"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 11 Tuesday, 9 June 2020, Time: $10^{\underline{15}-11^{45} \text {, Room: KEP3. }}$

3.6 Variational Crimes

Consider the one-dimensional BVP to find $u \in V_{g}=V_{0}=H_{0}^{1}(0,1)$:

$$
\begin{equation*}
\int_{0}^{1} \lambda(x) u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x \quad \forall v \in V_{0} \tag{3.36}
\end{equation*}
$$

where $f \in L^{2}(0,1)$ and $\lambda \in L^{\infty}(0,1)$. We assume that there exists positive constants $\underline{\lambda}$ and $\bar{\lambda}$ such that $0<\underline{\lambda} \leq \lambda(x) \leq \bar{\lambda} \quad \forall x \in(0,1)$ a.e. Let us consider a finite element discretization with continuous linear finite elements $\left(\mathcal{F}(\Delta)=\mathcal{P}_{1}\right)$ on an equidistant grid $\left(x_{i}=i h, i=\overline{0, n+1}, h=1 /(n+1), \delta_{r}=\left(x_{r-1}, x_{r}\right), r=\overline{1, n+1}\right)$. Now we approximate the bilinear form $a(\cdot, \cdot)$ and the linear form $\langle F, \cdot\rangle$ defined in (3.36) using numerical integration, namely the midpoint rule:

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\sum_{r=1}^{n+1} h \lambda\left(x_{r}^{\star}\right) u_{h}^{\prime}\left(x_{r}^{\star}\right) v_{h}^{\prime}\left(x_{r}^{\star}\right) \quad \text { and } \quad\left\langle F_{h}, v_{h}\right\rangle_{h}=\sum_{r=1}^{n+1} h f\left(x_{r}^{\star}\right) v_{h}\left(x_{r}^{\star}\right), \tag{3.37}
\end{equation*}
$$

where $x_{r}^{\star}=x_{\delta_{r}}\left(\frac{1}{2}\right)=x_{r-1}+\frac{1}{2} h$. To ensure that these expressions are well-defined we assume (for simplicity) that

$$
\lambda, f \in W_{\infty}^{1}(0,1)
$$

Let $\widetilde{u}_{h} \in V_{0 h}$ be such that $a_{h}\left(\widetilde{u}_{h}, v_{h}\right)=\left\langle F_{h}, v_{h}\right\rangle_{h}$ for all $v_{h} \in V_{0 h}$. We are interested whether the error $\left\|u-\widetilde{u}_{h}\right\|_{H^{1}(0,1)}$ obeys the same asymptotics with respect to h than if we compute $a(\cdot, \cdot)$ and $\langle F, \cdot\rangle$ exactly. This investigation will be done using Strang's first lemma. Throughout this tutorial, we choose $\|\cdot\|_{V_{0}}:=|\cdot|_{H^{1}(0,1)}$ that is a norm in $V_{0}=H_{0}^{1}(0,1)$.

57 Show that the bilinear and linear forms above fulfill the standard assumptions (33) (the assumptions of Lax-Milgram) and the additional assumption (34) from the lecture notes. The latter is called uniform ellipticity of the discrete bilinear form $a_{h}(\cdot, \cdot)$, i.e. there exists a positive constant $\mu_{3} \neq \mu_{3}(h)$ such that

$$
\begin{equation*}
a_{h}\left(v_{h}, v_{h}\right) \geq \mu_{3}\left\|v_{h}\right\|_{V_{0}}^{2} \quad \forall v_{h} \in V_{0 h} . \tag{34}
\end{equation*}
$$

Hint: For the uniform ellipticity, use that $\lambda \geq \underline{\lambda}=$ const >0 and that the midpoint rule is exact for some (which?) polynomials.

We can now apply Strang's first lemma which yields

$$
\begin{align*}
&\left\|u-\widetilde{u}_{h}\right\|_{V_{0}} \leq c\left\{\inf _{v_{h} \in V_{0}}\left[\left\|u-v_{h}\right\|_{V_{0}}+\sup _{w_{h} \in V_{0 h}} \frac{\left|a\left(v_{h}, w_{h}\right)-a_{h}\left(v_{h}, w_{h}\right)\right|}{\left\|w_{h}\right\|_{V_{0}}}\right]+\right. \tag{3.38}\\
&\left.+\sup _{w_{h} \in V_{0 h}} \frac{\left|\left\langle F, w_{h}\right\rangle-\left\langle F_{h}, w_{h}\right\rangle_{h}\right|}{\left\|w_{h}\right\|_{V_{0}}}\right\}
\end{align*}
$$

58 For $\varphi \in H^{1}\left(\delta_{r}\right)$, prove that

$$
\left|\int_{\delta_{r}} \varphi(x) d x-h \varphi\left(x_{r}^{*}\right)\right| \leq c h^{3 / 2}|\varphi|_{H^{1}\left(\delta_{r}\right)}
$$

similarly to the exercises in Tutorial 07. Then set $\varphi=f w_{h}$ and show that

$$
\left|\left\langle F, w_{h}\right\rangle-\left\langle F_{h}, w_{h}\right\rangle_{h}\right| \leq c h\|f\|_{W^{1, \infty}(0,1)}\left\|w_{h}\right\|_{V_{0}} .
$$

59 For $v_{h}, w_{h} \in V_{0 h}$, prove that

$$
\left|a\left(v_{h}, w_{h}\right)-a_{h}\left(v_{h}, w_{h}\right)\right| \leq c h|\lambda|_{W_{\infty}^{1}(0,1)}\left\|v_{h}\right\|_{V_{0}}\left\|w_{h}\right\|_{V_{0}}
$$

Hint: Treat each element separately and use that $v_{h}^{\prime}, w_{h}^{\prime}$ are constant on each element, so that we are left with $\left|\int_{\delta_{r}} \lambda(x) d x-h \lambda\left(x_{r}^{*}\right)\right|$. To get an error bound for this term, use Bramble-Hilbert on the reference element.

60 Show that if $u \in H^{2}(0,1)$ then

$$
\left\|u-\widetilde{u}_{h}\right\|_{V_{0}} \leq c h\left\{|u|_{H^{2}(0,1)}+|\lambda|_{W_{\infty}^{1}(0,1)}\|u\|_{V_{0}}+\|f\|_{W_{\infty}^{1}(0,1)}\right\} .
$$

Hint: Choose $v_{h}=u_{h}$ in (3.38), where $u_{h} \in V_{0 h}$ is the finite element solution in the exact case, i.e.

$$
a\left(u_{h}, v_{h}\right)=\left\langle F, v_{h}\right\rangle \quad \forall v_{h} \in V_{0 h} .
$$

Show and use that

$$
\left\|u_{h}\right\|_{V_{0}} \leq c(\lambda)\|u\|_{V_{0}} .
$$

