2.25-01
4.1.3. $V_{* h} \times V_{h} \sim$ Boundedness of the dG Bilinear Form

Lemma 4.9: Scaled trace inequality
Assume shape regular triangulation τ_{n}, cf. Def. 3.3.
Then there is some generic constant $c=$ cons >0 :
(13) $\|v\|_{e}^{2}:=\|v\|_{L_{2}(e)}^{2} \leq c h_{j}^{-1}\left(\|v\|_{\delta}^{2}+h_{\delta}^{2}\|\nabla v\|_{\delta}^{2}\right)$

$$
\forall v \in H^{1}(\delta) \forall e c \partial \delta \quad \forall \delta \in \tau_{h} \forall h \in \Theta<\underbrace{}_{=}|v|_{H^{\prime}(\delta)}^{2}
$$

Proof: cf. Lemma 4.4.: $\mathbb{P}_{k}(\delta) \mapsto H^{1}(\delta)$! incurs)

$$
\|v\|_{L_{2}(e)}^{2}=\int_{e}(v(x))^{2} d s_{x}=\int_{E}^{n}(\underbrace{v\left(x_{0}(\rho)\right) \underbrace{2} \mid}_{\tilde{\sigma}\left(x^{\prime}\right)} d s_{\xi}
$$

$$
\begin{aligned}
& =h_{e} \leqslant h_{\delta} \\
& \simeq O\left(h_{\delta}^{d-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =|e| \int_{E}(\tilde{v}(\xi))^{2} d \xi \\
& {[\ldots .]=\|\widetilde{V}\|_{H^{\prime}(A)}^{2}} \\
& \begin{array}{c}
\mathrm{Ch} .2 \\
\text { trace th. }
\end{array} \\
& \leqslant \text { |e| } c_{T}^{2}\left[\int_{\Delta}\left|V\left(x_{\delta}(\xi)\right)\right|^{2} d \xi+\int_{\Delta}\left|\nabla_{\xi} V\left(x_{\delta}(\xi)\right)\right|^{2} d \xi\right] \\
& =c_{T}^{2}|e|\left[\int_{\delta}|v(x)|^{2} \frac{1}{\left|z_{\delta}\right|} d x+\int_{\delta}\left|J_{\delta}^{\top} \nabla_{x} v(x)\right|^{2} \frac{1}{\left|z_{\delta}\right|} d x\right] \\
& \left\|J_{\delta}^{\top}\right\| \leqslant c_{2} h_{\delta} \\
& |e|=h_{e} \leq h_{\delta} \leq \frac{c_{\tau}^{2}}{c_{1}} h_{\delta}^{-1}\left[\int_{\delta}|v|^{2} d x+c_{2}^{2} h_{\delta}^{2} \int_{\delta}\left|\nabla_{x} v\right|^{2} d x\right] \\
& \left|z_{\delta}\right| \geqslant c_{1} h_{d}^{d} \\
& d=2 \leq \frac{c_{r}^{2}}{s_{1}} \max \left\{1, c_{2}^{2}\right\} h_{\delta}^{-1}\left\{\int_{\delta}|v|^{2} d x+h_{\delta}^{2} \int_{\delta}\left|\nabla_{x} v\right|^{2} d x\right\} \text {. } \\
& \text { q.e.d. }
\end{aligned}
$$

Remark:

1. (13) is obviously also valid for $d=3$!

$$
|e| \leqslant c_{e} h_{\delta}^{d-1},\left|\sigma_{\delta}\right| \geqslant c_{1} h_{\delta}^{d} \Rightarrow \frac{\mid e\{ }{\left|z_{\delta}\right|} \approx \frac{c_{e}}{c_{1}} h_{\delta}^{-1}
$$

2. Using the sharp trace theorem (Ch.2)

$$
\|\tilde{v}\|_{E}:=\|\widetilde{v}\|_{L_{2}(E)} \leqslant c_{\tau \rightarrow 0}(\varepsilon)\left\|\widetilde{c}_{\infty}\right\|_{H^{112+\varepsilon}(\delta)} \forall \tilde{v} \in H^{12+\varepsilon}(\delta),
$$

we can easily show (mus)
$(13)_{\varepsilon}$

$$
\begin{aligned}
& \|V\|_{e}^{2} \leq c h_{\delta}^{-1}\left\{\|v\|_{\delta}^{2}+h^{2\left(\frac{1}{2}+\varepsilon\right)}|V|_{H^{1 / 2+\varepsilon}(\delta)}^{2}\right\} \\
& \forall V \in H^{1 / 2+\varepsilon}(\delta) \forall e c \partial \delta \forall \delta \in \tau_{h} \forall h \in \Theta, \varepsilon>\sigma \text { fix. }
\end{aligned}
$$

Remark:
Inequality (13) can be used to prove the second statement in Lemma 3.18 (Clément):

$$
\left\|v-I_{h} v\right\|_{e}:=\left\|v-I_{h} v\right\|_{L_{2}(e)} \leq c h_{e}^{1 / 2}|v|_{H^{1}\left(u\left(\delta_{r}\right)\right)}
$$

where $I_{h} V$ denotes the CLEMENT interpolator, see Def, 3.17,
Indeed, using (13), we get
$\left\|v-I_{h} v\right\|_{e}^{2} \leqslant c h_{\delta}^{-1}\left(\left\|v-I_{h} v\right\|_{\delta}^{2}+h_{\delta}^{2} \xlongequal\left[\left\|V\left(V-I_{n} v\right)\right\|_{\delta}^{2}\right)\right]{\| H_{H^{1}(\delta)}^{2}}$

$$
\begin{aligned}
& \leqslant c h_{\delta}^{-1}\left(c_{0}^{2} h_{\delta}^{2}|v|_{H^{1}(u(\delta))}^{2}+h_{\delta}^{2} c_{1}^{2}|v|_{H^{1}(u(\delta))}^{2}\right) \\
& \leqslant c h_{\delta}^{1}|v|_{H^{1}(u(\delta))}^{2} \leqslant c h_{e}^{1}|V|_{H^{1}(u(\delta))}^{2}
\end{aligned}
$$

generic constants. ace, de

L25-03
Let us consider the extended space

$$
\begin{array}{cc}
V_{* h}:= & \left.H^{2}\left(\tau_{h}\right)+V_{h} \geqslant u-V_{h} \forall V_{h} \in V_{h}\right) \\
\downarrow & \downarrow \\
& H^{3 / 2+\varepsilon}\left(\tau_{h}\right)
\end{array} \quad \text { solution of }(1)_{V F}
$$

and let us define the norm
(14)

$$
\begin{aligned}
& \|v\|_{x h}^{2}:=\|v\|_{h}^{2}+\sum_{\delta \in \tau_{h}} h_{\delta}^{2}|v|_{H^{2}(\delta)}^{2} \\
& \quad=\sum_{\delta \in \tau_{h}}\|\nabla v\|_{L_{2}(\delta)}^{2}+\sum_{e \in \mathbb{E}_{h}} \frac{\alpha_{e}}{h_{e}}\|[v]\|_{L_{2}(e)}^{2}+\sum_{\delta \in \tau_{h}} h_{\delta}^{2}|v|_{H^{2}(\delta)^{\prime}}^{2}
\end{aligned}
$$

For all $V \in V_{x h}$ and $W_{h} \in V_{h}$, we can now estimate the SIPG $(B=-1) d G$ bilinear form as follows:
(15)

$$
\begin{aligned}
&\left|a_{h}\left(v, w_{h}\right)\right|=\mid \sum_{\delta \in T_{h}}\left(\nabla v, \nabla w_{h}\right)_{\delta}-\sum_{e \in \mathbb{E}_{h}}\left(\{\nabla v\}_{1}\left[w_{h}\right]\right)_{e} \\
& \left.-\sum_{e \in \mathbb{E}_{h}}\left(\left\{\nabla w_{h}\right\}_{1}[v]\right)_{e}+\sum_{e \in \mathbb{E}_{h}} \frac{\alpha_{e}}{h_{e}}\left([v]\left[w_{h}\right]\right)_{e} \right\rvert\, \\
&=\left|T_{1}+T_{2}+T_{3}+T_{4}\right| \leqslant \sum_{i=1}^{4}\left|T_{i}\right|
\end{aligned}
$$

T_{1} and T_{4} can easily be estimated by Cauchy:

$$
\begin{aligned}
& \left|T_{1}\right| \leqslant\left(\sum_{\delta}\|\nabla v\|_{d}^{2}\right)^{1 / 2}\left(\sum_{\delta}\left\|\nabla w_{h}\right\|_{\delta}^{2}\right)_{1}^{1 / 2} \\
& \left|T_{4}\right| \leqslant\left(\sum_{e} \frac{\alpha_{e}}{h_{e}}\|[V]\|_{e}^{2}\right)^{1 / 2}\left(\sum_{e} \frac{\alpha_{e}}{h_{e}}\left\|\left[w_{h}\right]\right\|_{e}^{2}\right)^{1 / 2}
\end{aligned}
$$

L25-04
Using Lemma 4.4, we can estimate T_{3} like (*) in the proof of Lemma 4.5; see Lecture 24:

$$
\begin{aligned}
\left|T_{3}\right| & =\left|\sum_{e}\left(\left\{\nabla w_{h}^{V_{h}}\right\},[V]\right)_{e}\right| \\
& \leqslant \tau_{3}\left(\sum_{\sigma}\left\|\nabla w_{h}\right\|_{\delta}^{2}\right)^{1 / 2}\left(\sum_{e} \frac{\alpha_{e}}{h_{e}}\|[V]\|_{e}^{2}\right)^{1 / 2}
\end{aligned}
$$

with ${\tilde{c_{3}}}^{2}=\tilde{c} \max _{e} \alpha_{e}^{-1}=c_{4}^{2} \frac{3}{2} \max _{e} \alpha_{e}^{-1}$.
In order to estimate T_{2}, we need Lemma 4.9:

$$
\begin{aligned}
& \left|T_{2}\right|=\left|\sum_{e}\left(\{\nabla v\}_{1}^{\mathbb{U}_{\text {*h }}}\left[W_{h}\right]\right)_{e}\right| \\
& L_{2}-\text { Cauchy } \geqslant \leqslant \sum_{e}\|\{\nabla v\}\|_{e}\left(\frac{h_{e}}{\alpha_{e}}\right)^{1 / 2}\left(\frac{\alpha_{e}}{h_{e}}\right)^{1 / 2}\left\|\left[w_{h}\right]\right\|_{e} \\
& \Sigma \text {-Cauchy } \approx(\sum_{e} \frac{h_{e}}{\alpha_{e}} \| \underbrace{\| \nabla v\} \|_{e}^{2}})^{1 / 2}\left(\sum_{e} \frac{\alpha_{e}}{h_{e}}\left\|\left[w_{h}\right]\right\|_{e}^{2}\right)^{1 / 2} \\
& \begin{array}{l}
e \in \partial \mathbb{E}_{u} J \\
e \in \mathbb{E}_{h} \\
\delta_{2}
\end{array}=\left\|\frac{1}{2}\left(\left.\nabla V\right|_{\delta_{1}}+\left.\nabla V\right|_{\delta_{2}}\right)\right\|_{e}^{2} \\
& \leq \frac{1}{4}\left(\left\|\left.\nabla v\right|_{\delta_{1}}\right\|_{e}+\left\|\left.\nabla v\right|_{\delta_{2}}\right\|_{e}\right)^{2} \\
& (a+b)^{2} \leqslant 2\left(a^{2}+b^{2}\right) \geq \frac{1}{2}\left[\left\|\left.\nabla V\right|_{\delta_{1}}\right\|_{e}^{2}+\left\|\left.\nabla v\right|_{\delta_{2}}\right\|_{e}^{2}\right] \\
& \text { Lemma } 4 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{c}{2}\left[h_{\delta_{1}}^{-1}\|\nabla v\|_{\delta_{2}}^{2}+h_{\delta_{2}}\left\|\nabla^{2} v\right\|_{\delta_{1}}^{2}+h_{\delta_{2}}^{-1}\|\nabla v\|_{\delta_{2}}^{2}+h_{\delta_{2}}\left\|\nabla^{2} v\right\|_{\delta_{2}}^{2}\right] \\
& \left.\leqslant{\widetilde{c_{4}^{\prime}}}_{\left(\sum_{\delta}\right.}\|\nabla v\|_{\delta}^{2}+\sum_{\delta} h_{\delta}^{2}|v|_{2, \delta}^{2}\right)^{1 / 2}\left(\sum_{e} \frac{\alpha_{e}}{h_{e}}\left\|\left[w_{h}\right]\right\|_{e}^{2}\right)^{1 / 2}
\end{aligned}
$$

with a positive generic constant \widetilde{c}_{4}.
$L 25=05$
Inserting these estimates, in. $\left|T_{i}\right| \leqslant \ldots, \mid i=1,2,3,4$, into (15), and using Cauchy, we immediately get
(16)

$$
\begin{aligned}
& \left|a_{h}\left(V_{1} w_{h}\right)\right| \leqslant \mu_{4}\|v\|_{* h}\left\|w_{h}\right\|_{h} \\
& \forall v \in V_{* h}=H^{2}\left(T_{h}\right)+V_{h} \quad \forall w_{h} \in V_{h} \quad \forall h \in \mathbb{O}
\end{aligned}
$$

with a positive generic constant $\mu_{4}=\mu_{4}\left({ }_{a}^{\max } \alpha_{e}^{-1}, k\right)_{y}$ i.e. we have proved the following Lemma:

Lemma 4.10: ($V_{* h} \times V_{n}$-boundedness) Let $\beta=-1,0,1$, and τ_{h} be a shape regular triangulation. Then the $d G$ bilinear form $a_{h}(\cdot, \cdot)$ is bounded on $V_{x h} \times V_{h}$, i.e. $\exists \mu_{4} \neq \mu_{4}(h)$ such that inequality (16) holds.

Theorem 4. 11:
Ass.: Assume that the exact solution u of (1) VF belongs to $H^{s}\left(\tau_{h}\right)$ for some $s \geqslant 2(s>3 / 2)$, $\tau_{h^{-}}$- (shape) regular triangulation, and we also assume that the penalty parameters α_{e} are large enough, i.e, $\alpha_{e} \geqslant \alpha_{0} \forall e \in \overline{\mathbb{E}}_{h} ;$ cf. Lemma 4,5.
St.: Then there exists a positive constant $c \neq c(h)$:
(17) $\left\|u \sim u_{h}\right\|_{h} \leq C\left[\sum_{\delta \in \tau_{h}} h_{\delta}^{2(\min \{k+n, s j-1)}|u|_{H^{s}(\delta)}^{2}\right]^{1 / 2}$

$$
\leq c h^{\min \{k+1, s\}-1}\|u\|_{H H^{s}\left(T_{n}\right)} \text {. }
$$

L2.5-06
Proof: In the case of consistent schemes, second Stang's Lemma (=Theorem 3.16) implies estimate (40), see also Remark at the end of Lecture 20:

Subset. 3.4.2. Approximation Theorem

$$
\begin{aligned}
& T_{3}=\sum_{\delta \in T_{h}} h_{\delta}^{2}\left|u-\tilde{u}_{h}\right|_{H^{2}(\delta)}^{2} \stackrel{\downarrow}{=} c \sum_{\delta} h_{\delta}^{2} h_{\delta}^{2(\min \{k+1, s\}-2)|u|_{H}(\delta)} \sqrt{V} \\
& T_{2}=\sum_{e \in E_{n}}^{1} \frac{\alpha_{e}}{h_{e}}\left\|\left[u-\tilde{u}_{h}\right]\right\|_{L_{2}(e)}^{2} \\
& \tilde{n}_{n_{c+}} \quad e \in \partial E_{h}:\left[u-\tilde{u}_{h}\right]_{e}=u-\left.\tilde{u}_{h}\right|_{e} \\
& \delta_{+} \quad e \in E_{h}:\left[u-\tilde{u}_{h}\right]_{e}=\left.\left(u-\tilde{u}_{h}\right)\right|_{e_{t}} \cdot n_{e_{t}}+\left.\left(u-\tilde{u}_{h}\right)\right|_{e_{-}} n_{e_{-}}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|u_{\left.(1)_{V E}-u_{h}\right)_{h}}^{d G}\right\|_{h}^{2} \leqslant\left(1+\frac{\mu_{4}}{\mu_{3}}\right)^{2} \inf _{V_{h} \in \bar{V}_{g h}}=\bar{V}_{h}\left\|u-V_{h}\right\|_{* h}^{2} \\
& \leqslant\left(1+\frac{\mu_{4}}{\mu_{3}}\right)^{2} \| u \text { - } \operatorname{Intal}_{V_{n}}(u) \|_{x n}^{2} \\
& u \in H^{s}\left(T_{h}\right) \hookrightarrow C^{\prime}\left(\bar{T}_{h}\right) \text { i.i.e } \\
& \widetilde{u}_{h}=\operatorname{Int}_{V_{h}=V_{k}\left(T_{h}\right)}(u) \quad u \in H^{s}(\delta) \leftrightarrow C(\bar{\delta}) \\
& \text { since } s>3 / 2 \text { : } \\
& =(\cdot)^{2} \sum_{\delta \in \tau_{h}} \| \nabla\left(u-\tilde{u}_{h}\left\|_{L_{2}(\delta)}^{2}+\sum_{e \in \mathbb{E}_{h}} \frac{\alpha_{e}}{h_{e}}\right\|\left[u-\tilde{u}_{h}\right] \|_{L_{2}(e)}^{2}+\sum_{\delta \in \tau_{h}} h_{\delta}^{2}\left|u-\tilde{u}_{h}\right|_{\left.H^{2} l \delta\right)}^{2}\right. \\
& =\left(1+\frac{\mu_{4}}{\mu_{3}}\right)^{2}\left(T_{1}+T_{2}+T_{3}\right) \\
& T_{1}=\sum_{\delta \in T_{h}}\left\|\nabla\left(u-\widetilde{u}_{h}\right)\right\|_{L_{2}(\delta)}^{2} \leq c \sum_{\delta \in I_{h}} h_{\delta}^{2(\min \{k+1, s\}-1)}|u|_{H^{\delta}(\delta)}{ }^{V}
\end{aligned}
$$

$e \in \partial E: e_{+}$ L25-07

$$
\leqslant \sum_{e} \frac{\alpha_{e}}{h_{e}} 2\left(\left\|u-\tilde{u}_{h}\right\|_{e_{+}}^{2}+\|u-\tilde{u}\|_{e_{-}}^{2}\right)
$$

Lemma 4.9: ${ }^{(13)} \leqslant 2 c \sum_{e} \frac{\alpha_{e}}{h_{e}}\left(\bar{h}_{\delta_{+}}^{-1}\left\|u-\tilde{u}_{h}\right\|_{L_{2}\left(\delta_{+}\right)}^{2}+h_{\delta_{+}}\left|u-\tilde{u}_{h}\right|_{H^{1}\left(\delta_{+}\right)}^{2}+\right.$ $+h_{\delta_{-}}^{-1} \| \underbrace{\left\|u-\tilde{u}_{h}\right\|_{L_{-}\left(\delta_{-}\right)}^{2}}_{1}+h_{\delta_{-}} \underbrace{\left|u-\tilde{u}_{h}\right|_{+1}^{2}\left(\delta_{-}\right) \mid}_{\beta_{1}}$

$$
c h_{\delta_{ \pm}}^{2 \min \{k+1, s\}}|u|_{H H^{S}\left(\delta_{ \pm}\right)}^{2} c h_{\delta_{ \pm}}^{2(\min \{k+1, s\}-1)}|u|_{H^{s}\left(\delta_{ \pm}\right)}^{2}
$$

$$
\leqslant c \sum_{\delta \in T_{h}} h_{\delta}^{2(\min \{k+1, s\}-1)}|u|_{H^{s}(\delta)}^{2}
$$

$$
\begin{aligned}
& =\left(1+\frac{\mu_{4}}{\mu_{s}}\right)^{2}\left(T_{1}+T_{2}+T_{3}\right) \\
& \leqslant c \sum_{\lambda=\tau_{h}} h_{\delta}^{2(\min \{k+1, s\}-1)}|u|_{H^{s}(\delta)}^{2} \text {. g.c.d. }
\end{aligned}
$$

generic constant: $\left(1+\frac{m_{4}}{\mu_{g}}\right)^{2} c$

Remark 4.12:

1. Basically, we proved the refined estimate
(18) $\left\|u-u_{h}\right\|_{h} \leqslant\left[\sum_{\delta \in T_{h}} c_{\delta}^{2} h_{\delta}^{2\left(\min \left\{k_{\delta}+1, s_{\delta}\right\}-1\right)}|u|_{H^{s^{\delta}(\delta)}}^{2}\right]^{1 / 2}$,
with $\delta_{\delta}>312,\left.u\right|_{\delta} \in H^{\delta_{\delta}}(\delta), 0<c_{\delta} \leqslant \bar{c}=$ cons

$$
\forall \delta \in \tau_{h} \quad \forall h \in \mathbb{H}
$$

\uparrow shape reg. triangulation
that can be non-conform with hanging nodes?
2. One can also prove L_{2}-estimates like
(19) $\left\|u-u_{h}\right\|_{L_{2}(\Omega)} \leq c h^{\min \{k+1, s\}}|u|_{H^{s}\left(T_{h}\right)} \quad s \geqslant 2$
provided that $u \in H^{S}\left(I_{h}\right), s \geqslant 2$, and that the adjoin d problem is H^{2}-coercive;
see Reference $[7]$, Subsection 2,8,2. 2.
References: $[7]$ and $[8]$ on the NuEPDE website!
[7] B. Rivière: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Phil., 2008.
[8] D.A.DiPietro, A. Err: Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2012.
\Rightarrow low regularity was $u \in H^{S}\left(T_{i}\right)$ with $1<s \leq 3 / 2$ in $2 d$!
\Rightarrow there wa "a "ar " the theory in 3 d
This gap was closed by Z, Cai, $X, Y e$, and S. Bhang
in their SINGM paper 2011, v, 49, No's, p. 1761-1787.

