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Comparison of Parallel Solvers forNonlinear Elliptic Problems Based onDomain Decomposition IdeasBodo Heise� and Michael JungyAbstractIn the present paper, the solution of nonlinear elliptic boundary value problems (b.v.p.) onparallel machines with Multiple Instruction Multiple Data (MIMD) architecture is discussed.Especially, we consider electro{magnetic �eld problems the numerical solution of which is basedon �nite element discretizations and a nested Newton solver. For solving the linear systems ofalgebraic �nite element equations in each Newton step, parallel conjugate gradient methods with aDomain Decomposition preconditioner (DD PCG) as well as parallelized global multigrid methodsare applied. The implementation of the whole algorithm, i.e. the mesh generation, the generationof the �nite element equations, the nested Newton algorithm, the DD PCG method and the globalmultigrid method, is based on a non{overlapping DD data structure.The e�ciency of the parallel DD PCG methods and the parallelized global multigrid methods,which are embedded in the nested Newton solver, are compared. Furthermore, the performanceof the parallel nested Newton solver on di�erent machines (GC Power Plus, Multicluster withtransputers T805, and workstation cluster) is demonstrated by numerical results.AMS subject classi�cations: 65N55, 65N22, 65N30, 78A30Key words: Nonlinear partial di�erential equations; Parallel computing; Multigrid methods; Domaindecomposition; Finite element methods; Magnetic �eld calculations1 IntroductionRecently, numerical algorithms for Multiple Instruction Multiple Data (MIMD) parallel computerswith message{passing principle have found growing interest. In particular, Domain Decomposition(DD) methods have become a standard tool for the numerical solution of boundary value problems(b.v.p.) for partial di�erential equations (cf. the proceedings of the international Symposia on \Do-main Decomposition methods for partial di�erential equations" since 1987 [10, 5, 6, 11, 37, 45, 38]).The �rst aim of these methods is data partitioning. The more important second aim is the con-struction of possibly new highly parallel solvers. From the point of view of the solver, we distinguishso{called local methods from the global ones.The local DD methods involve the solution of local subproblems in subdomains. As an example,we consider the non{overlapping DD methods, the main ideas of which are presented, e.g. in [3, 7, 8,48, 49, 21, 22, 23, 39]. These methods have been applied successfully to the numerical solution of two{dimensional linear and nonlinear b.v.p.'s discretized by �nite elements (FE) [19, 20, 30, 31] as well asto the a coupling of �nite and boundary elements [33, 34, 14]. The inherent parallel data distributionallows parallel computation with a communication cost one order lower than the FE problem itself.Thus, computing on many processors can be performed with high e�ciency [31, 33]. Obviously, it isadvantageous to employ multigrid methods for the subproblems.Another approach is to parallelize a well{known, e.g., iterative solver. Then, all properties ofthe method, in particular, convergence properties, are preserved. On the other hand, the e�ciency�Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A - 4040 Linz, Austria. e-mail:heise@numa.uni-linz.ac.at. This research has been supported by the German Research Foundation DFG within thePriority Research Programme "Boundary Element Methods" under the grant La 767/1-3.yFaculty for Mathematics, Technical University Chemnitz, D - 09107 Chemnitz, Germany. e-mail:michael.jung@mathematik.tu-chemnitz.de 1



of the algorithm is determined by the communication overhead only. As an example, we considerthe parallelization of global multigrid methods [41, 46, 42, 1, 2] where the 'quality' of the parallelalgorithm depends heavily on how far the communication can be reduced.The main idea of the approach of [35] is to apply the parallel DD data distribution of the localDD methods in a global multigrid method. It allows us to perform the multigrid interpolation andrestriction operators without any communication. Thus, communication is needed in the smootherand the coarse{grid solver only. The ideas presented in [35] enable us to implement the Gauss{Seidelsmoother with the same communication e�ort as it is required by the Jacobi smoother, but with bettersmoothing properties. Further, a Schur complement solver with preconditioning, originating from thelocal DD methods, is employed as coarse{grid solver.The aim of the present paper is to compare local DD methods with global multigrid methods and toapply both of them to nonlinear b.v.p.'s using a parallel nested Newton approach. We will demonstratethat, if the global multigrid methods bene�t from DD ideas, both solvers require a numerical e�ort ofthe same order of magnitude.Although, the algorithms under consideration have been designed especially for MIMD multipro-cessor systems, there is also interest in their implementation on workstation clusters. Therefore, wepresent results for a workstation cluster, too.The rest of the paper is organized as follows. In Section 2, we formulate the nonlinear boundaryvalue problem. In Section 3, we present the parallel nested Newton method and refer to theoreticalresults. Section 4 is devoted to the di�erent solvers for the arising linear problems. We summarizeresults for the DD{PCG solver and describe some details of the parallelization of the global multigridmethod. In Section 5, we present performance results for a model problem and a more complicatedpractical electro{magnetic �eld problem. Finally, we add some concluding remarks in Section 6.2 Nonlinear electromagnetic �eld problemsLet us consider a two{dimensional nonlinear stationary magnetic �eld problem in a bounded domain
 � R2. The variational formulation of the problem can be written as follows:Find u 2 V = H10 (
) such that a(u; v) = hf; vi 8v 2 V; (1)where a(u; v) = Z
 �(x; jruj) r>u rv dx ;and hf; vi = Z
 (Sv �H0y @v@x + H0x @v@y) dx:Here, the physical model has been developed from Maxwell's equations, cf. [28, 29] for details. Weassume that 
 representing the cross{section of some electromagnetic device lies in the x{y{plane ofthe R3. Then the solution u is the z{component of the vector potential ~A. The z{component of thecurrent density is represented by S, and the vector ~H0 = (H0x;H0y; 0)> describes the magnetizationof permanent magnets. The nonlinearity of the problem is caused by the dependence of � on theabsolute value of the magnetic induction, B = jrot~Aj = jruj.We assume that �
 consists of subdomains�
 = NM[j=1 �̂
j ; with 
̂i \ 
̂k = ; 8i 6= k:The 
̂j 's represent materials with di�erent magnetic properties (iron, copper, air, permanentmagneticmaterials) in the cross{section of an electromagnetic device. We suppose that the function � dependson the locus x 2 
, but � is always the same function of B in one of the 
̂j 's, i.e.�(x;B) = �(j)(B) if x 2 
̂j :The function �(j)(B) is a constant, �(j)(B) � �(j)1 , if the material in 
̂j is not ferromagnetic (e.g.,copper, air, vacuum). We formulate some properties of the functions �(j); j = 1; : : : ; NM , which arejusti�ed by the physical model (cf. [26, 28, 27, 29]):2



(A0) �(j)(z) = �(j)1 = const. 8z 2 [0; z(j)1 ];(A1) �(j)(z) � �(j)1 8z � 0;(A2) �(j)(z) is a monotonic increasing function,(A3) limz!1 �(j)(z) = �(j)1 ; where �(j)1 = (�0)�1 for ferromagnetic materials,(A4) there exists �(j)0(z) 8 z � 0; and there exists a constant M (j)1 with�(j)0(z) �M (j)1 8z � 0;(A5) there exists a constant M (j) with �(j)0(z) z + �(j)(z) �M (j) 8z � 0:Let �1;M1 and M be the global constants with �1 = minj=1;:::;NM �(j)1 , M1 = maxj=1;:::;NM M (j)1 , andM = maxj=1;:::;NM M (j). The following theorem has been proved in [29]:THEOREM 1 Let (A1), (A2), (A4), (A5) be ful�lled. Then the variational problem (1) has aunique solution u 2 V .Proof. See [29].Standard �nite element discretization with linear triangular elements has been discussed in [29]. Fur-ther, an algorithm for the interpolation of a pointwise given material function �(k)(:) is describedtherein. This cubic C1-spline interpolation preserves the properties (A0), (A1), (A2), (A3), (A4),(A5) with slight modi�cations of the constants M and M1. Thus, existence and uniqueness of thesolution of the fully discrete problem have also been proved [29].3 The parallel nested Newton method3.1 Description of the algorithmWe assume that, as in the �nite element substructuring technique, 
 is decomposed into p non-overlapping subdomains 
i; i = 1; : : : ; p, such that (cf. [17, 22, 23, 30, 33, 31, 34])�
 = p[i=1 �
i; 
i \ 
j = ; for i 6= j; (2)i.e., the subdomains 
̂k determined by the materials may be decomposed further. The latter de-composition can be achieved by applying the automatic, adaptive domain decomposition proceduredescribed in [14, 12]. Thus, we have the possibility to provide a quasi-static load balance. The subdo-mains �
i; i = 1; : : : ; p, are assigned to p processors of the MIMD computer. We further assume thatin each subdomain �
i there is a multilevel sequence of linear �nite element discretizations such thatthis discretization process results in conform triangulations of 
 creating a nested sequenceV1 � V2 � � � � � Vl � V = H10 (
) (3)of spaces of linear �nite elements, as it will be described in Subsection 4.2.We obtain a sequence of variational problems for q = 1; : : : ; l:Find uq 2 Vq � V such that aq(uq; vq) = hfq ; vqi 8vq 2 Vq : (4)and a sequence of equivalent nonlinear �nite element equationsKquq = fq q = 1; : : : ; l; (5)with nonlinear operators Kq : RNq �! RNq , solution vectors uq 2 RNq and vectors fq 2 RNq .An parallel algorithm for solving (5) with q = l, connecting a Newton-like method with the nestediteration and a suitable parallel solver, will be presented in the following. It requires the Fr�echetderivative of Kq at a vector vq , K 0q [vq ] : RNq ! RNq q = 1; : : : ; l;3



which is a linear operator and can be represented by the Jacobi matrix, cf. [27, 32, 30, 33, 31]. Theresult will be the approximate solution u?l with relative accuracy " (nested iteration ").The Parallel Nested Newton (PNN) algorithm described below includes both, the Newton method(NM) and the modi�ed Newton method (MNM) which is sometimes recommended to save matrixgeneration time. Further, it includes the two parallel solvers for the linearized problems, namely theDD-preconditioned conjugate gradient method (PCG) and the parallelized global multigrid method(GMG), which are to be compared.Algorithm PNN (Parallel Nested Newton)Step 0Initialization of the grid number:(0.)(P) q := 1.Step 1Set the initial solution for grid q:(1.1)(P) IF q = 1 THEN u0q = 0;(1.2)(P) IF q > 1 THEN u0q = ~Iqq�1u?q�1;the initial solution is the interpolation of the best solution on grid q � 1.(1.3)(P) Initialize the Newton iteration number j := 0.Step 2Compute the initial Jacobi matrix and the defect vector(2.)(P) J0q = K 0q[u0q ]; d1q = fq �Kqu0q :Step 3(3.)(P) Choose a relaxation parameter � jq with 0 < � jq � 1 and a relative accuracy parameter "linwith 0 < "lin < 1.Step 4(4.)(S) Solve the linear defect system Jjqwj+1q = dj+1q (6)approximately (with relative accuracy "lin)(PCG) using a parallelized preconditioned conjugate gradient (PCG) solver where the precon-ditioning is realized via a Domain Decomposition (DD) method (local method),or(GMG) performing k iterations of a parallelized global multigrid method.The result is ~wj+1q .Step 5Correct the solution:(5.)(P) uj+1q = ujq + � jq ~wj+1q .Step 6Control the convergence (parameter c� is chosen a priori with c� < 1):(6.1)(P) Compute the new defect vectordj+2q = fq �Kquj+1q ;(6.2)(P) determine the matrix for the linearized problem which is to be solved next(NM) i.e., compute the new Jacobi matrix (in the Newton method),Jj+1q = K 0q[uj+1q ]; 4



or(MNM) use the matrix again (in the modi�ed Newton method),Jj+1q = Jjq :(6.3)(C) Compute defect normsdj+1q = kdj+1q k; dj+2q = kdj+2q k;(6.4)(P) IF dj+2q � dj+1q THEN 0@ � jq := min�c� � jq ; � jq dj+1qdj+1q + dj+2q � ;GOTO Step 5 1A;(6.5)(P) IF dj+2q � "d1q THEN 0@ u?q := uj+1q ;IF q < l THEN �q := q + 1; GOTO Step 1 �;IF q = l THEN EXIT; 1A;(6.6)(P) Perform a further Newton step:j := j + 1;GOTO Step 3.In this description, (P) indicates that the step is performed completely in parallel, i.e., indepen-dently on the processors, provided that a DD data structure as described in Subsection 4.2 is applied.The solver (S) includes parallel independent parts, communication between processors handling neigh-bouring subdomains, and global communication. Note, (C) indicates that global communication isnecessary. Obviously, the only additional communication (compared with solving a linear problem) isthe computation of global defect norms.3.2 Convergence resultsIn [27], convergence results have been proved for a damped, modi�ed multigrid-Newton method. Theseresults apply for the choice of (MNM) and (GMG) in the algorithm PNN given above, too. We willquote the main results here and refer to [27] for the details.Assuming convergence and certain properties (e.g. symmetric smoothing, construction of coarse-grid operators by the Galerkin approach) which are ful�lled by many standard multigrid algorithms,see [27, Lemma 3] or [36], the multigrid method can be used as a preconditioner as it has been provedin [36, 40]. The spectral equivalence constants depend on the multigrid convergence factor � withrespect to some vector norm and the number k of multigrid iterations only [36, 40].As a consequence of the preconditioning properties of the multigrid method, the linear convergenceof the damped, modi�ed multigrid-Newton method on a �xed grid q is proved in [27, Thm. 2]. Theconvergence factor as well as the necessary damping parameters � jq depend on �, k, and the mate-rial constants �1 and M only. Thus, the Parallel Nested Newton method with a damped, modi�edmultigrid-Newton method converges globally [27, Coroll. 3]. The number of Newton iterations can bebounded a priori for all grids q = 1; : : : ; l. The convergence can be proved even for one multigrid cycleper Newton iteration (k = 1).4 Parallelization strategy and data structure4.1 Mesh generationLet us consider the decomposition (2) of the domain 
 into p non{overlapping subdomains 
i. Sincewe want to use multigrid methods we have to generate a sequence of nested triangular meshes Tq ,q = 1; 2; : : : ; l, which is creating the sequence (3) of �nite element spaces. The starting point for theconstruction of the coarsest mesh T1 is a decomposition of the coupling boundary �C = Spi=1 @
iinto so{called basic lines �C;k (k = 1; 2; : : : ; kC) with �C = SkCk=1 ��C;k, �C;k \ �C;k0 = ; for k 6= k0.We suppose that a basic line is either part of the intersection of a subdomain boundary with theboundary of the domain 
, �C;k � @
i \ @
, or part of the intersection of the boundaries of twoneighbouring subdomains, �C;k � @
i\@
j (i 6= j). On the basis of the decomposition of the couplingboundary, the code PARMESH [9] (cf. also [13]) generates in parallel �nite element triangulations ofthe subdomains 
i, which result in an admissible triangulation of the whole domain 
. In the present5



version of this mesh generator it is assumed that the basic lines are straight lines, arcs of a circle orparabolas. The �ner triangulations Tq , q = 2; 3; : : : ; l, are obtained by a successive re�nement process,i.e. all triangles of the triangulation Tq�1 are divided into four smaller subtriangles. Obviously, thisre�nement process can be performed in parallel.In each triangulation the nodes are classi�ed into three groups: the cross-points (vertices), i.e. thestarting and end points of the basic lines, the edge coupling nodes, i.e. the nodes which are generatedon the basic lines, and the inner nodes.For the numbering of the nodes in each triangulation we use the following order: cross{points,edge coupling nodes on �C;1, edge coupling nodes on �C;2, : : : , edge coupling nodes on �C;kC , innernodes of 
1, inner nodes of 
2, : : : , inner nodes of 
p.4.2 Domain Decomposition data structureThe numbering of the nodes described in Subsection 4.1 induces the following block structure of thesystems (6) of algebraic �nite element equationsJw = 0@ JV JV E JV IJEV JE JEIJIV JIE JI 1A0@ wVwEwI 1A = 0@ dVdEdI 1A : (7)Here, the indices \V", \E", and \I" correspond to the cross{points (vertices), the edge coupling nodes,and the inner nodes, respectively. For the sake of simplicity we have omitted the indices q and j.For the description of the DD preconditioners (see Subsection 4.3) we use the block structureJw = � JC JCIJIC JI �� wCwI � = � dCdI � ; (8)where the index \C" stands for the coupling nodes, i.e. for the cross{points and the edge couplingnodes, cf. [17, 22, 23, 31, 34]. Therefore, the matrices JC and JCI = JTIC are de�ned byJC = � JV JV EJEV JE � and JCI = � JV IJEI � :The Jacobi matrices J and the right{hand sides d can be represented as sums of super{element(subdomain) Jacobi matrices Ji and super{element right{hand sides di. With the (N �Ni) booleanmatrices Ai mapping some overall vector v 2 RN of nodal variables into the super{element vectorvi 2 RNi of variables associated with the subdomain �
i only, we getJ = pXi=1 ATi Ji Ai and d = pXi=1 ATi di : (9)In each processor Pi only the corresponding super{element Jacobi matrix Ji and the super{elementdefect di are stored. A consequence of this storage is the following: If we want to know the valuesof the elements of the matrix JV and the defect dV or of the matrix JE and the defect dE we haveto perform a summation over cross-points or over edge coupling nodes, respectively. Since each innernode belongs to one processor only, the processor Pi has the full information about the elements ofthe matrix JI;i and the defect dI;i. Resulting from the numbering strategy and the proposed storageof the matrices, JI is a blockdiagonal matrix.For the implementation of parallel solvers it is convenient to introduce two types of distributionof vectors to the processors Pi (see, e.g., [21, 24]). We say that the vector v is of overlapping type,if v is stored in processor Pi as vi = Aiv. A vector d of adding type is stored in processor Pi asdi =Ppi=1 ATi di. For example, in the linear solvers which we describe in the Subsections 4.3 and 4.4the defect vectors are of adding type and the solution vectors are of overlapping type.4.3 Parallel CG solver with DD preconditioningThe parallel CG algorithm with DD preconditioning for solving the systems (8) can be implementedin a standard way, cf. [22, 34]. It runs completely in parallel with the exception of the two scalar6



products, and the preconditioning. The DD preconditioner for J , i.e. the matrix C withC = �IC JCIB�TIO II ��CC OO CI�� IC OB�1I JIC II� (10)contains three components, i.e., the preconditioners CC and CI = diag (CI;i)i=1;2;:::;p, and the regularbasis transformation matrix BI = diag (BI;i)i=1;2;:::;p , which can be adapted to the matrix Jjq in asuitable way [22].Here, we choose a multigrid V -cycle with one pre- and one postsmoothing step of Gauss-Seideltype in the symmetric Multiplicative Schwarz Method [18, 22] for CI , and BI is implicitly de�ned byhierarchical extension (formally EIC = �B�1I JIC) [25]. We apply a Schur complement preconditionerCC following Bramble/Pasciak/Schatz (BPS)[3], which uses the idea of Dryja [7] on the couplingboundaries, and a global crosspoint system.Spectral equivalence between Jjq and C has been proved in [21, 22]. Together with the results of[3, 18, 25, 27] we can prove that the numerical e�ort spent for one Newton step on grid q is at most oforder O(Nq lnh�1q ln lnh�1q ln"lin), i.e. almost optimal. Here hq denotes the discretization parameter,such that Nq = O(h�2q ). We refer to [34, 31] for details.4.4 Parallelized global multigrid methodIn this Subsection, we will give a short description of an implementation of multigrid algorithmson parallel machines with MIMD architecture. The basis of the parallelization strategy is the non{overlapping DD data structure discussed in Subsection 4.2. We present the smoothing proceduresbeing used, interpolation and restriction procedures, and some methods for solving the systems ofalgebraic �nite element equations on the coarsest mesh. Especially, the parallelization of these proce-dures is analyzed. A detailed discussion of the parallel multigrid algorithm can be found in [35].4.4.1 Smoothers of Gauss{Seidel typeIn order to minimize communication, we construct Gauss{Seidel type smoothers which require thesame communication as a Jacobi smoother in each iteration step, but with better smoothing properties.The smoothers are based on the block structure (7), one iteration step is de�ned as follows:Let an initial guess w(k) be given. The new approximate solution w(k+1) will be computed in thefollowing way: JVw(k+1)V = dV � JV Ew(k)E � JV Iw(k)I (11)JEw(k+1)E = dE � JEVw(k+1)V � JEIw(k)I (12)(DI + LI)w(k+1)I = dI � JIVw(k+1)V � JIEw(k+1)E � UIw(k)I : (13)Here, LI , DI , and UI are a strict lower triangular matrix, a diagonal matrix, and a strict uppertriangular matrix, respectively, with JI = LI +DI + UI . The application of the proposed smoothingprocedure requires to solve the systems of algebraic equations (11) { (13). If we suppose that at leastone edge coupling node is generated on each part �C;k (k = 1; 2; : : : ; kC) of the coupling boundaryand there exists no edge in the triangulation T1 connecting nodes on two di�erent parts �C;k and�C;k0 , then JV is a diagonal matrix and JE is a block-diagonal matrix with tridiagonal blocks. Usingthe numbering of the nodes described in Subsection 4.2, the matrix JI is also a block-diagonal matrixwith the blocks JI;i. Thus, we get a block-diagonal structure of the matrix (DI + LI), where theblocks are triangular matrices.From the algebraic point of view, solving (11) is trivial. Because of the block structure of thematrix JE the system of algebraic equations (12) decomposes into kC tridiagonal systems of algebraicequations. For solving these systems of equations we use a standard Gauss algorithm for tridiagonalmatrices (see, e.g., [47]). Relation (13) describes nothing but one iteration step of the point{wiseGauss{Seidel iteration applied to a system of equations with the matrix JI .For solving the systems (11) and (12) we need the matrices JV and JE in assembled form. Asmentioned in Subsection 4.2 this assembly requires communication. More precisely, we have to per-form one communication over the cross{points for getting the diagonal matrix JV , and we need two7



communications over the edge coupling nodes for getting the diagonal and the subdiagonal of thesymmetric matrix JE . It is clear that this assembly must be performed only if we have computed anew Jacobi matrix on a given grid.Because of the representation (9) of the matrices JV E , JV I , JEI , and the representation of thevector d, the right{hand sides of the systems (11) and (12) are vectors of adding type. Before wecan solve the systems of equations (11) and (12) we have to convert the corresponding right{handsides into vectors of overlapping type. These type conversions require one communication over thecross{points and one communication over the edge coupling nodes in each smoothing step. After thetype conversion of the right{hand sides and the assembly of the matrices JV and JE , each processorPi has stored the full information about those parts of the systems of equations (11) and (12) whichcorrespond to the nodes associated with the subdomain �
i. Taking into consideration the structureof the matrices JV and JE we see that each processor can determine those components of the vectorsw(k+1)V and w(k+1)E which are related to the subdomain �
i without any additional communication.Because of the block structure of the matrices (DI + LI) and UI the point{wise Gauss-Seidelprocedure can be performed in parallel, i.e. it is applied to the systems of equations(DI;i + LI;i)w(k+1)I;i = dI;i � JIV;iw(k+1)V;i � JIE;iw(k+1)E;i � UI;iw(k)I;i (14)simultaneously. Each processor Pi has the full information about the right{hand side and the matrixDI;i+LI;i of the corresponding system of equations (14), and therefore, no communication is necessary.In the convergence theory we need a symmetric multigrid operator (see also Section 3.2). Therefore,we de�ne additionally an analogous Gauss-Seidel type smoother which works in reverse order.4.4.2 Interpolation and restriction proceduresSince the boundary value problem is discretized with piecewise linear trial functions we use linearinterpolation within the multigrid algorithm. The restriction operator is de�ned as the adjoint operatorto the interpolation operator. In the implementation of the multigrid algorithm, the corrections arestored as vectors of overlapping type and the defects as vectors of adding type. Therefore, we have tomap a vector of overlapping type into a vector of overlapping type in the interpolation procedure. Inthe restriction procedure, a vector of adding type is mapped into a vector of adding type. Therefore,both procedures do not need any communication.4.4.3 Coarse{grid solversWe utilize parallelized preconditioned conjugate gradient methods applied to the corresponding Schurcomplement system as coarse{grid solvers. Here, communication is required in the two scalar prod-ucts and in the preconditioner, whereas all other operations are completely parallel. A nonstandardformulation of the preconditioned conjugate gradient method which minimizes the communicationbetween the processors (see [43, 44]) is used. The advantage of this formulation is the fact that thetwo scalar products per iteration step can be computed immediately one by another such that onlyone start{up time is necessary.As preconditioners may be used the diagonal part of the matrix JC , BPX{preconditioners witha global cross{point system [4, 50], or BPS{preconditioners using ideas of Dryja [7] on the couplingboundaries and a global cross{point system (see also [3]). In the case of the BPX and the BPSpreconditioners we need a hierarchy of partitions of the coupling boundary. In general, such a hierarchydoes not exist for the coarsest mesh. Therefore, we generate a sequence of nested auxiliary meshesdown to a coarsest mesh which contains the cross-points only, and we work after some transformationson these auxiliary meshes.5 Numerical results5.1 ImplementationThe Parallel Nested Newton algorithm with both, the DD-PCG solver and the global multigrid methodas linear solver, is implemented in the parallel code FEM

BEM [13, 15, 35]. In this way, all parts ofthe PNN algorithm, such as the grid generation, the matrix generation and representation, and the8



defect computation, are identical for (PCG) and (GMG). Thus, both methods can be compared. Thealgorithm was mainly tested on the parallel systems Power Xplorer (with maximal 16 processors PowerPC 601) and the GC-Power Plus (with maximal 128 processors Power PC 601) with the operatingsystem Parix.In the following we describe our choice of components and parameters in the PNN method andin the solvers for linear problems. Indeed, we have tested various combinations of them, and wepresent here both, the best choice for (PCG) and the best choice for (GMG) with respect to the totalcomputing time.Parallel Nested Newton:For practical computations, the Newton method (NM) should be chosen. Here, the numerical e�ortfor the repeated Jacobi matrix generation is of minor importance than the fast convergence. Notethat the matrix generation can be done completely in parallel [30, 33, 31].Further, we apply a linear interpolation ~Iqq�1; q = 2; : : : ; l and restrict the number of Newtoniterations on the grids q = 2; : : : ; l � 1 to j � 2, cf. [26, 27]. We set c� = 0:25, and always try tohave the relaxation parameter close to 1 as in [26, 27]. Indeed, on all the grids except the coarsest(q = 1), all Newton iterates have been accepted with � jq = 1. The parameter "lin can be adapted tothe quadratic convergence speed of the Newton method [27]. For the presented examples, best resultswith respect to the total computing time have been achieved with "lin = 0:01.DD preconditioned conjugate gradient method:The components of the (PCG) algorithm are chosen as described in Subsection 4.3.Global parallelized multigrid method:In the (GMG) solver, we used a V -cycle with 2 pre- and 2 postsmoothing steps of the parallelizedGauss-Seidel type presented in Subsection 4.4. The maximal number of multigrid iterations has beenrestricted to 2, this number is doubled if the multigrid convergence rate a�ects the Newton rateessentially, cf. [26, 27]. With respect to the coarse grid solver, a preconditioned Schur complementCG solver turned out to be su�cient where best results have been achieved with a relative accuracyof 0:1 in the multilevel case (q � 2), and a DD based (BPS) preconditioner.We compare the performance of the algorithms for an electric magnet as an academic test example,and for a direct current motor as a real-life example.5.2 Electric magnetAn electric magnet with Dirichlet boundary conditions and a 50 cm� 50 cm iron core serves as a �rsttest example for computations. In Figure 1, the initial grid for the domain 
 decomposed into 64congruent square subdomains and level lines of the solution are shown. In Table 1, we compare thealgorithms for di�erent numbers of grids being used, i.e., for di�erent discretizations, whereas Table2 is to demonstrate the performance for di�erent current densities, i.e., for di�erent nonlinear e�ects.We distinguish the time for the solver from the time for generating the Jacobi matrices and defectvectors.Further, we measure the processor time and the communication time for each processor separately.The communication time includes the waiting for input and output as well as the communication itself.Therefore, the minimal communication time of all processors is a measure for the communicationoverhead, cf. [16].Although, in the global multigrid (GMG) a few seconds more are spent for communication, theglobal algorithm is faster. The reason can be found in the excellent convergence of the multigridmethod, cf. also [35]. In all but four cases (the exceptions are for 40A=mm2, grids 4, 5, 6) the criteriongiven by "lin = 0:01 is ful�lled after two or even one multigrid step.The speed is always normalized with the total time of the PCG algorithm for the identical problem.5.3 Electric machineA direct current motor which is excited by permanent magnets serves as a real-life test example. Inorder to demonstrate the scale-up of our algorithms we have considered an additional test problem,a quarter of the original machine, so that we are in the position to compare problems with 16 and 64subdomains.The decomposition of the cross-section of the machine into 64 subdomains which are assigned tothe 64 processors is shown in Figure 2 on the left-hand side. Here, the cross-points are marked. The9



Figure 1: Initial grid for the electric magnet and equipotential lines of the solution for the currentdensity 4A=mm2
Table 1: Performance for di�erent discretizations (electric magnet)Solver PCG GMGNumber of grids 5 6 5 6Number of unknowns 326689 1 308705 326689 1 308705Newton iterations 1st grid 4 4 4 4CG iterations 1st grid 5,5,6,7 5,5,6,7 5,5,6,7 5,5,6,7Newton iterations 2nd grid 2 2 2 2CG/MG iterations 2nd grid 6,6 6,6 1,2 1,2Newton iterations 3rd grid 2 2 2 2CG/MG iterations 3rd grid 4,6 4,6 1,2 1,2Newton iterations 4th grid 2 2 2 2CG/MG iterations 4th grid 4,7 4,7 1,2 1,2Newton iterations 5th grid 3 2 3 2CG/MG iterations 5th grid 4,7,7 4,7 1,1,2 1,1Newton iterations 6th grid 3 3CG/MG iterations 6th grid 3,7,8 1,1,2Time (system generation) 4.3 14.6 4.3 14.4Time (solver) 10.1 26.8 8.2 12.0Total time 14.4 41.4 12.5 26.4Maximal processor time 8.4 33.9 4.4 16.8Minimal communication time 6.0 7.5 8.1 9.6Speed (normalized) 1 1 1.15 1.57Time in seconds, GC-Power Plus, 64 processors (subdomains); relative accuracy " = 10�6
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Table 2: Performance for di�erent nonlinear behaviourSolver PCG GMGCurrent density S [A=mm2] 4 40 400 4 40 400Newton iter. 1st grid 4 10 9 4 10 9CG iterations 1st grid 5,5,6,7 5,5,5,6,5, 5,5,4,4, 5,5,6,7 5,5,5,6,5, 5,5,4,4,5,5,5,5,7 4,4,4,5,6 5,5,5,5,7 4,4,4,5,6Newton iter. 2nd grid 2 2 2 2 2 2CG/MG iterations 2nd grid 6,6 5,6 5,6 1,2 1,2 1,2Newton iter. 3rd grid 2 2 2 2 2 2CG/MG iterations 3rd grid 4,6 5,7 5,6 1,2 1,2 1,2Newton iter. 4th grid 2 2 2 2 2 2CG/MG iterations 4th grid 4,7 3,7 3,7 1,2 1,2 1,2Newton iter. 5th grid 2 2 2 2 2 2CG/MG iterations 5th grid 4,7 3,8 3,7 1,1 1,2 1,2Newton iter. 6th grid 3 3 3 3 3 2CG/MG iterations 6th grid 3,7,8 2,9,13 2,7,8 1,1,2 1,2,2 1,2Time (generation) 14.6 15.8 15.8 14.4 15.6 13.2Time (solver) 26.8 34.7 27.8 12.0 16.9 13.4Total time 41.4 50.5 43.6 26.4 32.5 26.6Maximal processor time 33.9 40.2 34.3 16.8 18.8 15.1Minimal communication time 7.5 10.3 9.3 9.6 13.7 11.5Speed (normalized) 1 1 1 1.57 1.55 1.64Time in seconds, GC-Power Plus, 64 processors (subdomains); relative accuracy " = 10�6,1 308705 unknownscoarse grid which is to be re�ned 4 or 5 times in the multilevel calculations is given on the right-handside of Figure 2. We present equipotential lines in Figure 3.We conclude that the global multigrid method is faster again, but the Domain Decomposition PCGmethod has the better scalability. Here, we denote the normalized ratio between problem size andtime as scale-up; the quotient of scale-up and the number of processors is called scaled e�ciency. ForDD type methods, the scaled e�ciency decreases only slightly with a growing number of processorsinvolved in the solution of growing problems, cf. [32, 30, 33, 34, 31].Further, in Figure 4 we present two bar graphs for the whole motor. They indicate the timeproportion between communication and processing for the PCG (on the left hand side) and for theGMG (on the right hand side). Each bar shows the input time including waiting (left, grey), theoutput time including waiting (middle, black), and the processor time (right, white), in relation tothe total time for each of the 64 processors. Obviously, the processor time di�ers for di�erent loadcaused by the decomposition of the domain. Therefore, the processors having less load have to waitfor the others.5.4 Comparison in di�erent parallel environmentsTo compare the performance on di�erent multiprocessor systems, we carried out additional computa-tions on a Multicluster 2 (with 16 processors, transputers T 805, using Parix) and on a cluster of 8workstations SPARC 2 with PVM. In the latter case two processes are running on each workstation.In our code, all communication between processors is realized via a (virtual) hypercube topology us-ing a library of standard communication routines [16]. This library has been implemented for manyparallel systems including the above-mentioned. Therefore, we are able to run the identical parallelcode in di�erent multiprocessor environments.We present the total computing times (quarter of the motor, 5 grids) in Table 4. From our results,we conclude that global multigrid is faster on all machines. The speed ratio has been calculated asthe reciprocal of the total time ratio between GMG and PCG. It can be observed that the speed ratiois the highest on the transputer cluster where we have a good balance between processor power and11



Figure 2: Decomposition and discretization (coarse grid) of the motor

Figure 3: Equipotential lines of the magnetic vector potential for the motor12



Table 3: Performance for the electric motor and a related test problemSolver PCG GMGExample 1/4 machine machine 1/4 machine machinesubdomains (processors) 16 64 16 64Number of unknowns 374129 1 514008 374 129 1 514008Newton iter. 1st grid 3 3 3 3CG iterations 1st grid 6,11/16 6,11/15 6,11,12 6,11,11Newton iter. 2nd grid 2 2 2 2CG/MG iterations 2nd grid 9,10 9,11 1,2 1,2Newton iter. 3rd grid 2 2 2 2CG/MG iterations 3rd grid 10,12 10,12 1,2 2,2Newton iter. 4rth grid 2 2 2 2CG/MG iterations 4th grid 11,13 11,13 1,2 1,2Newton iter. 5rth grid 2 2 2 2CG/MG iterations 5th grid 11,15 11,15 1,2 1,2Newton iter. 6th grid 2 2 2 2CG/MG iterations 6th grid 12,16 13,16 1,2 1,2Time (system generation) 15.8 17.3 15.0 16.5Time (solver) 45.5 52.3 8.9 18.3Total time 61.3 69.6 23.9 34.8Maximal processor time 55.8 56.0 18.3 18.7Minimal communication time 5.5 13.6 5.6 16.1Scale-up (normalized) 1.0 ! 3.56 1.0 ! 2.78Scaled e�ciency (relative) 1.0 ! 0.89 1.0 ! 0.69Time in seconds, GC-Power Plus, maximal 64 processors; relative accuracy " = 10�4
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 Figure 4: Communication and processor time (left: PCG, right: GMG)13



communication power but quite slow processors.If the Power Xplorer is compared with the transputer, the processor power has increased muchmore than the the communication power. Consequently, the speed ratio is lower.In the workstation cluster, we have a slow communication network. Almost half of the total timeof the PCG algorithm, and more than half of the total time of the GMG algorithm, is spent forcommunication.Note that for this example the GMG method performs two Newton iterations on the �fth grid,while the PCG algorithm needs three iterations. Therefore both, the system generation time and thecommunication time, are lower for the global multigrid method.Table 4: Performance for an identical problem in di�erent parallel environmentsSystem Power Xplorer Multicluster 2 Workstation clusterParix Parix PVMProcessors 16 * Power PC 601 16 * Transputer T805 8 * SPARC 2Solver PCG GMG PCG GMG PCG GMGTime (system generation) 5.0 4.0 61.5 46.9 63.6 51.8Time (solver) 15.8 5.1 357.0 36.5 206.9 114.8Total time 20.8 9.1 418.5 83.4 270.5 166.6Maximal processor time 16.5 4.8 409.3 76.6 141.8 59.7Minimal commun. time 4.3 4.3 9.2 6.8 128.7 106.9Speed ratio 1 : 2:29 1 : 5:34 1 : 1:62Time in seconds, 16 subdomains, 93 377 unknowns; relative accuracy " = 10�46 ConclusionsWe conclude that both methods, the parallel CG solver with DD preconditioning (PCG) and theparallel global multigrid method (GMG) can be applied in a nested Newton algorithm for solvingnonlinear electromagnetic �eld problems very e�ciently on MIMD parallel computers. In particular,using the presented global multigrid method which applies the data structure of the non-overlappingDD method and a DD coarse grid solver, we can solve a nonlinear problem faster than using the DDmethod itself. The time ratio depends on the relation between communication power and processorpower of the multiprocessor system.Our computations show that the communication time in the GMG method is approximately thesame as in the PCG algorithm, but the quota of the total time is lower for the PCG. Further, weconclude from the computations that the PCG algorithm has the better scalability.The Domain Decomposition ideas can be extended to three-dimensional problems. Therefore, itis very promising to extend both solvers, the CG with DD preconditioning and the global multigridmethod based on the DD data distribution (and the DD coarse grid solver) to the solution of thediscrete �nite element equations of three-dimensional problems from magnetics as well as from, e.g.continuum mechanics or other �elds of research.References[1] P. Bastian. Parallele adaptive Mehrgitterverfahren. PhD thesis, Universit�at Heidelberg, 1994.[2] P. Bastian and G. Horton. Parallelization of robust multigrid methods: ILU factorization andfrequency decomposition method. SIAM J. Sci. Stat. Comput., 12(6):1457{1470, Nov. 1991.[3] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction of preconditioners for ellipticproblems by substructuring I { IV. Mathematics of Computation, 1986, 1987, 1988, 1989. 47,103{134, 49, 1{16, 51, 415{430, 53, 1{24. 14
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