NuEPDE (Numerics of Elliptic Problems) SS 2020

TUTORIAL

“Numerical Methods for the Solution of
Elliptic Partial Differential Equations”

to the lecture

“Numerics of Elliptic Problems”

Tutorial 07| Tuesday, 5 May 2020, Time: 102 — 1142, Room: KEP3.
y y

Programming

Reference element

In this and the next tutorials we consider Courant’s finite element. The reference triangle
is given by
A:{£€R2:£1207 52207 £1+£2§1}7

with vertices £ = (0,0), €1 = (1,0), and ¢ = (0, 1), the space of shape functions
is P;, and the nodal variables are the evaluations at the three vertices. Recall that the
nodal shape functions are given by

p(o)(g) = 1-& — &,
p(l)(g) = gla
P(Q)(f) = &.

To model small vectors from R™ and n xm matrices, where m, n € {2,3}, I recommend
to use vec.hh and mat.hh (see also the demo matvecdemo. cc). There 0-based indices are
used throughout, for example:

£ €R? & Vec<2> xi & <+ xi[0]
& < oxil1]

Write two functions

double calcShape (int i, const Vec<2>& xi);
Vec<2> calcDShape (int i, const Vec<2>& xi);

that compute the value p'® (&) and the gradient Ve p'® (€) of a nodal shape function,
respectively, where xi=¢ and i=a.

Complete and implement the following class modelling the affine linear transforma-
tion xs from A to an arbitrary non-degenerate triangle o:

- 1’5(5) - .Z‘o—i-(]é-?

T
where z is the image of (0,0).

class ElTrans {

public:
ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
void transform (const Vec<2>& xi, Vec<2>& x);
void getJacobian (Mat<2, 2>& J);

};

Above, x0, x1, x2 are the three vertices of §. The method transform should
transform reference coordinates xi=¢ to real coordinates x=x4(§). The method
getJacobian should return the Jacobi matrix J of the transformation.

Add two more methods to class ElTrans:

double jacobiDet ();
void getInvJacobian (Mat<2, 2>& inv]);

The first should return the Jacobi determinant det J (check if the determinant is
positive, why?), the second one should return invJ=J"1.

Write a function

void calcLaplaceElMat (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element stiffness matrix elMat=K, associated to an element 6,
(given by the three vertices x0, x1, and x2), i.e.

(Ko)ap = [Vap" () Vop"?(z)do = / (J7TVep () (I, TVepD(€)) det(J,) dE.
Or A

Hint: Consider only the above formula on the reference element. Use calcDShape
to get Vep@ (), and ElTrans to get detJ and J-!. Note finally that J-7 and
Ve p'® are constant on A.

Write a function

void calcSourceElVec (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, ScalarField f, Vec<3>& elVec);

that approximates the element load vector f,. given by

(f)a = / F(2)) (@) de = /A F(5,(6)) P (€) det(J,) de.

using the following quadrature rule on A:

o ~ Gloth b+ ot b+ o),
A

Show that this quadrature rule is exact for g € Ps.

Hint: Use E1Trans to get x5, (£). Note that & must loop over the three integration
points.

Hint: To model the type of a scalar function depending on a vector in R? use

typedef double (*ScalarField) (const Vec<2>& x);

Write a function

void calcMassElMat (const Vec<2>& x0, const Vec<2>& x1,
const Vec<2>& x2, Mat<3, 3>& elMat);

that computes the element mass matrix M, given by

(M)os = / P (2) p) () di
(S'r

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i.e. apply them to concrete parameters and output the results!
At minimum use f(z,y) = 1 and test 6, = A as well as the triangle with the vertices
(1,1), (1.5,1), and (1.25,1.5).

Assembling

Download the files
e vector.hh — a vector class (for vectors of dynamic length)
e sparsematrix.hh, sparsematrix.cc — a sparse matrix class
e mesh.hh, and mesh.cc — a 2D triangular mesh

from the tutorial website.

There are also two demos:
e smdemo.cc — showing how to work with the sparse matrix and
e meshdemo.cc — showing how to work with the mesh.

Go through these demos and understand what is happening there.

Write a function

void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);

that assembles the stiffness matrix K according to the bilinear form

a(u,v) = /QVu(x) -Vou(z) +u(x) v(z) de

for mesh being the triangulation of €.
Hint: Reuse the functions from the previous section, in particular exercises

and .
Write a function

void assemblelLoadVector (const Mesh& mesh, ScalarField f, Vector& b);

that assembles the load vector b according to the functional

(F, v) = / f(@) v(z) de

for mesh being the triangulation of €.
Hint: Reuse the function from exercise .

All routines should be tested for the two meshes created in meshdemo.cc

Solving

As a concrete example we consider the problem to find u € H'(Q) such that
/ Vu(x) - Vo(x) + u(z)v(z)de = / f@)v(x)de Yve H(Q), (3.22)
Q Q

with f(21,22) = (572 + 1) cos(2m x1) cos(4m x5).

Implement a Jacobi preconditioner:

class JacobiPreconditioner

{

public:
JacobiPreconditioner (const SparseMatrix& K);
void solve (const Vector& r, Vector& z);

};

Assemble the finite element system K u = b for (3.22) for the initial mesh from
meshdemo.cc and solve it using conjugate gradients cg.hh with your Jacobi pre-
conditioner. Solve the same system for the uniformly refined meshes with h/hg =
2,4, 8,16 where hg is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from
your program, and then loading the file into matlab (provided you have the PDE
Toolbox).

