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Abstract

The use of the FEM and BEM in different subdomains of a non—-overlapping Domain
Decomposition (DD) and their coupling over the coupling boundaries (interfaces) brings
about several advantages in many practical applications. The paper presents parallel
solvers for large-scaled coupled FE BE DD equations approximating linear and nonlinear
plane magnetic field problems as well as plane linear elasticity problems. The parallel
algorithms presented are of asymptotically optimal, or, at least, almost optimal complexity
and of high parallel efficiency.
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1 Introduction

The Domain Decomposition (DD) approach offers many opportunities to marry the advan-
tages of the Finite Element Method (FEM) to those of the Boundary Element Method (BEM)
in many practical applications. For instance, in the magnetic field computation for electric
motors, we can use the BEM in the air subdomains including the exterior of the motor more
successfully than the FEM which is prefered in ferromagnetic materials where non-linearities
can occur in the partial differential equation (PDE), or in subdomains where the right hand
side does not vanish [23, 34]. The same is true for many problems in solid mechanics [31] and
in other areas of research. A very straightforward and promising technique for the coupling
of FEM and BEM was proposed by M. Costabel [7] and others [6, 33] In the different subdo-
mains of a non overlapping domain decomposition, we use either the standard finite element
(FE) Galerkin method or a mixed—type boundary element (BE) Galerkin method which are
weakly coupled over the coupling boundaries (interfaces) I'c. The mixed BE Galerkin method
makes use of the full Cauchy data representation on the BE subdomain boundaries via the
Calderén projector.

The main aim of the project was the design, analysis and implementation of fast and
well adapted parallel solvers for large-scale coupled FE/BE-equations approximating plane,
linear and nonlinear magnetic field problems including technical magnetic field problems
(e.g. electric motors). To be specific, we consider a characteristical cross-section, which lies
in the (x,y)-plane of the R3, of the original electromagnetic device that is to be modelled.
Let us assume that Q) C R? is a bounded simply connected domain and that homogeneous
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Dirichlet boundary conditions are given on I'p = 9€2y. Formally the nonlinear magnetic field
problem can be written as follows [25]

4 8H0y(.’13) . 8H0X(.’I))

—div (v(z, |Vu(z)|)Vu(z)) = S(x) , € (1)
ox dy

u(z) = 0, zelp (2)

lu(z)] — 0 for |z| — oo, (3)

with  := R?\ €. The solution v is the z component A, of the vector potential A =
(Aw,Ay,AZ)T introduced in the Maxwell equation. The component of the current density,
which acts orthogonal to the cross-section being considered, is represented by S(z), whereas
Hox and Hgy stand for sources associated with permanent magnets that may occur and v/(.)
denotes a coefficient depending on the material and on the gradient |Vu(z)| (induction). Now,
we introduce the exterior domain {24 by defining a, so called, coupling boundary 'y := 9.
The definition of I'y is restricted by the conditions

v(z) =1, Vo € Q4, (supp SUsupp Hy) C Q_, diam(QuUQ_) <1, (4)

where Q_ := R%\ (2, U€y). Note that the condition diam(oUQ ) < 1 is only technical and
can be fulfilled by scaling the problem appropriately. Besides the decomposition Q = Q_UQ.,
we allow the inner domain €2 to be decomposed further following the natural decomposition
of 2_ according to the change of data:

Nar _
Q =, with nNQ;=0 Vi#j (5)
J=1

In Section 2 (see also Appendix A), we present an automatic and adaptive domain de-
composition procedure providing such a decomposition of €2 into p subdomains (p = number
of processors to be used) and such controlling data for the distributed mesh generator [11]
that we can expect a well load-balanced performance of our solver.

In Section 3, we consider linear plane magnetic field problems for which a domain decom-
position according to Section 2 is available. Now, we can make use of the advantages of a
mixed variational DD FE/BE discretization and propose an algorithm for solving the linear
coupled FE/BE equations. First of all, the coupled FE/BE equations can be reformulated as
a linear system with a symmetric, but indefinite system matrix. We provide a preconditioning
and a parallelization of Bramble/Pasciak’s Conjugate Gradient (CG) method [2] applied to
the symmetric and indefinite system (18). The components of the preconditioner can be cho-
sen such that the resulting algorithm is, at least, almost asymptotically optimal with respect
to the operation count and quite robust with respect to complicated geometries, jumping
coefficients and mesh grading near singularities (see numerical results given in Sect. 3 and in
[30]). Using a special DD data distribution, we parallelize the preconditioning equation and
the remaining algorithm in such a way that the same amount of communication is needed as
in the earlier introduced and well studied parallel PCG for solving symmetric and positive
definite FE equations [17, 18] (see Appendix B).

Section 4 is devoted to the description of the Full-DD-Newton—Solver for nonlinear mag-
netic field problems. In every nested Newton step we use basically the linear DD solver given
in Section 3.

In Section 5, we apply our linear DD solver to plane linear elasticity problems mod-
elled by Lame’s system of PDEs. An appropriate adaptation of the components of the DD-
preconditioner results in a parallel solver the efficiency of which is comparable to that of the
solver for the linear magnetic field problems described in Section 3.

In Section 6, we briefly describe the software package FEMCOBEM [14] and draw some
conclusions. All numerical results presented in this paper were obtained by the use of the
package FEMCDBEM. The code runs on various parallel computers and programming plat-
forms including PVM (see, e.g., [28]).



2 Adaptive Domain Decomposition F’reprocessing

2.1 The DD-Data Partitioning

In this section, we focus our interest on how a decomposition of the domain €2 into a given
number of subdomains can be obtained from the natural decomposition into domains accord-
ing to the change of materials (5). We are interested in well load-balanced decompositions
especially in the case of discretizations which are adapted to singularities.

We assume that a triangular-based description of the geometry of the problem under con-
sideration is given. Besides the geometrical data each triangle is characterized by a parameter
pointing to that of the Nj; material-regions the triangle belongs to. Note that interfaces be-
tween different materials, i.e. the boundaries of the Qj’s (cf. (5)), are represented by edges of
the triangulation. We are interested in a decomposition into p > Nj,; subdomains

Q:UQi, where Q,:=Q; and S:)j: UQ, Vi=1,...,Ny (6)
i€T i€T;

where the sets of indices are given by Z := {1,...,p} and
Ny
Lich={1,....p-1}, UZ,=7" Z,nTy,=0 Vj#k,
j=1

i.e., the subdomains Qj determined by the materials may be decomposed further (see, e.g., [19]).
We assume that there exist open balls B, and By, (i € Z*) with positive radii r; and 7;, such
that B, C Q; C By, and 0<¢c< 7i/r; <¢ Vi€ Z* with fixed (i-independent) constants
c and €. Note, in the case of {2 being bounded we had Z* := {1,...,p} and in the following
all terms induced by p, which then stands for the exterior domain, would vanish.

Although the algorithm being used for decomposing €2 is based upon a given triangulation
of the domain it is of advantage to use a special DD-data structure as input for DD-based
algorithms running on massively parallel computers.

Thus, starting off with a given triangular-

based geometrical description (x.tri—file) *tri

we wish to end up with a well-balanced
decomposition of our problem which is de-
scribed by using some DD-data format
(x.ddfile). Figure 1 on the right shows
the interactions between the preprocessing
codes Decomp, Tri2DD and AdapMesh
and the file-types *.tri, *x.dd, and *.fb be- ( *fb) ( *.twﬁ)
ing involved. In the simplest case the pro-
cess starts, on the top of the diagram, with
applying Decomp to a x.tri file which re-

Decomp

sults in a decomposition as defined in (6), Tri2DD —>< *.dd )—> AdapMesh
i.e. each triangle is assigned to one of the
Q;’s, 1 € Z. The output of this process is Figure 1: The Preprocessing.

also a x.tri file which then
is converted into a *.dd—file by applying the program Tri2DD. In our case, such a *.dd—file

is the input for the parallel code FEMUBEM [14]. Because of the simple structure of the
DD-data format being used it is quite easy to implement additional refinement information
concerning, e.g., singularities into the *.dd file. In the latter case the mesh created from this
file may differ significantly from the one described by the original *.tri—file. As a consequence
we have to expect a bad load balance. This problem can be solved by applying the program
AdapMesh which simulates the mesh generation as it occurs in the parallel program using,
optionally, adaptivity information which may be obtained from a coarse-grid computation.
Thus, AdapMesh creates a *.tri file which is the input for restarting the cycle with Decomp.



Note, in the optimal case with respect to the load balance the mesh used for computations
(i.e. the one created from a x.dd file within FEM@BEM ) would coincide with the mesh
being used for the decomposition.

2.2 A Short Description of the Preprocessing Codes

At this place, we are going to explain the codes and the main ideas they are based on. More
information and technical details can be found in the forthcoming documentation [12]. First
we give a short description of the codes.

Decomp decomposes single-material domains using the spectral bisection method (sbm) [42].
That is, as long as there are less than p subdomains the largest subdomain according
to the number of triangles is divided into two new subdomains by the sbm. As a result,
each triangle is assigned to one of the subdomains.

Tri2DD converts triangular-based data into the DD-data format. The algorithm is based on
the definition of edges which then define the faces. Note, interfaces between different
materials will be maintained as they were given in the original x.fri-file. On the other
hand the artificially created boundaries within one material are smoothed.

AdapMesh creates a mesh based on DD-data using, optionally, adaptivity information. The
resulting *.tri-file can be used as input for Decomp.

During the preprocessing we are concerned with two types of describing data. The first
one (x.tri-files) is based on nodes (characterized by their coordinates) which define the edges
(straight lines or arcs of circles are allowed) and, finally, triangles defined by their edges.
Each of the triangles is characterized by two additional parameters, where only one of them
pointing to the material the triangle belongs to has to be initialized from the very beginning.
The second one describes the mapping of the triangles on the subdomains and it is defined
as a result of decomposing €.

The second type of data (x.dd-files) follows the DD-data format described in [14]. It
is based on defining cross-points numbered globally which then define edges. Main objects
are faces described by edges. The faces, or a union of them, are mapped onto the array of
processors. The x*.fb-files are auxiliary files (optional) and contain controlling data or fixed
cross-points as it occurs in our example (see below).

2.3 Example: Direct Current Motor

Now we apply our preprocessing tools to a model of a direct current motor (de-motor) with
permanent excitation (see also Fig. 2 and 3 in [24] for a detailed description of the machine).
We start with a *.tri-file with 18 different material regions as shown on the left in Figure 5
(Appendix A) . After applying Decomp, Tri2DD and one full cycle we have obtained the
x.dd-file which represents the decomposition as shown on the right in Figure 5. Note the
additional cross-points especially on the outer circle which have been pre-defined in a *.fb
file. In our case no additional refinement information have been used so that the second
decomposition (Figure 5) did not differ significantly from the first one which were already
obtained after applying Decomp and Tri2DD. Figure 6 (Appendix A) shows, on the left, the
mesh being finally used as initial mesh for computations and, on the right, the equipotential
lines of the solution.



o FParallel Solution ot Linear Coupled BLE/FE—-Kquations Ap-
proximating Linear Magnetic Field Problems

3.1 A Mixed Variational Formulation

Let us first consider a linear (v = v(x)) magnetic field problem of the form (1) - (3) for which
a domain decomposition according to Section 2 is available. In particular, we assume that
the index set Z = Zp UZpg can be decomposed into two disjoint sets of indices Zp and Zg such
that

p € 1Lpg, (7)
(supp S(.) Usupp Ho(.)) NQ; =0 VieIg, (8)
v(z) = v; = const Vi€ Ip. (9)

For each ; (i € Z) the index i belongs to one of the two index sets Zp and Zp according
to the discretization method applied to §2;, where Zg and Zp stand for BEM and FEM,
respectively.

Following M.Costabel [7], G.C.Hsiao and W.L.Wendland [33] and others, we can rewrite
the weak formulation of the boundary value problem (1) - (3) by means of partial integration
in the boundary element subdomains €2;, 4 € Zg and by the use of Calderén’s representation
of the full Cauchy data as a mixed DD coupled domain and boundary integral variational
problem: Find (A, u) € V := A x Uy such that

a(A,u;n,v) = (F,v) Y(n,v) €V, (10)
where
a(Nu;n,v) = ag(Au;n,v) +ap(u,v)
ag(A, u;n,v) = Z v; {(Diui,vi)ri + ;()\Z,vl) + (i, Kivi)r,
i€Zp\{p}

1
(ni, Vidi)r, — (ni, Kiui)r, — E(Th,uz)r,}
1
+p {(Dp“pa”p>l“+ - §<>‘pa“p>l“+ + (Apalcp“p>l“++
1
<77va1))‘11>1“+ — (s ’Cp“p>1“+ + §<77pa “‘p)FJr}

ap(u,v) = Z/ z)Vo(z) dz

1€l
ov(x ov(x
(Foo) = Y [ [S@)ota) ~Hoy (o) 4 Hoo) 292
ox dy
1€TR
(A vidr, = / Aivi ds and v; = v]aq;, u; = ulaq,, Ti = 08,
Ty

with the well-known boundary integral operators V;, K;, D; defined by the relation

Vidi(z) = fE z,Y)\i(y) dsy
Kivi(z) := f8 E(z,y)vi(y) dsy (11)
Diui(z) := 78 [8 E(z,y)ui(y) dsy

and with the fundamental solution

1
Ew,y) =~ log|z — y] (12



of the Laplacian. The mapping properties of the boundary integral operators (11) on Sobolev
spaces are now well known [8]. The spaces Uy and A are defined by the relations

. 13
A = {)\ = (Ai)iEIB : >\i S Hfl/Q(Fi), 1€ IB} = Hiel’;; Ai, ( )

with A; = Hil/Q(Fi), 1 € Tp. Further we use the notation I'gp := UiEIB o), \ I'p,Tpg =
Uz’eIF 00 \T'p,Te:=TppUlpg and Qp := Uz’eIF Q;. Introducing in V := A x Uy the norm

1/2
I wllv = (IR + Tl gy + Tl o)) (14)
with
2 _ 12 2 _ 112
AR = 2 Iy and s By = 2 Tlfng,
then one can prove that the bilinear form a(.,.) is V—elliptic and V-bounded provided that the
domain decomposition satisfies the conditions imposed on above (see also [33]). Therefore,

the existence and uniqueness of the solution are a direct consequence of the Lax—Milgram
theorem.

3.2 The Coupled BE/FE Discretization

Now, we can define the nodal FE/BE basis of piecewise linear trial functions based upon a
regular triangulation of the subdomains €2;,7 € Zr and the according discretization of the
boundary pieces I';; = Q; N €Yy, 1,5 € I:

o = [¢1a .- -5¢NA5¢NA+]7---5¢NA+N(;7¢NA+N(;+15 .- -5¢N]7
where N = Nj + N¢c + Ny and Ny = Ziel'p N[,Z', Ny = ZiGIB NA,i- Here, ¢],...,¢NA are
the basis functions for approximating A on I';, i € Ip, ¢n,+1,..., PN +No Tepresent u on
I'c and ¢ny+No+15-- -2 PNy +No+ N, approximate u in €);, 4 € Zp. The definition of the finite
dimensional subspaces of A, Uy and V
Ah ‘= span [¢13¢23"'3¢N/\L
Up = span [@N,y+15- -y ONy+Nes PNa+Ne+1y -+ BN
Vh = Ah X Uh
allows us to formulate the discrete problem as follows: Find u; € V), such that
a(uh,vh) = <F,7)h> Yup, € Vy,. (15)
The isomorphism ® : RN — V}, leads to the linear system:
KA _KAC 0 UA f/\
Ken Ko Ko ue | =| fo |, (16)
0 KIC K[ us fT
where the block entries are defined by
(KAuA,vA) = Z Vi<777:,V1:>\7:>1"i with \; = (I)AiuAian = @AiVAi,
i€1R
1
(Keaua,ve) = > vi{(Xi, Kir, + §<>\iavi>l“i}
i€Zp\{p}
1
+vp{(Ap, Kpvp)r, — §<>‘pa Up)1, }
Kxae = Kéa
Ke = Kep+ Kop, with
(Kepue,ve) = Y, viDiui,vi)r,, ui = Pe,ug;, v = ®¢,ve, and
i€ELR



Ker Kei uc vo B -
(( Kic Ki )(u[ )’(v; )) = Z/sz(x)v u Vo dz,

1€ELp

where u|q, = ®pup, vlg, = Ppvp. Here, &5, (i € Zp) and ®¢, (i € Z) contain the basis
functions for approximating A and u on 0€);, respectively. The basis functions in ®r are used
to approximate u in §; (i € Zr). The FE entries, especially K7, are sparse matrices, whereas
the BE blocks are fully populated.

3.3 The Parallel Solver

3.3.1 Bramble-Pasciak’s Transformation and Spectral Equivalence Results

The nonsymmetric, positive definite system (16) can be solved approximately by Bram-
ble/Pasciak’s CG method [2]. The method requires a preconditioner C which can be inverted
easily and which fulfills the spectral equivalence inequalities

ZACASKA <HACh, with 1A>1. (17)
With the definitions
Ky = Kx, fi=f\, Kip=Kj =(—Kxc 0)
Ke Kcer —fc
K, = , = .
2 (KIC K > 2 (fl

we can reformulate (16) as a symmetric but indefinite system:

K] K]2 ug _ f]
(& %) (0)=(2) o8

Following Bramble and Pasciak [2] this system can be transformed into

G u = p, where (19)
Q.- Cr 'K Cy 'K b Cy '
' Ky C YKy —Cy) Ko+ KynCy'Kiy )’ KnCy'fy —f, )

Then, the matrix G is self-adjoint and positive definite with respect to the scalar product
[.,.] which is defined by

[w,v] = ((K1 — Cp) Wi, v1) + (W, va). (20)

Moreover, (G is spectrally equivalent to the regularisator R, where

Ro— 1 0
T\ 0 Ko+ Ky K 'Ky )
Bramble and Pasciak [2] proved the spectral equivalence inequalities

AMRv,v] <[Gv,v] < X[Rv,v] VYveR", (21)

-1
2 1
A=[1+2 4o+ and X= VO (22)
5 1 1~ a

with & =1 — (1/7,). Thus, we have to find a preconditioner Cy for the matrix

where

_ Ko+ KoaKy'Kxe Kc

K¢ Ky



The DD preconditioner defined by

. Ic KC[BFT Cec 0 Ic 0
CQ_( 0 I; 0 C By 'Krie I (24

is spectrally equivalent to Ko + KQIKflKlg if we have preconditioners C7 and C¢ fulfilling
the inequalities .
1:Cc < Se + KoaK ' Kac <70Cc, (25)

7,Cr < K1 <7,C1, (26)

where S¢ = Ko — KoK 'Kic + Ker(K;' — By T)Ki(K;' — B/ ")Kic, and By is an
appropriately chosen non-singular matrix [37].

Lemma 1 If the symmetric and positive definite block preconditioners Cr = diag(Cr,i)iczy
and C¢ satisfy the spectral equivalence inequalities (25) and (26) with positive constants Yo
Yo Yy Vis then the spectral equivalence inequalities

7,02 < Ky + Kn Ky ' Ko < 7,05 (27)

hold for the preconditioner Cy defined in (24) with the constants
7, = minf{y,, v, (175 ), 72 =max{Te, 71} (1+ /). (28)

Here p = p(SngC) denotes the spectral radius of Sngc , with the FE Schur complement
Sc and the operator T being defined by

0 0 71 o 0 71 7T 71 71 o
Sc=Kc— KciK;" Kic andTc =Kci(K;," — B, ")K{(K," — B;") Kc,

o] 0 o]
respectively. K ¢, K ¢1 and K ;¢ denote the non-zero FE blocks of Ko, Koy and K¢,
respectively.

The proof is given in [37], it applies the classical FE DD spectral equivalence result proved
in [17, 18]. With (22), we conclude the following theorem.

THEOREM 1 If the conditions imposed on Cy, Ce, Cr, and By, especially (17), (25) and
(26) are satisfied, then the FE/BE DD preconditioner

C = diag(I1, C) (29)
is self-adjoint and positive definite with respect to the inner product [.,.] and satisfies the
spectral equivalence inequalities

Y[Cv,v] <[Gv,v] <F[Cv,vV] Vv e RV, (30)

with the constants
y=2A min{l,ZQ} and 7= X max{1,7,},

where )\, X, Y,s Y2 are given in (22) and (28), respectively.



3.3.2 The Parallel PCG Algorithm

For the vectors belonging to the inner coupling boundary I'c we define two types of distribu-
tion called overlapping (type 1) and adding (type 2):

type 1:  uc, we,sc are stored in P; as uc,; = Acuc (analogous we i, sc;)
type 2: rc¢,ve, fo are stored in P; as r¢;, ve,i, fo; such that
_ NP T
rc = ;i1 Ag,rce, (analogous ve, fo),

where the matrices Ac; are the “C-block” of the Boolean subdomain connectivity matrix
A; which maps some overall vector of nodal parameters into the superelement vector of
parameters associated with the subdomain Q; only. P; denotes the i*" processor.

Using this notation and the operators introduced in the previous section we can formulate
an improved version of the PCG-algorithm presented in [37] with a given accuracy e as
stopping criterion. This parallel PCG-algorithm is given in Appendix B.

Note the vectors z; = (zA,i,zcyi,zAc,i)T and h; = (hAyi,hc,i,hAc,i)T which have been
inserted additionally in order to achieve a synchronization between the FEM and BEM pro-
cessors especially in step 1 (matrix-times-vector operation). Without this synchronization one
has to expect a computation time per iteration which is, depending on the problem, up to 30
per cent higher. The definition of the vector p; avoids the computation of Cy ;ry ; (occurred
originally in step 4) which is not necessarily available (Cj ; is defined such that the inverse
operation C&:;W/\,i can be performed easily).

3.3.3 On the Components of the Preconditioner

The performance of our algorithm depends heavily on the right choice of the components Cj,
Cc, C; and Bj defining the preconditioner C' (see Theorem 1). Cj, C; and B; are block-
diagonal matrices with the blocks Cy ;, Cr; and By ;, respectively. In our experiments, the
following components have turned out to be the most efficient ones:

Cr;: (Vmn) Multigrid V-cycle with m pre- and n post-smoothing
steps in the Multiplicative Schwarz Method [18, 15].

Ch,i:  (Circe) Scaled single layer potential BE matrix for a uniformly
discretized circle. This matrix is circulant and easily invert-
ible [39].
(Hyp) CX’% = T,TMh*’}K(wﬂMhi}T, as proposed by Stein-
bach [43].

Bri:  (HExt) Implicitly defined by hierarchical extension (formally
E[Cﬂ‘ = _B;,;chri) [20]

Cc:  (S-BPX) Bramble/Pasciak/Xu type preconditioner [44].
(BPS-D) Bramble/Pasciak/Schatz type preconditioner [3, 9].
(mgD) K¢+ (Ic —M¢) ™!, (Ke=ue,ve) = Yict Vi{Diug, v;), as
described in [5].

These preconditioners C'7, C¢, Cy, and the basis transformation B; satisfy the conditions
stated in Theorem 1. In particular, inequalities (26) for C; are fulfilled with constants Y i
independent of the discretization parameter A [18, 15, 20]. The preconditioner C is scaled
such that y, > 1, and %, in (17) remains independent of h for both, (Circ) and (Hyp).
In the case (Hyp), C/ﬁ involves a basis transformation 7;, a modified mass-matrix Mh,i
and the hypersingular E)perator K¢, and property (17) for Cy is due to properties of the
corresponding continuous operators V{l and D; [43].

With respect to By, the constant i in (28) can be estimated by

p< 1+ e l)” <n**(1+ca(nh"))?,



cf. [20], with k£ being the number of local multigrid iterations, [ being the number of grids,
the h-independent multigrid rate n < 1, and the h-independent constants ¢;. Thus, u is
independent of h if k = O(Inlnh~1).

In the (S-BPX) case, the inequalities in (25) hold with an h-independent constant v .,
and 7o < c3(1+p) [20, 44]. Therefore, we can prove for (S-BPX) that 7/y < ca(1+p) (/1 +
VI+up)? = 0() if k = O(lnlnh~'). However, in the range of practical applications, this
means k = 1! For (BPS-D), the estimate o /v, < es5(1 + (Inh~")?)(1 + p) has been proved

[3]. In the case (mgD), C¢ arises from the hypersingular operator and Cp,' is realized via a
standard multi-grid procedure applied to the global operator (assembled over the subdomains)
K¢+ which is the discretization of a pseudo-differential operator of order one. K¢+ becomes
positive definite after implementing the Dirichlet boundary conditions. We can get an estimate
of the same type as for (S-BPX). Note that the FE/BE Schur-complement energy is equivalent
to the ||.||f{1/2(rc)fn0rm (see, e.g., [3, 5, 9]).

Consequently, we can estimate the numerical effort @) to obtain a relative accuracy e by
Q = O(h 2 Inh ! Inlnh~! Ine~!) for the (BPS-D) case, and by Q@ = O(h~ 2 Inlnh ! Ine 1)
in the (S-BPX) case, i.e. almost optimal. If a BPX-type extension [38] is applied instead of
(HExt) in a nested iteration approach [21], we can prove that Q = O(h~2), i.e., we obtain an
optimal method.

Preconditioners Cy ; for K, ; and C¢ for the FE/BE Schur complement derived on the
basis of boundary element techniques can also be found in [35, 39]. The construction of
efficient FE Schur complement preconditioners was one of the main topics in the research on
FE-DD-methods (see Proceedings of the annual DD-conferences since 1987).

3.4 Numerical Results

The electromagnet as shown in Figure 2 serves now as test example for exterior magnetic field
problems which lead to the variational form (10). The copper domains (I, IT), where we have a

VIl
VI

VI

Figure 2: The magnet and the subdomains being used (left) and the equipotential lines of
the solution (right).

current density of the strength S and —S, respectively, and the iron domain (IIT), are squares
with the edges being 16cm long. The material dependent coefficients (air: IV-VIII) are given
by voy = 795779.0 AmV s~ vy = 7957744 AmV~'s !, vp, = 1000.0 AmV~!s~ 1

We will compare two different coupling procedures. On the one hand we use the natural
boundary (of the metallic material) as coupling boundary and on the other hand we introduce
a circle with the radius 50cm as coupling boundary. The advantage of the second method is
that we obtain circulant matrices which can be generated very fast whereas the first method
requires the generation of fully populated matrices. A disadvantage of the second method is

10



FEM: I-VII | FEM: LIII FEM: LI
BEM: VIII BEM: IV-VIII | BEM: exterior

1 I(¢) CPU [ I(¢) CPU I(¢) CPU

1 15 0.6 17 0.5 14 0.3

2 19 0.9 18 1.0 19 0.6

3 20 1.6 19 1.9 20 1.7

4 21 5.2 21 5.2 21 5.9

5 23 20.5 22 18.8 22 22.5

| N(5) | 67329 \ 18429 \ 16129 \

Table 1: Number of unknowns (N), iteration count (I(g), e = 10%), CPU time in seconds.
The experiments were carried out on a Power-XPlorer using 8 or 4 processors, respectively.

that additional subdomains and, thus, additional unknowns have to be introduced. For this
example, the uniqueness of the solution is guaranteed by the radiation condition, even if no
Dirichlet boundary I'p is present. The radiation condition is implicitly contained in our BE
discretization.
Numerical results are given in Table 1. The operators Cy, C¢, Cr, Br have been chosen
as follows:
Cr; : Circ (1 =8) and Hyp (1 € Zp \ {8}) Ce
O[ﬂj : V11 (7 S IF) B[ﬂ;

Comparing the three choices of the subdomains and their discretization, we observe that
in the first choice (column 1) much time is spent for handling the FEM subdomains IV, V
with many interior nodes. We may conclude that the BEM (column 2) is recommended for
subdomains with a high ratio between the numbers of interior FEM nodes and the boundary
nodes. The choice of the rectangular coupling boundary (column 3) increases the BEM system
generation effort, but the total time remains nearly the same since the number of BEM
unknowns (and subdomains) is reduced. Finally we observe that the number of iterations is
independent of the combination of BE/FE discretizations being used.

S-BPX
HExt (i € Zp).

4 Parallel Solution of Coupled BE/FE-Equations Approxi-
mating Nonlinear Magnetic Field Problems

4.1 The Nested-DD-Newton-Solver

Let us consider now a nonlinear magnetic field problem, i.e., we allow ferromagnetic materials
with non-constant permeability v to be in the FE subdomains. Then, the mixed DD coupled
variational problem can be written as follows: Find (A, u) € V := A x Uj such that

GN(AaUQUaU) = <F5U> V(Ua”) € V7 (31)
where

a(\, uyn,v) =

apy(u,v) =

ap(\,u;n,v) + apn(u,v)

3 / 2, |Vu) VT u(x) Vo(z) de

1€TR

and ap being defined as in (10). We refer to [25, 30] for the analysis of nonlinear magnetic
field problems. Consequently, the discretization results in a nonlinear system [26]

UuA u f/\
K |uc KF( >+K (A>= fo|, (32)
u; uc
uy fr

11



where the nonlinear operator K : R — R* can be split up into the nonlinear operator
Ky : RNetNr 3 RN originating from the nonlinear form apy and the linear operator
Kp: RN +tNo 5 RN originating from ap [26].

The nonlinear system (32) is solved by Newton’s method, see [26]. In this algorithm, the
linear Newton defect system (35) with the Jacobi matrix K'[u] can be written as

u) WA u - - da

K' ||uc|| - |we :K}[(C”)]-(C)JFKB-(A): de| . (33)

uy \ 4] e
u; 4 d;

It can be rewritten in a block form similar to (16),

KA *KA() 0 WA dA
Ken  Jo Jor| |wel = |de], (34)
0 J[(j J[ Wy dI

and can be solved by a PCG method as described in Subsection 3.3. Further, we apply the
"nested iteration” method [21, 24], i.e. we generate a multilevel sequence of coupled FE/BE
discretizations denoted by the grid numbers ¢ = 1,...,l. We begin with solving the nonlinear
system by Newton’s method on the coarsest grid ¢ = 1. Then we take the approximate
solution on the grid ¢ — 1 interpolated onto the finer grid ¢ as an initial approximation for
Newton’s method on the grid ¢, for ¢ = 2,...,l. This allows us to ”"catch” the nonlinearity
on the coarsest grid, see [24, 26, 28, 30].

The result of the parallel algorithm presented in the following will be the approximate
solution uj on the fine grid ¢ = [ with relative accuracy ¢ (nested iteration ¢).

Algorithm PNN (Parallel Nested Newton)

Step 0
Initialization of the grid number:
(0)(P) ¢g:=1.

Step 1

Set the initial solution for grid ¢:
(1.1)(P) IF g =1 THEN u) = 0;

(1.2)(P) IF ¢ > 1 THEN ul = I7_ju}_,;
the initial solution is the interpolation of the best solution on grid g — 1.

(1.3)(P) Initialize the Newton iteration number j := 0.

Step 2
Compute the initial Jacobi matrix and the defect vector

(2.)(P) J) = K/[u)]; d;=f,— K,u).
Step 3

(3.)(P) Choose a relaxation parameter 7/ with 0 < 77 < 1 and a relative accuracy parameter
ein with 0 < g5, < 1.

Step 4
(4.)(S) Solve the linear defect system
JIwith = dit! (35)

approximately (with relative accuracy e,) using a PCG solver as described in Subsec-
tion 3.3. The result is Wg“.

12



Step 5
Correct the solution:

(5.)(P) u/t! =ul + rJwit!.

Step 6
Control the convergence (parameter c¢; is chosen a priori with ¢, < 1):

(6.1)(P) Compute the new defect vector and the new Jacobi matrix
dit? = £, — KyuJt' JIt = Kl [ult);

I

(6.2)(C) Compute defect norms

ditt =t dtt = lat;
il
(6.3)(P) IF dJ*2 > dJ*! THEN 7q 1= ming &g, ARESTACE A
GOTO Step 5
up = ulth

(6.4)(P) IF dJ™ < ed] THEN | IF g <!l THEN (q:=q+ 1; GOTO Step 1 );
IF g = | THEN EXIT;

I

(6.5)(P) Perform a further Newton step:
J=3+L
GOTO Step 3.

In this description, (P) indicates that the step is performed completely in parallel, i.e.,
independently on the processors. The solver (S) includes parallel independent parts, commu-
nication between processors handling neighbouring subdomains, and global communication,
cf. Subsection 3.3. Note, (C) indicates that global communication is necessary. Obviously, the
only additional communication (compared with solving a linear problem) is the computation

of global defect norms.

4.2 Numerical Results
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Figure 3: FEM discretization of the electronic motor (coarse grid) and equipotential lines of

the solution.

A direct current motor designed for electronic devices (electronic motor) which is excited
by permanent magnets serves as a first real-life test example. The interior of the machine
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is discretized by finite elements (cf. Figure 3). Calculations have been made for both the
machine with homogeneous Dirichlet conditions on its boundary and the infinite domain with
Sommerfeld’s radiation condition where the infinite exterior domain is discretized by BEM. In
order to obtain efficiency results, we consider additionally two model problems representing a
quarter and a half of the whole machine, i.e. we discretize only sectors of 90 and 180 degrees,

respectively, and impose Dirichlet conditions on the boundary.

Example Dirichlet Dirichlet Dirichlet radiation
b. c. b. c. b. c. condition
subdomains 16 FEM 32 FEM 64 FEM 63 FEM
1 BEM
No. of unknowns 374129 734199 1514008 1489416
Newton it. 4 5 4 4
CG iter. 1st grid || 6,11/16,11 | 6,11/14,11,12 | 6,11/15,11 || 6,11/16,13
CG iter. 2nd grid 9,10 9,11 9,11 9,11
CG iter. 3rd grid 10,12 10,12 10,12 11,13
CG iter. 4th grid 11,13 11,13 11,13 11,14
CG iter. 5th grid 11,15 11,15 11,15 12,15
Newton it. 4 4 4 4
CG iter. 6th grid || 12,16,9,17 12,17,10,16 13,16,10,16 || 13,16,10,16
generation 21.8 21.6 23.2 26.4
linear solver 63.4 64.9 71.7 85.6
Total time 85.2 86.5 94.9 112.0
Scale-up (norm.) 1.0 — 1933 — 3.633
Scaled eff. (rel.) 1.0 — 0966 — 0.908

Time in seconds, scale-up (normalized) and scaled efficiency (relative) on a GC-Power Plus
using 16, 32, 64 processors, respectively; 2 Newton iterations on the grids 2-5, relative
accuracy € = 1076,

Table 2: Performance for a practical problem (electronic motor).

The components of the PNN algorithm are chosen in the standard way [23, 24, 28]. In
particular, the parameter e, can be adapted to the quadratic convergence speed of the
Newton method [24, 30]. Here, a slash (/) marks the change from ey, = 1072 to ey, = 10*
in the accuracy of the CG solver. The components of the PCG solver have been chosen as

follows:
BPS-D

HExt (i € Tr).

Ch,i
Cr,

The components involved and the numerical effort for nonlinear problems are discussed in
[26]. Numerical results are given in Table 2. We present further results, in particular with
respect to efficiency, in [30]. Computations with up to 128 processors are documented in
[26, 27]. In [28], the application of a parallelized global multigrid method based on DD ideas
in Step 4 of the algorithm PNN is discussed. Further, in [29], we demonstrate that the CG
with a global BPX or a global multigrid preconditioner yields a robust solver for practical

Circ (1 € Ip)
V11 (i € Zp)

Cc
By

problems.

The second practical example, a technical direct current motor (dc motor, see Subsec-
tion 2.3), is to demonstrate the complete algorithm. Starting with a user mesh, we apply
an automatic domain decomposition procedure (see Subsection 2.3 and Appendix A) and a
parallel mesh generator, the basic ideas of which are presented in [11], to obtain the initial
mesh (¢ = 1), which is to be refined four times to get the final mesh for our computations
(g =1=15). We present the numerical results in Table 3 and the level lines of the solution in
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Example Dirichlet Dirichlet radiation radiation
b. c. b. c. condition condition
Choice for C¢ BPS-D S-BPX BPS-D S-BPX
subdomains 32 FEM 32 FEM 31 FEM 31 FEM
1 BEM 1 BEM
No. of unknowns 417 328 417 328 414 568 414 568
Newton it. 1st grid 7 6 7 7
CG iter. 1st grid 16,12,13, 10,12,12 19,14,16, 10,14,14
13,13,17,24 12,12,11 16,12,19,28 | 14,14,13,17
Newton it. 2nd grid 2 2 2 2
CG iter. 2nd grid 16,23 13,16 18,25 15,20
Newton it. 3rd grid 2 2 2 2
CG iter. 3rd grid 17,27 15,17 18,31 19,24
Newton it. 4th grid 2 2 2 2
CG iter. 4th grid 17,35 16,18 18,34 19,29
Newton it. bth grid 4 4 4 4
CG iter. 5th grid 18,38,22,30 | 16,21,18,20 || 18,42,22,33 | 20,32,27,33
Time (generation) 25.2 25.2 33.6 33.6
Time (linear solver) 168.9 137.8 178.8 198.5
Total time 194.1 163.0 212.4 232.1

Time in seconds, GC-Power Plus, 32 processors; relative accuracy ¢ = 1076,

Table 3: Performance for the dc motor.

Figure 6. Again, we have done calculations for both, the machine with homogeneous Dirichlet
conditions on its boundary and the infinite domain with the radiation condition. Best results
with respect to the total computing time have been achieved with e, = 0.01. All other
components of the algorithm, except C¢, are chosen as for the electronic motor example.

5 Generalization to Linear Elasticity Problems

5.1 The Mixed Boundary and Domain Integral Variational Formulation

We now want to extend the ideas discussed above to problems of plane linear elasticity in
which the displacement u(z) = (u1 (), ua(x))” satisfies formally the system of Lamé equations

—p(x)Au(z) — (A(z) + p(x))grad divu(z) = f(z) in Q
S22 ow(u(z))ng = gr(z) on Ty, (k=1,2)

where 2 is a bounded Lipschitz domain, oy;(u) are the components of the stress tensor o(u)
and n(z) = (n1(z),n2(x))’ is the outward normal vector to I'p UT'y =T := 99 (I'p # 0
and X and p, A\, > 0, are the Lamé coefficients of the elastic material. In (36), f = (f1, f2)7
is the vector of volumic forces, g = (g1, 92)" is the vector of boundary tractions.

As before, ) is being decomposed into non-overlapping subdomains €2;, 1 = 1,...,p, cf.
(6). We then have p; and A; as Lamé coefficients for each of the ©;’s. Similar to (8) we assume
that the volumic forces vanish for « € §; with ¢ € Zp. For simplicity we assume additionally
that Ty NOQ; = 0 for i € Zg. Then we can write the variational formulation as follows: Find
(o,u) € V:=A x Ug:

36
u(z) = 0 on I'p, (36)

a(o,u;T,v) = (F,v) V(r,v) €V, (37)

where

a(o,u;T,v) = ag(o,u;T,0) + ap(u,v)
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1

5 (o4, vi)r, + (04, Kivi)r,

ag(o,u;T,v) = Z 1/7;{<D,;u,;,1),;>ri+

i€TR
1
i Viouhr, — (Ko, — (i,

2

ap(u,v) = Z/ Ai divu(z) divo(z) + 20 Y ep(u) e (v) | do
ieTp 'Sl ki—1
(Fo) = 3 [ @@ et [ gl o) ds,
iezp 't Iy

with the duality pairing (.,.), the traces u; = u|go, and the boundary tractions o = [0;]icz,
belonging to 0€2; and the strain €y (u) = (Quy/0z; + Ouy/0xk)/2. Note, for simplicity we
have assumed that € is bounded such that, in contrary to Section 3.1, special terms for the
exterior domain do not occur in the definition of ap(.;.). Nevertheless, the ideas presented
above concerning exterior problems can be applied analogously.

Let the spaces Uy and A be defined as follows:

Uy = {“‘ € [H] (Q)]Q D UTgE € H]/Q(FBE)’“‘
2
A= Theg, [H709)] .

where I'gg 1= Uiel';; 8Qi\FD,FF‘E‘ = UiEIp 8Qi\FD,FC =I'grUl'rg. Let Qp := UiEIFQia
then we consider the following norm in V:

FDZO}

Nl = (ol + Tl ey + Nl ) > (38)

The boundary integral operators V;, K; and D; are defined as in (11), where 9(.) has to be
replaced by the operator 7 (.) which is defined in its strong form as 7(.) := 2ud(.) + An div u+
pn x curl(.) and in its weak form by the first Green formula. For £(z,y) we now have to
insert the well known Kelvin fundamental solution (see, e.g., [6]). The variational formulation
(37) has a unique solution provided that the single layer potential operators V; are positive
definite (H~1/2(89;)elliptic) [6, 32, 40].

Similar to Section 3.2 we discretize (37) to obtain a system of equations which is manipu-
lated in the same way as discussed in Section 3.3.1. This leads again to a symmetric, positive
definite system matrix. Thus, the parallel solution can be performed in a similar fashion
provided suitable preconditioners Cy, C¢, Cr and B; are known (see Section 5.2 and [40]).

5.2 Numerical Results
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Figure 4: The subdomains and the BE discretization of the 1% level (left) and the deformed
(magnification factor 100) FE grid of the 2"? level (right).

As a test problem we consider a model of dam filled with water as sketched in Figure 4. As
indicated there, boundary conditions are given on I'j) (zero displacement) and on 'y (zero or
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FEM: III-VIII
BEM: VI | o0 o FEM: I-VIII
1 I(¢) CPU | I(e) CPU I(¢) CPU
2 27 4.9 25 46 25 3.9
3 27 8.8 28 8.8 28 7.9
4 28 24.1 30 27.9 31 22.8
5 29 85.9 31 104.9 32 81.3
s(5) 495 68.5 63.8
N(5) 6470 78130 119318

Table 4: Levels (1), pure solution time (s), number of unknowns (), iteration count (I(g),
e = 107%), CPU time in seconds for the dam-problem. The experiments were carried out on
a Power-XPlorer using 8 processors.

according to the water pressure, respectively). The Lamé constants are given for rock (I-IT)
by u, = 7.265e4MPa, A, = 3.743e4MPa and for concrete (III-VIII) by u. = 9.2e6MPa, A, =
9.2e6MPa. For the results presented in Table 4, the operators Cy, C¢c, Cr, Br have been
chosen as follows:

CAJ: : mgV (7 S IB) Co ng
Cl,i : Vll(HEXt+S) (’l € IF) Bl,i . HExt+S (’l € IF).

Here, (mgV) stands for a multigrid-based preconditioner for the single layer potential (see [1]).
Furthermore, new algorithms for C7; and B ; have been used. In particular, the hierarchical
extension (HExt+S) has been improved by a coarse grid solver and smoothing on the other
levels [13].

The BE discretization of the 1 level and the FE discretization of the 2"¢ level (deformed
mesh) are shown in Figure 4. We use piecewise linear trial functions for the displacements and
piecewise constants for the boundary tractions. The entries of the BE matrices are computed
fully analytically.

In Table 4 we present several combinations of FE/BE discretizations. Looking at the CPU-
time we observe that the FE discretization (column 3) leads to the best results. However, if
we are interested in the pure solving time s(.) (s(5) for the 5" level is given in Table 4) the
BE discretization (first column) is of advantage.

6 Concluding Remarks and Generalizations

The DD-method has turned out to be a powerful tool for establishing the coupled FE/BE
variational formulation and for solving the discrete systems efficiently on massively parallel
computers. The results presented here have been obtained using the code FEMBEM [14]
which can solve linear and non-linear magnetic field problems as well as problems arising in
linear elasticity. The high efficiency and the scalability of the algorithm has been demon-
strated [5, 16, 30, 26, 28, 36].

Comparison of "local” DD methods described in this paper with ”global” multigrid meth-
ods implemented on massively parallel machines as well as workstation clusters is given in
[28]. The use and the parallelization of ”global“ methods is also discussed in [4]. Other
coupling and solution techniques are studied in [10, 41, 43].

The techniques presented here can be generalized to the 3D case provided that fast
matrix-by-vector multiplication routines for the BE matrices, e.g. based on Panel-Clustering-
Techniques developed in [22], and asymptotically optimal, or almost optimal components C7
(e.g. multigrid preconditioners), By [38], Cc (e.g. BPX) and Cx [35, 39, 40] of the precondi-
tioners are available.
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Figure 5: Initial triangular-based description and final decomposition of the dc-motor into 32

subdomains.
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Figure 6: The mesh of the 15! level and the equipotential lines of the solution (dc-motor).
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b 1'he Parallel Algorithm

FEM (i € Zr)

BEM (i € Ip)

Starting step

uc,
uy

u; =

Choose an initial guess u = uy

UuA
uc,;

u; =

rr; = f1; — Kiciuc,, — Krug

vai = A — Kpjun; + Kaciue

—1
rpi = Oy VA

rc; =fc, — Kciuc,; — Keriurg rc; =fo; — Keguci — Keaiua
ro; =rci — Koairag
Ve =Toi — Kcr,z’BfﬂTPr,i WA =TA4, Pi= VA,
Ve, =Tcoh, ZA; = KAiwa
wei = Aciwe — we=Cg' Y8, Ag,ivc,i —wg,; = Aciwe
W= [T,;lrl,i — Bi,;le,iW(:,i zrne,i = Kaciwei, 2o = Koiwe,i
S=WwW 5=w

_.T T
O =To,;We,i +T1,;Wi

— T T
0 =T, We,i t WA,,;(ZA,i — Pi)

oc=o0= Zle o;

Iteration

1. | vii=Kicisc:+ K81,

vei = Keisci + Ker,iSr,i
T T
(57; = VgSce + VT,iSLi

WA = ZA,i — ZAC,
—1
VA = Oy Wa,

vei =2zci + Koni(say — vai)
T T T
0i = V80, + VAN — W) S

= 277;9:1 575
a=0c/d a=oc/d
2. 1; = u; + as; 0, = u; + as;
f',;:rifozvi f‘i:r,;fozv,;
3. | Vei=*Tci— Kcr,z’Bi,;Tf“I,i Vo = tei, hpai = Kptag
wei = Aciweo — wo =Co' Y0 AL v = wei = Aciwe
Wii=Cp i — B KiciWwe, Wai =Fa,  Di = Pi — QWA
hyci = Kac,iWe,i
he;, = Kc;We,;
4. o; = f'gyi‘fvc,i + f'{i‘?vu o; = f'gﬂ‘w(},i + h%ﬂ’if'/\yi — f)ZTf'A,i
o= Z?:l oF)
B=ad/o B=06/o
5. §, =w; + 0Os; § =w; + 0s;, z;=h;+ [z,
6. If 6 < €2 %00, then STOP

else goto step 1.
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