
NuEPDE (Numerics of Elliptic Problems) SS 2020

T U T O R I A L

“Numerical Methods for the Solution of

Elliptic Partial Differential Equations”

to the lecture

“Numerics of Elliptic Problems”

Tutorial 07 Tuesday, 5 May 2020, Time: 1015 – 1145, Room: KEP3.

Programming

Reference element

In this and the next tutorials we consider Courant’s finite element. The reference triangle
is given by

∆ = {ξ ∈ R2 : ξ1 ≥ 0, ξ2 ≥ 0, ξ1 + ξ2 ≤ 1},
with vertices ξ(0) = (0, 0), ξ(1) = (1, 0), and ξ(2) = (0, 1), the space of shape functions
is P1, and the nodal variables are the evaluations at the three vertices. Recall that the
nodal shape functions are given by

p(0)(ξ) = 1− ξ1 − ξ2,

p(1)(ξ) = ξ1,

p(2)(ξ) = ξ2.

To model small vectors from Rn and n×m matrices, where m, n ∈ {2, 3}, I recommend
to use vec.hh and mat.hh (see also the demo matvecdemo.cc). There 0-based indices are
used throughout, for example:

ξ ∈ R2 ↔ Vec<2> xi ξ1 ↔ xi[0]

ξ2 ↔ xi[1]

30 Write two functions

double calcShape (int i, const Vec<2>& xi);

Vec<2> calcDShape (int i, const Vec<2>& xi);

that compute the value p(α)(ξ) and the gradient ∇ξ p(α)(ξ) of a nodal shape function,
respectively, where xi=ξ and i=α.

31 Complete and implement the following class modelling the affine linear transforma-
tion xδ from ∆ to an arbitrary non-degenerate triangle δ:

x = xδ(ξ) = x0 + J ξ,

where x0 is the image of (0, 0).

14



class ElTrans {

public:

ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);

void transform (const Vec<2>& xi, Vec<2>& x);

void getJacobian (Mat<2, 2>& J);

...

};

Above, x0, x1, x2 are the three vertices of δ. The method transform should
transform reference coordinates xi=ξ to real coordinates x=xδ(ξ). The method
getJacobian should return the Jacobi matrix J of the transformation.

32 Add two more methods to class ElTrans:

double jacobiDet ();

void getInvJacobian (Mat<2, 2>& invJ);

The first should return the Jacobi determinant det J (check if the determinant is
positive, why?), the second one should return invJ=J−1.

33 Write a function

void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element stiffness matrix elMat=Kr associated to an element δr
(given by the three vertices x0, x1, and x2), i. e.

(Kr)αβ =

∫
δr

∇x p(r,α)(x)·∇x p(r,β)(x) dx =

∫
∆

(
J−T
r ∇ξ p(α)(ξ)

)
·
(
J−T
r ∇ξ p(β)(ξ)

)
det(Jr) dξ.

Hint: Consider only the above formula on the reference element. Use calcDShape

to get ∇ξ p(α)(ξ), and ElTrans to get det J and J−1
r . Note finally that J−T

r and
∇ξ p(α) are constant on ∆.

34 Write a function

void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, ScalarField f, Vec<3>& elVec);

that approximates the element load vector fr given by

(fr)α =

∫
δr

f(x) p(r,α)(x) dx =

∫
∆

f(xδr(ξ)) p
(α)(ξ) det(Jr) dξ,

using the following quadrature rule on ∆:∫
∆

g(ξ) dξ ≈ 1

6

[
g(1

6
, 1

6
) + g(4

6
, 1

6
) + g(1

6
, 4

6
)
]
.

Show that this quadrature rule is exact for g ∈ P2.

Hint: Use ElTrans to get xδr(ξ). Note that ξ must loop over the three integration
points.

Hint: To model the type of a scalar function depending on a vector in R2 use

15



typedef double (*ScalarField)(const Vec<2>& x);

35 Write a function

void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,

const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element mass matrix Mr given by

(Mr)αβ =

∫
δr

p(r,α)(x) p(r,β)(x) dx

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i. e. apply them to concrete parameters and output the results!
At minimum use f(x, y) = 1 and test δr = ∆ as well as the triangle with the vertices
(1, 1), (1.5, 1), and (1.25, 1.5).

Assembling

Download the files
• vector.hh – a vector class (for vectors of dynamic length)
• sparsematrix.hh, sparsematrix.cc – a sparse matrix class
• mesh.hh, and mesh.cc – a 2D triangular mesh

from the tutorial website.
There are also two demos:
• smdemo.cc – showing how to work with the sparse matrix and
• meshdemo.cc – showing how to work with the mesh.

Go through these demos and understand what is happening there.

36 Write a function

void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);

that assembles the stiffness matrix K according to the bilinear form

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) + u(x) v(x) dx

for mesh being the triangulation of Ω.

Hint: Reuse the functions from the previous section, in particular exercises 33
and 35 .

37 Write a function

void assembleLoadVector (const Mesh& mesh, ScalarField f, Vector& b);

that assembles the load vector b according to the functional

〈F, v〉 =

∫
Ω

f(x) v(x) dx

for mesh being the triangulation of Ω.

Hint: Reuse the function from exercise 34 .

All routines should be tested for the two meshes created in meshdemo.cc

16



Solving

As a concrete example we consider the problem to find u ∈ H1(Ω) such that∫
Ω

∇u(x) · ∇v(x) + u(x) v(x) dx =

∫
Ω

f(x) v(x) dx ∀v ∈ H1(Ω), (3.22)

with f(x1, x2) = (5π2 + 1
4
) cos(2π x1) cos(4π x2).

38 Implement a Jacobi preconditioner:

class JacobiPreconditioner

{

public:

JacobiPreconditioner (const SparseMatrix& K);

void solve (const Vector& r, Vector& z);

};

39 Assemble the finite element system K u = b for (3.22) for the initial mesh from
meshdemo.cc and solve it using conjugate gradients cg.hh with your Jacobi pre-
conditioner. Solve the same system for the uniformly refined meshes with h/h0 =
2, 4, 8, 16 where h0 is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from
your program, and then loading the file into matlab (provided you have the PDE
Toolbox).

17


