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Abstract

In the present paper, the solution of nonlinear elliptic boundary value problems (b.v.p.) on
parallel machines with Multiple Instruction Multiple Data (MIMD) architecture is discussed.
Especially, we consider electro magnetic field problems the numerical solution of which is based
on finite element discretizations and a nested Newton solver. For solving the linear systems of
algebraic finite element equations in each Newton step, parallel conjugate gradient methods with a
Domain Decomposition preconditioner (DD PCG) as well as parallelized global multigrid methods
are applied. The implementation of the whole algorithm, i.e. the mesh generation, the generation
of the finite element equations, the nested Newton algorithm, the DD PCG method and the global
multigrid method, is based on a non overlapping DD data structure.

The efficiency of the parallel DD PCG methods and the parallelized global multigrid methods,
which are embedded in the nested Newton solver, are compared. Furthermore, the performance
of the parallel nested Newton solver on different machines (GC Power Plus, Multicluster with
transputers T805, and workstation cluster) is demonstrated by numerical results.
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1 Introduction

Recently, numerical algorithms for Multiple Instruction Multiple Data (MIMD) parallel computers
with message passing principle have found growing interest. In particular, Domain Decomposition
(DD) methods have become a standard tool for the numerical solution of boundary value problems
(b.v.p.) for partial differential equations (cf. the proceedings of the international Symposia on “Do-
main Decomposition methods for partial differential equations” since 1987 [10, 5, 6, 11, 37, 45, 38]).
The first aim of these methods is data partitioning. The more important second aim is the con-
struction of possibly new highly parallel solvers. From the point of view of the solver, we distinguish
so called local methods from the global ones.

The local DD methods involve the solution of local subproblems in subdomains. As an example,
we consider the non—-overlapping DD methods, the main ideas of which are presented, e.g. in [3, 7, 8,
48, 49, 21, 22, 23, 39]. These methods have been applied successfully to the numerical solution of two—
dimensional linear and nonlinear b.v.p.’s discretized by finite elements (FE) [19, 20, 30, 31] as well as
to the a coupling of finite and boundary elements [33, 34, 14]. The inherent parallel data distribution
allows parallel computation with a communication cost one order lower than the FE problem itself.
Thus, computing on many processors can be performed with high efficiency [31, 33]. Obviously, it is
advantageous to employ multigrid methods for the subproblems.

Another approach is to parallelize a well known, e.g., iterative solver. Then, all properties of
the method, in particular, convergence properties, are preserved. On the other hand, the efficiency
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of the algorithm is determined by the communication overhead only. As an example, we consider
the parallelization of global multigrid methods [41, 46, 42, 1, 2] where the ’quality’ of the parallel
algorithm depends heavily on how far the communication can be reduced.

The main idea of the approach of [35] is to apply the parallel DD data distribution of the local
DD methods in a global multigrid method. It allows us to perform the multigrid interpolation and
restriction operators without any communication. Thus, communication is needed in the smoother
and the coarse grid solver only. The ideas presented in [35] enable us to implement the Gauss Seidel
smoother with the same communication effort as it is required by the Jacobi smoother, but with better
smoothing properties. Further, a Schur complement solver with preconditioning, originating from the
local DD methods, is employed as coarse—grid solver.

The aim of the present paper is to compare local DD methods with global multigrid methods and to
apply both of them to nonlinear b.v.p.’s using a parallel nested Newton approach. We will demonstrate
that, if the global multigrid methods benefit from DD ideas, both solvers require a numerical effort of
the same order of magnitude.

Although, the algorithms under consideration have been designed especially for MIMD multipro-
cessor systems, there is also interest in their implementation on workstation clusters. Therefore, we
present results for a workstation cluster, too.

The rest of the paper is organized as follows. In Section 2, we formulate the nonlinear boundary
value problem. In Section 3, we present the parallel nested Newton method and refer to theoretical
results. Section 4 is devoted to the different solvers for the arising linear problems. We summarize
results for the DD-PCG solver and describe some details of the parallelization of the global multigrid
method. In Section 5, we present performance results for a model problem and a more complicated
practical electro magnetic field problem. Finally, we add some concluding remarks in Section 6.

2 Nonlinear electromagnetic field problems

Let us consider a two—dimensional nonlinear stationary magnetic field problem in a bounded domain
2 C R2. The variational formulation of the problem can be written as follows:
Findu € V = H}(Q) such that

a(u,v) = (f,v) Yv eV, (1)

where

a(u,v) = / v(x,|Vu|) V'u Vo dr |
Q

and 5 5
v v
(f,v) = /g)(Sv—Hgy&—f-HOxa—y) dx.

Here, the physical model has been developed from Maxwell’s equations, cf. [28,; 29] for details. We
assume that ) representing the cross section of some electromagnetic device lies in the x y plane of
the R3. Then the solution u is the z component of the vector potential K. The z component of the
current density is represented by S, and the vector ﬁo = (Hox, Hoy, 0)" describes the magnetization
of permanent magnets. The nonlinearity of the problem is caused by the dependence of v on the
absolute value of the magnetic induction, B = |rotA| = |Vul.

We assume that ) consists of subdomains

g

N —

1
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The Qj’s represent materials with different magnetic properties (iron, copper, air, permanentmagnetic
materials) in the cross section of an electromagnetic device. We suppose that the function v depends
on the locus z € €2, but v is always the same function of B in one of the Q;’s, i.e.

v(z,B) = vV (B) if =€

The function v)(B) is a constant, v (B) = l/(j), if the material in Qj is not ferromagnetic (e.g.,
copper, air, vacuum). We formulate some properties of the functions v(9), j = 1,..., Ny, which are
justified by the physical model (cf. [26, 28, 27, 29]):



A0) v (2)=v) = const. Vze 0,27,

A1) v (z) > l/y) Vz >0,

(

(

(A2) vU)(z) is a monotonic increasing function,

(A3) lim, oo v (2) = i), where v§) = (uo)~! for ferromagnetic materials,
(

A4) there exists v (2) V¥ z > 0, and there exists a constant Ml(j) with
V(j)’(z) < Ml(]) Vz >0,

(A5) there exists a constant M) with v()'(2) z + v (2) < MW vz >0.

Let vy, M; and M be the global constants with vy = min;— . n,, 17"/,
M = maxj—1, . Ny M) . The following theorem has been proved in [29]:

.....

THEOREM 1 Let (A1), (A2), (A4), (A5) be fulfilled. Then the variational problem (1) has a
unique solution u € V.

Proof. See [29]. |
Standard finite element discretization with linear triangular elements has been discussed in [29]. Fur-
ther, an algorithm for the interpolation of a pointwise given material function »(*)(.) is described
therein. This cubic C'-spline interpolation preserves the properties (A0), (A1), (A2), (A3), (A4),
(A5) with slight modifications of the constants M and M;. Thus, existence and uniqueness of the
solution of the fully discrete problem have also been proved [29].

3 The parallel nested Newton method

3.1 Description of the algorithm

We assume that, as in the finite element substructuring technique, ) is decomposed into p non-
overlapping subdomains €;,4 = 1,...,p, such that (cf. [17, 22, 23, 30, 33, 31, 34])

P
O={J% QunQ;=0 for i+#j (2)
i=1

i.e., the subdomains QO determined by the materials may be decomposed further. The latter de-
composition can be achieved by applying the automatic, adaptive domain decomposition procedure
described in [14, 12]. Thus, we have the possibility to provide a quasi-static load balance. The subdo-
mains Q;,i = 1,...,p, are assigned to p processors of the MIMD computer. We further assume that
in each subdomain Q; there is a multilevel sequence of linear finite element discretizations such that
this discretization process results in conform triangulations of {2 creating a nested sequence

VicW,C---CViCV =HjQ) (3)

of spaces of linear finite elements, as it will be described in Subsection 4.2.
We obtain a sequence of variational problems for ¢ = 1,...,1:
Findug € V, CV such that
aq(ug,vg) = (fq,vq) Vvq € Vg (4)

and a sequence of equivalent nonlinear finite element equations
Ku,=f, ¢=1,...,1, (5)

with nonlinear operators K, : R¥s — R4, solution vectors u, € R"s and vectors f, € RNs,

An parallel algorithm for solving (5) with ¢ = I, connecting a Newton-like method with the nested
iteration and a suitable parallel solver, will be presented in the following. It requires the Fréchet
derivative of K, at a vector v,

Kllvg :RNe 5 RN g=1,...,1,



which is a linear operator and can be represented by the Jacobi matrix, cf. [27, 32, 30, 33, 31]. The
result will be the approximate solution u} with relative accuracy € (nested iteration ¢).

The Parallel Nested Newton (PNN) algorithm described below includes both, the Newton method
(NM) and the modified Newton method (MNM) which is sometimes recommended to save matrix
generation time. Further, it includes the two parallel solvers for the linearized problems, namely the
DD-preconditioned conjugate gradient method (PCG) and the parallelized global multigrid method
(GMGQG), which are to be compared.

Algorithm PNN (Parallel Nested Newton)

Step 0
Initialization of the grid number:
(0.)(P) ¢:=1.

Step 1

Set the initial solution for grid ¢:
(1.1)(P) IF g =1 THEN uj) = 0;

(1.2)(P) IF ¢ > 1 THEN ul = I7_ju}_,;

the initial solution is the interpolation of the best solution on grid ¢ — 1.
(1.3)(P) Initialize the Newton iteration number j := 0.

Step 2
Compute the initial Jacobi matrix and the defect vector

(2.)(P) Jg = K,’I[ug]; dé =f, - Kqug.
Step 3

(3.)(P) Choose a relaxation parameter 7J with 0 < 77 < 1 and a relative accuracy parameter e,
with 0 < e < 1.

Step 4

(4.)(S) Solve the linear defect system o ‘
Tywyth =gt (6)

approximately (with relative accuracy ey)

(PCQG) using a parallelized preconditioned conjugate gradient (PCG) solver where the precon-
ditioning is realized via a Domain Decomposition (DD) method (local method)

3

or

(GMG) performing k iterations of a parallelized global multigrid method.
The result is wi*!.

Step 5
Correct the solution:

(5.)(P) u{ﬁl = ug + Tgfvg“.

Step 6
Control the convergence (parameter ¢, is chosen a priori with ¢, < 1):

(6.1)(P) Compute the new defect vector
dg+2 =f, - KquZH;

(6.2)(P) determine the matrix for the linearized problem which is to be solved next

(NM) i.e., compute the new Jacobi matrix (in the Newton method)
TS K



or

(MNM) use the matrix again (in the modified Newton method),

o
Ji = Jy.
(6.3)(C) Compute defect norms
= (g d = [dg;
, . o riditt
i+2 i+1 7J := min {cTTJ, g };
(6.4)(P) IF d)** > d)*' THEN g VAR A ;
GOTO Step 5

u)=u/th
(6.5)(P) IF d/*> < ed) THEN | IF q <! THEN (q:=¢q+ 1; GOTO Step 1); |;

IF ¢ = | THEN EXIT;

(6.6)(P) Perform a further Newton step:
J=g+1
GOTO Step 3.

In this description, (P) indicates that the step is performed completely in parallel, i.e., indepen-
dently on the processors, provided that a DD data structure as described in Subsection 4.2 is applied.
The solver (S) includes parallel independent parts, communication between processors handling neigh-
bouring subdomains, and global communication. Note, (C) indicates that global communication is
necessary. Obviously, the only additional communication (compared with solving a linear problem) is
the computation of global defect norms.

3.2 Convergence results

In [27], convergence results have been proved for a damped, modified multigrid-Newton method. These
results apply for the choice of (MNM) and (GMG) in the algorithm PNN given above, too. We will
quote the main results here and refer to [27] for the details.

Assuming convergence and certain properties (e.g. symmetric smoothing, construction of coarse-
grid operators by the Galerkin approach) which are fulfilled by many standard multigrid algorithms,
see [27, Lemma 3] or [36], the multigrid method can be used as a preconditioner as it has been proved
in [36, 40]. The spectral equivalence constants depend on the multigrid convergence factor n with
respect to some vector norm and the number & of multigrid iterations only [36, 40].

As a consequence of the preconditioning properties of the multigrid method, the linear convergence
of the damped, modified multigrid-Newton method on a fixed grid ¢ is proved in [27, Thm. 2]. The
convergence factor as well as the necessary damping parameters Tg depend on 7, k, and the mate-
rial constants v; and M only. Thus, the Parallel Nested Newton method with a damped, modified
multigrid-Newton method converges globally [27, Coroll. 3]. The number of Newton iterations can be
bounded a priori for all grids ¢ = 1,...,l. The convergence can be proved even for one multigrid cycle
per Newton iteration (k = 1).

4 Parallelization strategy and data structure

4.1 Mesh generation

Let us consider the decomposition (2) of the domain {2 into p non overlapping subdomains ;. Since
we want to use multigrid methods we have to generate a sequence of nested triangular meshes 7,
g =1,2,...,1, which is creating the sequence (3) of finite element spaces. The starting point for the
construction of the coarsest mesh 7; is a decomposition of the coupling boundary T = [JV_, 9
into so called basic lines Ty, (k= 1,2,...,kc) with e = Uﬁil Cog, PoxNTogp = 0 for k # k.
We suppose that a basic line is either part of the intersection of a subdomain boundary with the
boundary of the domain Q, I'c, C 89; N 01, or part of the intersection of the boundaries of two
neighbouring subdomains, I'c ;, C 9Q;N0Q; (i # ). On the basis of the decomposition of the coupling
boundary, the code PARMESH [9] (cf. also [13]) generates in parallel finite element triangulations of
the subdomains (2;, which result in an admissible triangulation of the whole domain 2. In the present



version of this mesh generator it is assumed that the basic lines are straight lines, arcs of a circle or
parabolas. The finer triangulations 7;, ¢ = 2,3, ...,[, are obtained by a successive refinement process,
i.e. all triangles of the triangulation 7,_; are divided into four smaller subtriangles. Obviously, this
refinement process can be performed in parallel.

In each triangulation the nodes are classified into three groups: the cross-points (vertices), i.e. the
starting and end points of the basic lines, the edge coupling nodes, i.e. the nodes which are generated
on the basic lines, and the inner nodes.

For the numbering of the nodes in each triangulation we use the following order: cross points,
edge coupling nodes on I'c;, edge coupling nodes on I'c o, ..., edge coupling nodes on I'c ., inner
nodes of )y, inner nodes of {1, ..., inner nodes of ),,.

4.2 Domain Decomposition data structure

The numbering of the nodes described in Subsection 4.1 induces the following block structure of the
systems (6) of algebraic finite element equations

Jv  Jve Jvi wy dy
Jw = JEV JE JE[ WEg = dE . (7)
Jrv  Jie I Wy d;

Here, the indices “V”, “E”, and “I” correspond to the cross—points (vertices), the edge coupling nodes,
and the inner nodes, respectively. For the sake of simplicity we have omitted the indices ¢ and j.
For the description of the DD preconditioners (see Subsection 4.3) we use the block structure

_( Jo  Jcr wo \ _ ( de
(e 5t ) ()= (8 ®
where the index “C” stands for the coupling nodes, i.e. for the cross points and the edge coupling
nodes, cf. [17, 22, 23, 31, 34]. Therefore, the matrices Jo and Joy = J7 are defined by

_ JV JVE _ JVI
J(j = ( JEV JE > and JCI = ( JEI ) .
The Jacobi matrices J and the right hand sides d can be represented as sums of super element
(subdomain) Jacobi matrices J; and super element right hand sides d;. With the (N x NN;) boolean

matrices A; mapping some overall vector v € RV of nodal variables into the super element vector
v; € RNi of variables associated with the subdomain Q; only, we get

p p
J=> AlJ; A and  d=> A]d, . (9)
i=1

i=1

In each processor P; only the corresponding super—element Jacobi matrix J; and the super—element
defect d; are stored. A consequence of this storage is the following: If we want to know the values
of the elements of the matrix Jy and the defect dy or of the matrix Jg and the defect dg we have
to perform a summation over cross-points or over edge coupling nodes, respectively. Since each inner
node belongs to one processor only, the processor P; has the full information about the elements of
the matrix J;; and the defect d; ;. Resulting from the numbering strategy and the proposed storage
of the matrices, J; is a blockdiagonal matrix.

For the implementation of parallel solvers it is convenient to introduce two types of distribution
of vectors to the processors P; (see, e.g., [21, 24]). We say that the vector v is of overlapping type,
if v is stored in processor P; as v; = A;v. A vector d of adding type is stored in processor P; as
d; = le AZTdi. For example, in the linear solvers which we describe in the Subsections 4.3 and 4.4
the defect vectors are of adding type and the solution vectors are of overlapping type.

4.3 Parallel CG solver with DD preconditioning

The parallel CG algorithm with DD preconditioning for solving the systems (8) can be implemented
in a standard way, cf. [22, 34]. It runs completely in parallel with the exception of the two scalar



products, and the preconditioning. The DD preconditioner for J, i.e. the matrix C with

_(Ic JoiB; '\ (Cc O Io o)
C_<O I T)(O Cr) \By'Jic I (10)

contains three components, i.e., the preconditioners C¢ and Cy = diag (Cr ;) » and the regular

i=1,2,...,
basis transformation matrix By = diag(Br.;) which can be adapted to the matrix qu in a
suitable way [22].

Here, we choose a multigrid V-cycle with one pre- and one postsmoothing step of Gauss-Seidel
type in the symmetric Multiplicative Schwarz Method [18, 22] for C, and By is implicitly defined by
hierarchical extension (formally FE;c = —B;lJIC) [25]. We apply a Schur complement preconditioner
C¢ following Bramble/Pasciak/Schatz (BPS)[3], which uses the idea of Dryja [7] on the coupling
boundaries, and a global crosspoint system.

Spectral equivalence between Jg and C has been proved in [21, 22]. Together with the results of
[3, 18, 25, 27] we can prove that the numerical effort spent for one Newton step on grid ¢ is at most of
order (D(qunh;1 In lnh;1 Inejin), i.e. almost optimal. Here h, denotes the discretization parameter,
such that N, = O(h,?). We refer to [34, 31] for details.

i=1,2,...,p ’

4.4 Parallelized global multigrid method

In this Subsection, we will give a short description of an implementation of multigrid algorithms
on parallel machines with MIMD architecture. The basis of the parallelization strategy is the non
overlapping DD data structure discussed in Subsection 4.2. We present the smoothing procedures
being used, interpolation and restriction procedures, and some methods for solving the systems of
algebraic finite element equations on the coarsest mesh. Especially, the parallelization of these proce-
dures is analyzed. A detailed discussion of the parallel multigrid algorithm can be found in [35].

4.4.1 Smoothers of Gauss—Seidel type

In order to minimize communication, we construct Gauss—Seidel type smoothers which require the
same communication as a Jacobi smoother in each iteration step, but with better smoothing properties.
The smoothers are based on the block structure (7), one iteration step is defined as follows:

Let an initial guess w*) be given. The new approximate solution w**1) will be computed in the
following way:

vag/kﬂ) = dy — JVEWSEk) - JVIWYC) (11)
JEWgH) = dp — JEVW§/]C+1) - Elwgk) (12)
(D, + L)WY = a, — Wi — g WD g wlB) (13)

Here, Ly, Dy, and Uy are a strict lower triangular matrix, a diagonal matrix, and a strict upper
triangular matrix, respectively, with Jy = Ly + Dy + U;. The application of the proposed smoothing
procedure requires to solve the systems of algebraic equations (11) (13). If we suppose that at least
one edge coupling node is generated on each part I'cy (kK = 1,2,...,kc) of the coupling boundary
and there exists no edge in the triangulation 7; connecting nodes on two different parts I'c; and
Lok, then Jy is a diagonal matrix and Jg is a block-diagonal matrix with tridiagonal blocks. Using
the numbering of the nodes described in Subsection 4.2, the matrix J; is also a block-diagonal matrix
with the blocks Jr;. Thus, we get a block-diagonal structure of the matrix (Dy + Ly), where the
blocks are triangular matrices.

From the algebraic point of view, solving (11) is trivial. Because of the block structure of the
matrix Jg the system of algebraic equations (12) decomposes into k¢ tridiagonal systems of algebraic
equations. For solving these systems of equations we use a standard Gauss algorithm for tridiagonal
matrices (see, e.g., [47]). Relation (13) describes nothing but one iteration step of the point wise
Gauss Seidel iteration applied to a system of equations with the matrix Jj.

For solving the systems (11) and (12) we need the matrices Jy and Jg in assembled form. As
mentioned in Subsection 4.2 this assembly requires communication. More precisely, we have to per-
form one communication over the cross points for getting the diagonal matrix Jy, and we need two



communications over the edge coupling nodes for getting the diagonal and the subdiagonal of the
symmetric matrix Jg. It is clear that this assembly must be performed only if we have computed a
new Jacobi matrix on a given grid.

Because of the representation (9) of the matrices Jy g, Jyvr, Jrr, and the representation of the
vector d, the right—hand sides of the systems (11) and (12) are vectors of adding type. Before we
can solve the systems of equations (11) and (12) we have to convert the corresponding right hand
sides into vectors of overlapping type. These type conversions require one communication over the
cross points and one communication over the edge coupling nodes in each smoothing step. After the
type conversion of the right—hand sides and the assembly of the matrices Jy and Jg, each processor
P; has stored the full information about those parts of the systems of equations (11) and (12) which
correspond to the nodes associated with the subdomain ;. Taking into consideration the structure
of the matrices Jy and Jg we see that each processor can determine those components of the vectors
w§/k+1) and wgﬂ_l) which are related to the subdomain Q; without any additional communication.

Because of the block structure of the matrices (D; + L;) and U; the point—wise Gauss-Seidel
procedure can be performed in parallel, i.e. it is applied to the systems of equations

k+1 k+1 k+1 k
(D1 + Ll,i)wg,j )= d,; - le,iwﬁcj )~ JIEJW(E,_;— )~ UI,iw§,z') (14)

simultaneously. Each processor P; has the full information about the right—hand side and the matrix
Dy i+ Ly ; of the corresponding system of equations (14), and therefore, no communication is necessary.

In the convergence theory we need a symmetric multigrid operator (see also Section 3.2). Therefore,
we define additionally an analogous Gauss-Seidel type smoother which works in reverse order.

4.4.2 Interpolation and restriction procedures

Since the boundary value problem is discretized with piecewise linear trial functions we use linear
interpolation within the multigrid algorithm. The restriction operator is defined as the adjoint operator
to the interpolation operator. In the implementation of the multigrid algorithm, the corrections are
stored as vectors of overlapping type and the defects as vectors of adding type. Therefore, we have to
map a vector of overlapping type into a vector of overlapping type in the interpolation procedure. In
the restriction procedure, a vector of adding type is mapped into a vector of adding type. Therefore,
both procedures do not need any communication.

4.4.3 Coarse—grid solvers

We utilize parallelized preconditioned conjugate gradient methods applied to the corresponding Schur
complement system as coarse grid solvers. Here, communication is required in the two scalar prod-
ucts and in the preconditioner, whereas all other operations are completely parallel. A nonstandard
formulation of the preconditioned conjugate gradient method which minimizes the communication
between the processors (see [43, 44]) is used. The advantage of this formulation is the fact that the
two scalar products per iteration step can be computed immediately one by another such that only
one start up time is necessary.

As preconditioners may be used the diagonal part of the matrix Jo, BPX—preconditioners with
a global cross—point system [4, 50], or BPS—preconditioners using ideas of Dryja [7] on the coupling
boundaries and a global cross—point system (see also [3]). In the case of the BPX and the BPS
preconditioners we need a hierarchy of partitions of the coupling boundary. In general, such a hierarchy
does not exist for the coarsest mesh. Therefore, we generate a sequence of nested auxiliary meshes
down to a coarsest mesh which contains the cross-points only, and we work after some transformations
on these auxiliary meshes.

5 Numerical results

5.1 Implementation

The Parallel Nested Newton algorithm with both, the DD-PCG solver and the global multigrid method
as linear solver, is implemented in the parallel code FEMBEM [13, 15, 35]. In this way, all parts of
the PNN algorithm, such as the grid generation, the matrix generation and representation, and the



defect computation, are identical for (PCG) and (GMG). Thus, both methods can be compared. The
algorithm was mainly tested on the parallel systems Power Xplorer (with maximal 16 processors Power
PC 601) and the GC-Power Plus (with maximal 128 processors Power PC 601) with the operating
system Parix.

In the following we describe our choice of components and parameters in the PNN method and
in the solvers for linear problems. Indeed, we have tested various combinations of them, and we
present here both, the best choice for (PCG) and the best choice for (GMG) with respect to the total
computing time.

Parallel Nested Newton:

For practical computations, the Newton method (NM) should be chosen. Here, the numerical effort
for the repeated Jacobi matrix generation is of minor importance than the fast convergence. Note
that the matrix generation can be done completely in parallel [30, 33, 31].

Further, we apply a linear interpolation fgfl,q = 2,...,1 and restrict the number of Newton
iterations on the grids ¢ = 2,...,1 — 1 to j < 2, cf. [26, 27]. We set ¢, = 0.25, and always try to
have the relaxation parameter close to 1 as in [26, 27]. Indeed, on all the grids except the coarsest
(¢ = 1), all Newton iterates have been accepted with Tg = 1. The parameter €);, can be adapted to
the quadratic convergence speed of the Newton method [27]. For the presented examples, best results
with respect to the total computing time have been achieved with e};, = 0.01.

DD preconditioned conjugate gradient method:

The components of the (PCQ) algorithm are chosen as described in Subsection 4.3.

Global parallelized multigrid method:

In the (GMGQG) solver, we used a V-cycle with 2 pre- and 2 postsmoothing steps of the parallelized
Gauss-Seidel type presented in Subsection 4.4. The maximal number of multigrid iterations has been
restricted to 2, this number is doubled if the multigrid convergence rate affects the Newton rate
essentially, cf. [26, 27]. With respect to the coarse grid solver, a preconditioned Schur complement
CG solver turned out to be sufficient where best results have been achieved with a relative accuracy
of 0.1 in the multilevel case (¢ > 2), and a DD based (BPS) preconditioner.

We compare the performance of the algorithms for an electric magnet as an academic test example,
and for a direct current motor as a real-life example.

5.2 Electric magnet

An electric magnet with Dirichlet boundary conditions and a 50 cm x 50 cm iron core serves as a first
test example for computations. In Figure 1, the initial grid for the domain 2 decomposed into 64
congruent square subdomains and level lines of the solution are shown. In Table 1, we compare the
algorithms for different numbers of grids being used, i.e., for different discretizations, whereas Table
2 is to demonstrate the performance for different current densities, i.e., for different nonlinear effects.
We distinguish the time for the solver from the time for generating the Jacobi matrices and defect
vectors.

Further, we measure the processor time and the communication time for each processor separately.
The communication time includes the waiting for input and output as well as the communication itself.
Therefore, the minimal communication time of all processors is a measure for the communication
overhead, cf. [16].

Although, in the global multigrid (GMG) a few seconds more are spent for communication, the
global algorithm is faster. The reason can be found in the excellent convergence of the multigrid
method, cf. also [35]. In all but four cases (the exceptions are for 40A /mm?, grids 4, 5, 6) the criterion
given by e, = 0.01 is fulfilled after two or even one multigrid step.

The speed is always normalized with the total time of the PCG algorithm for the identical problem.

5.3 Electric machine

A direct current motor which is excited by permanent magnets serves as a real-life test example. In
order to demonstrate the scale-up of our algorithms we have considered an additional test problem,
a quarter of the original machine, so that we are in the position to compare problems with 16 and 64
subdomains.

The decomposition of the cross-section of the machine into 64 subdomains which are assigned to
the 64 processors is shown in Figure 2 on the left-hand side. Here, the cross-points are marked. The



Figure 1: Initial grid for the electric magnet and equipotential lines of the solution for the current
density 4 A/mm?

Table 1: Performance for different discretizations (electric magnet)

Solver PCG GMG
Number of grids ) 6 5 6
Number of unknowns 326689 | 1308705 || 326689 | 1308705
Newton iterations 1st grid 4 4 4 4
CG iterations 1st grid 5,5,6,7 5,5,6,7 5,5,6,7 5,5,6,7
Newton iterations 2nd grid 2 2 2 2
CG/MG iterations 2nd grid 6,6 6,6 1,2 1,2
Newton iterations 3rd grid 2 2 2 2
CG/MG iterations 3rd grid 4.6 4,6 1,2 1,2
Newton iterations 4th grid 2 2 2 2
CG/MG iterations 4th grid 4,7 4,7 1,2 1,2
Newton iterations 5th grid 3 2 3 2
CG/MG iterations 5th grid 4,77 4.7 1,1,2 1,1
Newton iterations 6th grid 3 3
CG/MG iterations 6th grid 3,78 1,1,2
Time (system generation) 4.3 14.6 4.3 14.4
Time (solver) 10.1 26.8 8.2 12.0
Total time 14.4 414 12.5 26.4
Maximal processor time 8.4 33.9 44 16.8
Minimal communication time 6.0 7.5 8.1 9.6
Speed (normalized) 1 1 1.15 1.57
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Table 2: Performance for different nonlinear behaviour

Solver PCG GMG
Current density S [A/mm?] 4 40 400 4 40 400
Newton iter. 1st grid 4 10 9 4 10 9
CG iterations 1st grid 5,5,6,7 | 5,5,5,6,5, | 5,5,4,4, | 5,5,6,7 | 5,5,5,6,5, | 5,5,4.4,
555,57 | 444,56 555,57 | 4,4,4,5.6
Newton iter. 2nd grid 2 2 2 2 2 2
CG/MG iterations 2nd grid 6,6 5,6 5,6 1,2 1,2 1,2
Newton iter. 3rd grid 2 2 2 2 2 2
CG/MG iterations 3rd grid 4.6 5,7 5,6 1,2 1,2 1,2
Newton iter. 4th grid 2 2 2 2 2 2
CG/MG iterations 4th grid 4,7 3.7 3,7 1,2 1,2 1,2
Newton iter. 5th grid 2 2 2 2 2 2
CG/MG iterations 5th grid 4,7 3.8 3,7 1,1 1,2 1,2
Newton iter. 6th grid 3 3 3 3 3 2
CG/MG iterations 6th grid 378 | 29,13 2,7.8 1,1,2 12,2 1,2
Time (generation) 14.6 15.8 15.8 14.4 15.6 13.2
Time (solver) 26.8 34.7 27.8 12.0 16.9 13.4
Total time 414 50.5 43.6 26.4 32.5 26.6
Maximal processor time 33.9 40.2 34.3 16.8 18.8 15.1
Minimal communication time 7.5 10.3 9.3 9.6 13.7 11.5
Speed (normalized) 1 1 1 1.57 1.55 1.64

Time in seconds, GC-Power Plus, 64 processors (subdomains); relative accuracy e = 1079,
1308 705 unknowns

coarse grid which is to be refined 4 or 5 times in the multilevel calculations is given on the right-hand
side of Figure 2. We present equipotential lines in Figure 3.

We conclude that the global multigrid method is faster again, but the Domain Decomposition PCG
method has the better scalability. Here, we denote the normalized ratio between problem size and
time as scale-up; the quotient of scale-up and the number of processors is called scaled efficiency. For
DD type methods, the scaled efficiency decreases only slightly with a growing number of processors
involved in the solution of growing problems, cf. [32, 30, 33, 34, 31].

Further, in Figure 4 we present two bar graphs for the whole motor. They indicate the time
proportion between communication and processing for the PCG (on the left hand side) and for the
GMG (on the right hand side). Each bar shows the input time including waiting (left, grey), the
output time including waiting (middle, black), and the processor time (right, white), in relation to
the total time for each of the 64 processors. Obviously, the processor time differs for different load
caused by the decomposition of the domain. Therefore, the processors having less load have to wait
for the others.

5.4 Comparison in different parallel environments

To compare the performance on different multiprocessor systems, we carried out additional computa-
tions on a Multicluster 2 (with 16 processors, transputers T 805, using Parix) and on a cluster of 8
workstations SPARC 2 with PVM. In the latter case two processes are running on each workstation.
In our code, all communication between processors is realized via a (virtual) hypercube topology us-
ing a library of standard communication routines [16]. This library has been implemented for many
parallel systems including the above-mentioned. Therefore, we are able to run the identical parallel
code in different multiprocessor environments.

We present the total computing times (quarter of the motor, 5 grids) in Table 4. From our results,
we conclude that global multigrid is faster on all machines. The speed ratio has been calculated as
the reciprocal of the total time ratio between GMG and PCG. It can be observed that the speed ratio
is the highest on the transputer cluster where we have a good balance between processor power and
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Figure 2: Decomposition and discretization (coarse grid) of the motor

Figure 3: Equipotential lines of the magnetic vector potential for the motor
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Table 3: Performance for the electric motor and a related test problem

Solver PCG GMG
Example 1/4 machine | machine || 1/4 machine | machine
subdomains (processors) 16 64 16 64
Number of unknowns 374129 1514008 374129 1514008
Newton iter. 1st grid 3 3 3 3
CG iterations 1st grid 6,11/16 6,11/15 6,11,12 6,11,11
Newton iter. 2nd grid 2 2 2 2
CG/MG iterations 2nd grid 9,10 9,11 , 1,2
Newton iter. 3rd grid 2 2 2 2
CG/MG iterations 3rd grid 10,12 10,12 1,2 2,2
Newton iter. 4rth grid 2 2 2 2
CG/MG iterations 4th grid 11,13 11,13 1,2 1,2
Newton iter. 5rth grid 2 2 2 2
CG/MG iterations 5th grid 11,15 11,15 1,2 1,2
Newton iter. 6th grid 2 2 2 2
CG/MG iterations 6th grid 12,16 13,16 1,2 1,2
Time (system generation) 15.8 17.3 15.0 16.5
Time (solver) 45.5 52.3 8.9 18.3
Total time 61.3 69.6 23.9 34.8
Maximal processor time 55.8 56.0 18.3 18.7
Minimal communication time 5.5 13.6 5.6 16.1
Scale-up (normalized) 1.0 — 3.56 1.0 — 278
Scaled efficiency (relative) 1.0 — 0.89 1.0 — 0.69

Time in seconds, GC-Power Plus, maximal 64 processors; relative accuracy ¢ = 10~

69.67 s
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Figure 4: Communication and processor time (left: PCG, right: GMG)
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communication power but quite slow processors.

If the Power Xplorer is compared with the transputer, the processor power has increased much
more than the the communication power. Consequently, the speed ratio is lower.

In the workstation cluster, we have a slow communication network. Almost half of the total time
of the PCG algorithm, and more than half of the total time of the GMG algorithm, is spent for
communication.

Note that for this example the GMG method performs two Newton iterations on the fifth grid,
while the PCG algorithm needs three iterations. Therefore both, the system generation time and the
communication time, are lower for the global multigrid method.

Table 4: Performance for an identical problem in different parallel environments

System Power Xplorer Multicluster 2 Workstation cluster
Parix Parix PVM
Processors 16 * Power PC 601 || 16 * Transputer T805 8 * SPARC 2
Solver PCG GMG PCG GMG PCG GMG
Time (system generation) 5.0 4.0 61.5 46.9 63.6 51.8
Time (solver) 15.8 5.1 357.0 36.5 206.9 114.8
Total time 20.8 9.1 418.5 83.4 270.5 166.6
Maximal processor time 16.5 4.8 409.3 76.6 141.8 599.7
Minimal commun. time 4.3 4.3 9.2 6.8 128.7 106.9
Speed ratio 1:229 1: 534 1:1.62

Time in seconds, 16 subdomains, 93 377 unknowns; relative accuracy ¢ = 10~*

6 Conclusions

We conclude that both methods, the parallel CG solver with DD preconditioning (PCG) and the
parallel global multigrid method (GMG) can be applied in a nested Newton algorithm for solving
nonlinear electromagnetic field problems very efficiently on MIMD parallel computers. In particular,
using the presented global multigrid method which applies the data structure of the non-overlapping
DD method and a DD coarse grid solver, we can solve a nonlinear problem faster than using the DD
method itself. The time ratio depends on the relation between communication power and processor
power of the multiprocessor system.

Our computations show that the communication time in the GMG method is approximately the
same as in the PCG algorithm, but the quota of the total time is lower for the PCG. Further, we
conclude from the computations that the PCG algorithm has the better scalability.

The Domain Decomposition ideas can be extended to three-dimensional problems. Therefore, it
is very promising to extend both solvers, the CG with DD preconditioning and the global multigrid
method based on the DD data distribution (and the DD coarse grid solver) to the solution of the
discrete finite element equations of three-dimensional problems from magnetics as well as from, e.g.
continuum mechanics or other fields of research.
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