"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 05 Tuesday, 21 April 2020, Time: $10^{\underline{15}-11^{45}}$, Room: KEP3.

3 Galerkin FEM

3.1 Galerkin-Ritz-Method

23 Let us consider the variational problem: Find $u \in V_{g}=V_{0}=L_{2}(0,1)$:

$$
\begin{equation*}
\int_{0}^{1} u(x) v(x) d x=\int_{0}^{1} f(x) v(x) d x \quad \forall v \in V_{0} \tag{14}
\end{equation*}
$$

Solve this variational problem with the Galerkin-Method using the basis

$$
V_{0 h}=V_{0 n}=\operatorname{span}\left\{1, x, x^{2}, \ldots, x^{n-1}\right\},
$$

where the right-hand side is given as $f(x)=\cos (k \pi x), k=l+1$ and l is the last digit from your study code (Matrikelnummer)! Compute the stiffness matrix K_{h} analytically and solve the linear system $K_{h} \underline{u}_{h}=\underline{f}_{h}$ numerically using the Gaussian elimination method! Consider n to be 2, 4, 8, 10, 50, 100 !

3.2 Generation of the System of Finite Element Equations

24 Show that the integration rule

$$
\begin{equation*}
\int_{\Delta} f(\xi, \eta) d \xi d \eta \approx \frac{1}{2}\left\{\alpha_{1} f\left(\xi_{1}, \eta_{1}\right)+\alpha_{2} f\left(\xi_{2}, \eta_{2}\right)+\alpha_{3} f\left(\xi_{3}, \eta_{3}\right)\right\} \tag{15}
\end{equation*}
$$

integrates quadratic polynomials exactly, if the the weights α_{i} and the integration points $\left(\xi_{i}, \eta_{i}\right)$ are choosen as follows: $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3$ und $\left(\xi_{1}, \eta_{1}\right)=(1 / 2,0)$, $\left(\xi_{2}, \eta_{2}\right)=(1 / 2,1 / 2),\left(\xi_{3}, \eta_{3}\right)=(0,1 / 2)$.
Hint: cf. also Exercise 17!
25 Let us assume that $\mathcal{T}_{h}=\left\{\delta_{\bar{r}}: r \in \mathbb{R}_{h}\right\}$ is a regular triangulation of the polygonally bounded Lipschitz domain $\bar{\Omega}=\cup_{r \in \mathbb{R}_{h}} \bar{\delta}_{r} \subset \mathbb{R}^{2}$ into triangles δ_{r}, and let $u \in H^{2}(\Omega)$. Let us now compute the integral

$$
I(u)=\int_{\Omega} u(x) d x
$$

by the quadrature rule

$$
I_{h}(u)=\sum_{r \in \mathbb{R}_{h}} u\left(x_{\delta_{r}}\left(\xi^{*}\right)\right)\left|\delta_{r}\right|,
$$

where $x_{\delta_{r}}(\cdot)$ maps the unit triangle Δ onto δ_{r}, and $\xi^{*}=(1 / 3,1 / 3)$. Show that

$$
\left|I(u)-I_{h}(u)\right| \leq c h^{2}|u|_{H^{2}(\Omega)},
$$

where c is some generic positive constant. Can you weaken the assumption that $u \in H^{2}(\Omega)$?
Hint: Use the mapping principle and the Bramble-Hilbert Lemma; cf. also Exercise 17 !

26 Show the inequality

$$
\begin{equation*}
\frac{1}{2} \sin \theta_{r} h_{r}^{2} \leq\left|J_{\delta_{r}}\right| \leq \frac{\sqrt{3}}{2} h_{r}^{2} \tag{16}
\end{equation*}
$$

where h_{r} is the largest edge and θ_{r} the smallest angle of the triangle δ_{r}.

