along a Critical LineThis part of generating a mesh for three dimensional objects is the most di�cult. In principalthe approach is similar to critical points. We go along the critical line, and collab points2 D(h) "near" to the line into groups.In the following, let the critical line be given in implizit or explizit representation for acurve in space (� 2 C1). The following algorithm will explain roughly how we deal with thisproblem.Algorithm 3 Critical Line Meshing1. START� Search for a point �p 2 D with corresponding point �q beeing closest to �.� Search in the N1(�p) for a point _p 2 D beeing closest to �.� Take _p as starting value for the recursiv part.2. RECURSIVE PART(a) The starting value we call p(b) if (p� p� � h � param) and we have not visited this point yet� if (p is near a group of collabed points collab it too)� else (build up a new group)� Call recursive part with starting value all p̂ 2 N1(p).p� means the projection of p onto � and param stands for a parameter of about one, thatdepends on the angle between to (ore more) surfaces (2 C1) ending up in the critical line. (Ifthe angel is small the parameter is small, if the angel is big, the parameter is big (max.: 2).)Combining all of the above algorithms, we can generate surface meshes of the followingobjects (Figure 9,10,11).6 Building up the Interiour MeshNow we can create a surface mesh for an given object consisting of triangles and quadrilaterals.This mesh can be used as a border for an also recursiv algorithm, that puts all interiour nodes6



into the mesh vertex list. If we have more than one material, we apply this algorithm for eachmaterial.Algorithm 4 Interiour Mesh1. STARTSearch for a point �p 2 D with corresponding point �q in the interiour of thematerial.2. RECURSIVE PART(a) The starting value we call p(b) if (we have not visited this point yet) (also in the surface mesh generation)� Call recursive part with starting value: all p̂ 2 N2(p).7 Computational TimeWe can write down the following steps for generating a mesh of a 3D-object.� Put all critical points into the mesh� Put all critical lines into the mesh� Generate the surface mesh of the C1 pieces� Building up the 2D-elements� Smoothing the 2D-elements� Building up the interior mesh� Building up the 3D-elements� Smoothing the 3D-elementsThe following formular gives approximately the complexity of the whole algorithm.T = c1 � L � h�1 + c2 � S � h�2 + c3 � V � h�3: (18)c1; c2; c3 are positiv constants, bounded and independent of h;L means the length of the critical lines;S is the quantitativ surface of the object;V is the volume of the object:Note, that we take a three dimensional array of integers as analogon for D(h). In thisarray we put in, if visited, the number of the gridnode in mesh-point list. This results inthe optimal complexity of order O(n). We do not need to check any surrounding like inmoving-front algorithms.One of the disadvantages is, that we have to produce also �ne grids at areas where we donot need them. The solution therefore is a-priori and a-posteriori mesh adaption.7
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Figure 3: Re�nemet of 2D elements8 Mesh AdaptionFirst we have to look on our elements (2D or 3D) if we re�ne them. Suppose we have adiscrete function given in each meshpoint, that gives us the order of re�ning (order of re�ningn means, that the discretisation parameter must be h � 21�n). What we do with triangels andquadrilaterals we see in Figure 3.For the case of maximal re�nement parameter 2, Figure 3 shows us the di�erent casesin the 2D-case. If we concentrate on the rule, that an edge is only re�ne if both ends havere�nement parameter 2, nothing can go wrong (dealing with quadrilaterals we note, that ifat least one edge is re�ned, we add the centerpoint). In the 3D-case it is similar (see Figure4). For the case of maximal re�nement parameter 2, Figure 4 shows us the di�erent cases in3 dimensions. The same rule as above holds. (dealing with oktahedrons and pyramids wenote, that if at least one edge is re�ned, we add the centerpoint). In the 3D-case it is similar(see Figure 4). Let us call the case where every edge is halved total re�nement.Now we are able to increase the maximum discretisation parameter. By a recursive useof the above cases we can rewrite this in form of an algorithm.Note, that in the case of maximum discretisation parameter > 2, all values > 2 have tobe surrounded by a value � 2. If a given re�nement function does not ful�l this condition,we have to do one step of "smoothing" by replacing all 1s in the surrounding of values > 2by 2s.Algorithm 5 Adaptiv Re�nement� Parameters: re�nement parameter for each node� Whatever for an element we have to re�ne� if (the re�nement information is included in one of the above cases) apply the case� else make a total re�nement of the element, and make a recursive call of this pro-cedure with every new element resulting of the re�ning. As re�nement parameterfor the nodes take 8
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Figure 4: Re�nemet of tetrahedrons{ the re�nement parameter -1 if it is also a node of the non re�ned element{ else if the re�nement parameters of the nodes in the non re�ned grid, out ofthis new node was created by halvening, are equeal, it is re�nement parameter-1 too.{ else (the re�nementparameters are di�erent) take the minimum of the "old"parameters.{ when re�ning quadrilaterals, oktahedrons and pyramids, the center point getsas re�nement parameter the minimum of the "old" parameters.In Figure 12 we see two examples of adaptiv re�nements in the 2D-case.Now we are able to discuss a-prori and a-posteriori re�nement strategies for our meshgenerator. In the a-priori case, we add to each node in our three dimensional array, thatis modelling D(h) some re�nement information. That means, we substitute this array ofIntegers, by an array of arrays of Integers, which are dynamicly allocated. This means, wherethe geometry of our object requires a smaller discretisation parameter than h, we re�ne asmuch as we need. Note that this ne�ning does not change anything in using the abovealgorithms. The above de�nitions hold also for this adapted mesh structure. A-posteriorire�ning is much easier if we do not care about how we get the re�ning information. Guess wehave this knowledge, then we have "only" to go through the element list, and re�ne elementby element.9 The Code NAOMI, FEM3DSYM and Numerical TestsThe mesh generating algorithms described in the proceding sections were implemented inC++. Further we have developed a �nite element code together with an algebraic multigridsolver (see [27] and [28] for deatails). The resulting code is called FEM3DSYM, standingfor Finite Element Package for Symmetric Problems, and NAOMI, standing for NumericalAutomatical Optimal Meshing Instrument. This Package is able to generate meshes for acombination of shperes, zylinders, cones, toris and planes. After meshing, we build up the �-nite element equations using tetrahedrons, pyramids, oktaherons, triangles and quadrilaterals9



(see [28]). The algebraic multigrid solver used in the package is presented in [28]. A detaileddescription of the programs used can be found in [27].In the following, we generate meshes for di�erent 3D-objects with increasing complexityin the boundary structure. Using these meshes, we then solve the following Dirichlet problemfor the Poisson equation:�4 u = 1 in 
 and u = 273:15 on � = @
: (19)All numerical experiments were tested out on a Pentium with 100 Mhz and 32 MByteRAM. In the following tables, the time values are given in seconds.Example 1 SphereThe �rst test is a sphere with radius r = 0:2. The objekt and the mesh (h = 0:04) is given inFigure 6.Sphere h=.04 h=.02 h=.01Meshpoints 948 6748 506833D elements 2225 17911 1429992D elements 693 2772 11086Time mesh 1 4 33Time matrix 1 6 60Time solver 1 6 120Example 2 TorusThe next test example is a torus with outer radius r1 = 0:175 and inner radius r2 = 0:75.The torus and the mesh (h=0.02) are presented in 7.Torus h=.04 h=.02 h=.01Meshpoints 637 4301 307713D elements 1266 10495 828422D elements 700 2831 11604Time mesh 1 4 28Time matrix 1 3 30Time solver 1 4 26Example 3 ConeThe third test example is a cone with radius r = 0:15 and height h = 0:3. The cone andthe mesh (h=0.02) are given in Figure 8.Cone h=.04 h=.02 h=.01Meshpoints 228 1615 110793D elements 495 4002 297362D elements 303 1193 4672Time mesh 1 3 19Time matrix 1 2 10Time solver 1 1 10 10



Example 4 Hexaedron with TorusThe next test example has a surface with edges. The geometry and the mesh (h=0.014)is drawn in Figure 9.Testobj. 1 h=.02 h=.014 h=.012Meshpoints 8368 23853 395513D elements 22426 65277 1096042D elements 4514 9663 39551Time mesh 7 18 29Time matrix 7 23 39Time solver 8 24 38Example 5 Zylinder with TorusThe last test example consists of a cylinder intersected by a torus. The geometry an themesh (h=0.01) is presented in Figure 10.Testobj. 2 h=.02 h=.01Meshpoints 3586 283603D elements 9488 787582D elements 2192 9309Time mesh 4 27Time matrix 3 28Time solver 3 28Finally we applied our mesh generator to a more sophisticated object called Motor Block.The geometry and the mesh are given in Figure 11. At some places, the mesh seems tobe inconsistent (see also Figure 10). However, this comes out of projecting tree nodes of aquadrilateral onto an edge.The complexity estimate given in the previous section for the mesh generator is con�rmedby numerical results presented in the tables above. At least for �ne grids, we observe thatNhNH � tmeshhtmeshH ; h;H are two di�erent mesh parameter: (20)The same is true for the matrix generation and the algebraic multigrid solver. Terefore,all components of the package show an optimal behaviour with respect to the CPU-time inpractice too.10 Further Goals in Automatic Mesh GenerationUsage of Splines in Geometrical ModellingThe automatic mesh generator for tree dimensions, implemented in the C++ programNAOMI produces quite satiesfying meshes. The restriction on the possible geometries likesphere, cone, cylinder, plane, ... is not very convienient. This leads to a coupling with CAD,CAM systems. As we see, we require only a projector, that puts a point near to a given surfaceor curve onto this surface or curve. Also the use of splines in the geometrical modelling is athing of interest. 11



Implementation of a-priori and a-posteriori Mesh AdaptionFurther, if we want to calculate electrical machines, we have to implement a-priori anda-posteriori mesh adaption. As a special case of the 3D mesh generator, a strategie for twodimensions appear. In this case, we have already implemented the two strategies. For resultssee [28] or the appendix.Parallelization of the Mesh GeneratorDoing serious calculations in three dimensions, we have to think about parallelization,to get satisfying results and to deal with computer ressources, without them, we can notcalculate any complex three dimensional geometry.References[1] R. Dautray J.-L. Lions: Mathematical Analysis and numerical Methods forScience and Technology Vol 1. Springer-Verlag Berlin, 1990.[2] V. Girault, P.-A. Raviart: Finite Element Approximation of the Navier-StokesEquations Springer-Verlag Berlin, 1979.[3] T. Rossi: Fictious Domain Methos. University of Jyv�askyl�a, 1995.[4] A. A. Reusken: A Multigrid Method Based on Incomplete Gaussian ELimina-tion. Eindhoven University of Technology, Department for Mathematics and ComputerScience, RANA 95-13, 1995.[5] J. H. Bramble, J. E. Pasciak, J. Xu: Parallel Multilevel Preconditioners. Mathe-matic of Computation, 55(191):1-22, 1990.[6] F. Brezzi, M. Fortin: Mixed and Hybrid Finite Elements. Springer Verlag, 1991.[7] J. W. Ruge, K.St�uben Algebraic Multigrid (AMG). Multigrid Methods (St. McCormick, ed.), Frontiers in Applied Mathematics, Vol 5, SIAM, Philadelphia 1986.[8] P.M. de Zeeuw: Matrix Dependent Prolongations and Restrictions in a BlackBox Multigrid. J. Comp. and Appl. Mathematics 33, 1-27 1990.[9] F. Chatelin and W.L. Miranker: Acceleration by Aggregation of Successive Ap-proximation Methods. LAA 43, 17-47 1982.[10] W. Hackbusch Iterative L�oser gro�er schwachbesetzter GleichungssystemeTeubner Studienb�ucher Mathematik, 1993.[11] Ch. Gro�mann H.-G. Roos: Numerik partieller Di�erentialgleichungen TeubnerStudienb�ucher Mathematik, 1994.[12] S. Margenov, J. Maubach: Optimal Algebraic Multilevel Preconditioning forLocal Re�nement along a Line. Numerical Linear Algebra with Application 2 (4),347-361, 1995. 12



[13] B. Heise: Parallel solvers for linear and nonlinear exterior magnetic �eld pro-blems based upon FE/BE formulations. Institutsbericht Nr. 486, Universit�at Linz,Institut f�ur Mathematik, 1995.[14] B.Heise: Comparison of Parallel Solvers for Nonlinear Ellipic Problems Basedon Domain Decomposition Ideas. Institutsbericht Nr. 494, Universit�at Linz, Institutf�ur Mathematik, 1995.[15] B. Heise: A Mixed Variational Formulation for 3D Magnetostatics and Its Finite Ele-ment Discretisation. Tecnical Report 96-3, Universit�at Linz, Institut f�ur Mathematik,Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.[16] J. Xu The Auxiliary Space Method and optimal Multigrid PreconditioningTechniques for Unstructured Grids. Computing, 1996 (to appear).[17] P. Vanek, J. Krizkova: Two-Level Method on Unstructured Meshes With Con-vergence Rate Independent of the Coarse-Space Size. Report No. 35 Universityof Coorado at Denver, Center for Computational Mathematics, 1995.[18] P. Vanek, J. Mandel , M. Brezina: Algebraic Multigrid by Smoothed Aggregationfor Second and Fourth Order Elliptic Problems . Computing 56, 179-196, 1996.[19] P. Vanek, J. Krizkova: Algebraic Multigrid on Unstructured Meshes. Report No.34 University of Coorado at Denver, Center for Computational Mathematics, 1994.[20] T. Gre�ner, A. Schneider A 2-D Grid Editing Package. Report no. 15, Universit�atBonn, Institut f�ur Mathematik, 1995.[21] F. Kickinger: Algebraic Multigrid for Elliptic Problems of Second Order. Tec-nical Report 96-2, Universit�at Linz, Institut f�ur Mathematik, Arbeitsgruppe NumerischaMathematik und Optimierung, 1996.[22] H. Jin and R. I. Tanner: Generation of unstructured tetrahedral meheshes byadvancing front tequnique. International Journal of Numerical Methods in Engenee-ring , Vol 38 , 1995.[23] C. Yerker, I. Zeid: Automatic Three-Dimensional Finite Element Mesh Gene-ration via Modi�ed Ray Casting. International Journal of Numerical Methods inEngeneering , Vol 31 , 1991.[24] H. Jin and R. I. Tanner: Unstructured Tetrahedral Mesh Generation for Three-Dimensional Viscous Flow. International Journal of Numerical Methods in Engenee-ring , Vol 39 , 1996.[25] W. Hackbusch, S. A. Sauter: Adaptive Composite Finite Elements for the Solu-tion of PDEs containing non-uniformly distributed Micro-Scales. Bericht 95-2,Berichtsreihe des Mathematischen Seminar Kiel, Universit�at Kiel.[26] A. Ecker and W. Zulehner:On the Smoothing Property for the Non-SymmetricCase. Institutsbericht Nr. 489 ,Universit�at Linz, Institut f�ur Mathematik, 1995.[27] F. Kickinger: Automatic Mesh Generation for 3D Objects. Tecnical Report 96-1,Universit�at Linz, Institut f�ur Mathematik, Arbeitsgruppe Numerische Mathematik undOptimierung, 1996.[28] F. Kickinger: Algebraic Multigrid for Discrete Elliptic Second Order Problemsa program description. Tecnical Report 96-5, Universit�at Linz, Institut f�ur Mathematik,Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.13
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NAOMI
Figure 5: NAOMI - numerical automatical optimal meshing instrumentA Meshes� Figure 6 � � � Sphere� Figure 7 � � � Torus� Figure 8 � � � Cone� Figure 9 � � � Hexaedron with Torus� Figure 10 � � � Cylinder with Torus� Figure 11 � � � Hexaedron with Zulinders and Toris� Figure 12 � � � Local re�nement in the 2D-caseMeshes generated by NAOMI

14



Figure 6: Sphere15



Figure 7: Torus16



Figure 8: Cone17



Figure 9: Testobject118



Figure 10: Testobject219



Figure 11: Testobject320
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