"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 07 Tuesday, 5 May 2020, Time: $10^{15}-11^{15}$, Room: KEP3.

Programming

Reference element

In this and the next tutorials we consider Courant's finite element. The reference triangle is given by

$$
\Delta=\left\{\xi \in \mathbb{R}^{2}: \xi_{1} \geq 0, \xi_{2} \geq 0, \xi_{1}+\xi_{2} \leq 1\right\}
$$

with vertices $\xi^{(0)}=(0,0), \xi^{(1)}=(1,0)$, and $\xi^{(2)}=(0,1)$, the space of shape functions is P_{1}, and the nodal variables are the evaluations at the three vertices. Recall that the nodal shape functions are given by

$$
\begin{aligned}
& p^{(0)}(\xi)=1-\xi_{1}-\xi_{2}, \\
& p^{(1)}(\xi)=\xi_{1}, \\
& p^{(2)}(\xi)=\xi_{2} .
\end{aligned}
$$

To model small vectors from \mathbb{R}^{n} and $n \times m$ matrices, where $m, n \in\{2,3\}$, I recommend to use vec.hh and mat.hh (see also the demo matvecdemo.cc). There 0 -based indices are used throughout, for example:

$$
\begin{array}{ll}
\xi \in \mathbb{R}^{2} \leftrightarrow \mathrm{Vec}<2>\mathrm{xi} & \xi_{1} \leftrightarrow \mathrm{xi}[0] \\
& \xi_{2} \leftrightarrow \mathrm{xi}[1]
\end{array}
$$

30 Write two functions

```
double calcShape (int i, const Vec<2>& xi);
Vec<2> calcDShape (int i, const Vec<2>& xi);
```

that compute the value $p^{(\alpha)}(\xi)$ and the gradient $\nabla_{\xi} p^{(\alpha)}(\xi)$ of a nodal shape function, respectively, where $\mathrm{xi}=\xi$ and $\mathrm{i}=\alpha$.

31 Complete and implement the following class modelling the affine linear transformation x_{δ} from Δ to an arbitrary non-degenerate triangle δ :

$$
x=x_{\delta}(\xi)=x_{0}+J \xi,
$$

where x_{0} is the image of $(0,0)$.

```
class ElTrans {
public:
    ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
    void transform (const Vec<2>& xi, Vec<2>& x);
    void getJacobian (Mat<2, 2>& J);
};
```

Above, $x 0$, $x 1$, $x 2$ are the three vertices of δ. The method transform should transform reference coordinates $\mathrm{xi}=\xi$ to real coordinates $\mathrm{x}=x_{\delta}(\xi)$. The method getJacobian should return the Jacobi matrix J of the transformation.

32 Add two more methods to class ElTrans:

```
double jacobiDet ();
void getInvJacobian (Mat<2, 2>& invJ);
```

The first should return the Jacobi determinant $\operatorname{det} J$ (check if the determinant is positive, why?), the second one should return inv $J=J^{-1}$.

33 Write a function

```
void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, Mat<3, 3>& elMat);
```

that computes the element stiffness matrix elMat $=K_{r}$ associated to an element δ_{r} (given by the three vertices x 0 , x 1 , and x 2), i.e.

$$
\left(K_{r}\right)_{\alpha \beta}=\int_{\delta_{r}} \nabla_{x} p^{(r, \alpha)}(x) \cdot \nabla_{x} p^{(r, \beta)}(x) d x=\int_{\Delta}\left(J_{r}^{-T} \nabla_{\xi} p^{(\alpha)}(\xi)\right) \cdot\left(J_{r}^{-T} \nabla_{\xi} p^{(\beta)}(\xi)\right) \operatorname{det}\left(J_{r}\right) d \xi
$$

Hint: Consider only the above formula on the reference element. Use calcDShape to get $\nabla_{\xi} p^{(\alpha)}(\xi)$, and ElTrans to get $\operatorname{det} J$ and J_{r}^{-1}. Note finally that J_{r}^{-T} and $\nabla_{\xi} p^{(\alpha)}$ are constant on Δ.

34 Write a function

```
void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, ScalarField f, Vec<3>& elVec);
```

that approximates the element load vector f_{r} given by

$$
\left(f_{r}\right)_{\alpha}=\int_{\delta_{r}} f(x) p^{(r, \alpha)}(x) d x=\int_{\Delta} f\left(x_{\delta_{r}}(\xi)\right) p^{(\alpha)}(\xi) \operatorname{det}\left(J_{r}\right) d \xi
$$

using the following quadrature rule on Δ :

$$
\int_{\Delta} g(\xi) d \xi \approx \frac{1}{6}\left[g\left(\frac{1}{6}, \frac{1}{6}\right)+g\left(\frac{4}{6}, \frac{1}{6}\right)+g\left(\frac{1}{6}, \frac{4}{6}\right)\right] .
$$

Show that this quadrature rule is exact for $g \in P_{2}$.
Hint: Use ElTrans to get $x_{\delta_{r}}(\xi)$. Note that ξ must loop over the three integration points.
Hint: To model the type of a scalar function depending on a vector in \mathbb{R}^{2} use

```
typedef double (*ScalarField)(const Vec<2>& x);
```

35 Write a function

```
void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,
    const Vec<2>& x2, Mat<3, 3>& elMat);
```

that computes the element mass matrix M_{r} given by

$$
\left(M_{r}\right)_{\alpha \beta}=\int_{\delta_{r}} p^{(r, \alpha)}(x) p^{(r, \beta)}(x) d x
$$

Hint: Transform to the reference element as done in the previous two exercises.
Test all your functions, i.e. apply them to concrete parameters and output the results! At minimum use $f(x, y)=1$ and test $\delta_{r}=\Delta$ as well as the triangle with the vertices $(1,1),(1.5,1)$, and $(1.25,1.5)$.

Assembling

Download the files

- vector.hh - a vector class (for vectors of dynamic length)
- sparsematrix.hh, sparsematrix.cc - a sparse matrix class
- mesh.hh, and mesh.cc - a 2D triangular mesh
from the tutorial website.
There are also two demos:
- smdemo.cc - showing how to work with the sparse matrix and
- meshdemo.cc - showing how to work with the mesh.

Go through these demos and understand what is happening there.
36 Write a function

```
void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);
```

that assembles the stiffness matrix K according to the bilinear form

$$
a(u, v)=\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x
$$

for mesh being the triangulation of Ω.
Hint: Reuse the functions from the previous section, in particular exercises 33 and 35 .

37 Write a function

```
void assembleLoadVector (const Mesh& mesh, ScalarField f, Vector& b);
```

that assembles the load vector b according to the functional

$$
\langle F, v\rangle=\int_{\Omega} f(x) v(x) d x
$$

for mesh being the triangulation of Ω.
Hint: Reuse the function from exercise 34 .
All routines should be tested for the two meshes created in meshdemo.cc

Solving

As a concrete example we consider the problem to find $u \in H^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x=\int_{\Omega} f(x) v(x) d x \quad \forall v \in H^{1}(\Omega) \tag{3.22}
\end{equation*}
$$

with $f\left(x_{1}, x_{2}\right)=\left(5 \pi^{2}+\frac{1}{4}\right) \cos \left(2 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right)$.
38 Implement a Jacobi preconditioner:

```
class JacobiPreconditioner
{
public:
    JacobiPreconditioner (const SparseMatrix& K);
    void solve (const Vector& r, Vector& z);
};
```

39 Assemble the finite element system $K u=b$ for (3.22) for the initial mesh from meshdemo.cc and solve it using conjugate gradients cg.hh with your Jacobi preconditioner. Solve the same system for the uniformly refined meshes with $h / h_{0}=$ $2,4,8,16$ where h_{0} is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from your program, and then loading the file into matlab (provided you have the PDE Toolbox).

