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1 Variational formulation of multi-dimensional ellip-
tic Boundary Value Problems (BVP)

1.1 Scalar Second-order Elliptic BVP

(O In Section 1.2.1 of our lectures, we considered the BVP in classical formulation
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and derived the variational formulation
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Formulate the classical assumptions on { a;j, b;, ¢, @, f, gi, 2 resp. 0Q } for (1) !

Show that, for sufficiently smooth data, a the generalized solution v € V,NXNH?()
of the Boundary Value Problem (2) is also a classical solution, i.e. a solution of (1) !
(1) [ Findue X=C?(QNCHQUILUT)NCQUTY):
—Au(z) + c(x)u(z) = f(z), 2 € Q C R4 (bounded),
u(r) = gi(x), v € T,
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where Vo ={v eV =H'Q):v=0o0nTI4}.

Show that the assumptions of the Lax-Milgram-Theorem are satisfied for the varia-
tional problem (2) under the assumptions (3) and the additional assumptions b; = 0,
c(x) > 0 for almost all z € Q, a(z) > a = const > 0 for almost all x € I'3, and
measy_1(I';) > 0,7 = 1,2,3 ! What happens in the case I'y = (), and what happens
in the case a =07

In addition to assumption (3), let us assume that c¢(z) > ¢ = const > 0 for almost

all z € Q,Ty =T3 =0, and b; #Z 0. Provide conditions for the coefficients b;(-) such
that the assumptions of the Lax-Milgram-Theorem are satisfied !
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Hint: For the estimate of the convection term b; 2%y dx, make use of the
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e-inequality (Young’s inequality)

1
|ab|§2—a2+%b2, Va,beR' Ve >0 !
19



Derive the variational formulation of the pure Neumann problem for the Poisson

equation
0
—Au= fin Q) and 8—u:OonF::8Q, (4)
n
and discuss the question of the existence and uniqueness of a generalized solution
of (4) !
(O Hint:

Obviously, u(z) + ¢ with an arbitrary constant ¢ € R! solves (4) provided that
u is the solution of the BVP (4). There are the following ways to analyze the
existence of a generalized solution:

1) Set up the variational formulation in V' = H'(Q) and apply the
FREDHOLM-Theory !

2) Set up the variational formulation in the factor-space V = H'(Q)]|}, with
ker= {c: ¢ € R'} = R! and apply the LAX-MILGRAM-Theorem !

06 | Derive the variational formulation of the Dirichlet problem for the Helmholtz equa-
tion
~Au—wu=finQ=(0,1>CR® and wu=0o0nT =099, (5)
where w? is a given positive constant. Then discuss the problem of the existence
and uniqueness of a generalized solution of (5) !

(O Hint: Apply the Fredholm theory to the operator equation

FindueVp: (I — K)u= finVy
that arises from the setting

VIuVo +w)dr — (1 +w?) [ wwdz = | fvdx
/ -

Q Q
NG ~ / (. ~ N——
::[u,v] ::[KU,U] ::[fvv]

which is equivalent to the variational formulation of the Helmholtz equation.



