Numerical Methods for Elliptic Partial Differential Equations

last update: 2021-02-13

[
Lecture ]   [ Tutorial ]   [ Transparencies ]   [ Lecture Notes ]   [ Additional literature ]   [ Software ]   [ Links ]   [ General ]   [ Home ]

Lecture      up

Numerical Methods for Elliptic Partial Differential Equations - Lectures

(CourseId 327.003, 4 hours per week, Semester 6)

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

- Examination questions: up
as   pdf-file  

- The super question: up
as   pdf-file  

- Examination dates: up
Link to examination dates


Time and room:

Wed, March 3, 202010:15 - 11:45 Room: S2 416-1Lecture 01
Wed, March 4, 202008:30 - 10:00 Room: HS 14Lecture 02
Wed, March 5, 202008:30 - 10:00 Room: HS 13Lecture 03
Wed, March 11, 202008:30 - 10:00 Room: -- --Lecture 04
Thu, March 12, 202008:30 - 10:00 Room: -- --Lecture 05
Wed, March 18, 202008:30 - 10:00 Room: -- --Lecture 06
Thu, March 19, 202008:30 - 10:00 Room: -- --Lecture 07
Wed, March 25, 202008:30 - 10:00 Room: -- --Lecture 08
Thu, March 26, 202008:30 - 10:00 Room: -- --Lecture 09
Wed, April 1, 2020 08:30 - 10:00 Room: -- --Lecture 10
Thu, April 2, 2020 08:30 - 10:00 Room: -- --Lecture 11
Easter Break
Wed, April 22, 202008:30 - 10:00 Room: -- --Lecture 12
Thu, April 23, 202008:30 - 10:00 Room: -- --Lecture 13
Wed, April 29, 202008:30 - 10:00 Room: ZOOM Lecture 14
Thu, April 30, 202008:30 - 10:00 Room: ZOOM Lecture 15
Wed, May 6, 2020 08:30 - 10:00 Room: ZOOM Lecture 16
Thu, May 7, 2020 08:30 - 10:00 Room: ZOOM Lecture 17
Wed, May 13, 2020 08:30 - 10:00 Room: ZOOM Lecture 18
Thu, May 14, 2020 08:30 - 10:00 Room: ZOOM Lecture 19
Wed, May 20, 2020 08:30 - 10:00 Room: ZOOM Lecture 20
Thu, May 21, 2020 Christi Himmelfahrt Lecture is canceled
Wed, May 27, 2020 08:30 - 10:00 Room: ZOOM Lecture 21
Thu, May 28, 2020 08:30 - 10:00 Room: ZOOM Lecture 22
Wed, June 3, 2020 08:30 - 10:00 Room: ZOOM Lecture 23
Thu, June 4, 2020 08:30 - 10:00 Room: ZOOM Lecture 24
Wed, June 10, 2020 08:30 - 10:00 Room: ZOOM Lecture 25
Thu, June 11, 2020 Fronleichnam Lecture is canceled
Wed, June 17, 2020 08:30 - 10:00 Room: ZOOM Lecture 26
Thu, June 18, 2020 08:30 - 10:00 Room: ZOOM Lecture 27
Wed, June 24, 2020 08:30 - 10:00 Room: ZOOM Lecture 28
Thu, June 25, 2020 08:30 - 10:00 Room: ZOOM Lecture 29

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer



Tutorial      up

Numerical Methods for Elliptic Partial Differential Equations - Tutorials

(CourseId 327.004, 2 hours per week, Semester 6)

Tutorials held by: DI Rainer Schneckenleitner

Time and room:

Tutorial 01Tue, March 10, 202010:15 - 11:45 Room: KEP3Tutorial 01
Tutorial 02Tue, March 17, 202010:15 - 11:45 Room: -- Tutorial 02
Tutorial 03Tue, March 24, 202010:15 - 11:45 Room: -- Tutorial 03
Tutorial 04Tue, March 31, 202010:15 - 11:45 Room: -- Tutorial 04
Easter Break
Tutorial 05Tue, April 21, 202010:15 - 11:45 Room: --Tutorial 05
Tutorial 06Tue, April 28, 202010:15 - 11:45 Room: --Tutorial 06
Tutorial 07Tue, May 5, 2020 10:15 - 11:45 Room: --Tutorial 07
Tutorial 08Tue, May 12, 2020 10:15 - 11:45 Room: --Tutorial 08
Tutorial 09Tue, May 19, 2020 10:15 - 11:45 Room: --Tutorial 09
Tutorial 10Tue, May 26, 2020 10:15 - 11:45 Room: --Tutorial 10
Tue, June 2, 2020 Pfingstdienstag canceled
Tutorial 11Tue, June 9, 2020 10:15 - 11:45 Room: --Tutorial 11
Tutorial 12Tue, June 16, 2020 10:15 - 11:45 Room: --Tutorial 12
Tutorial 13Tue, June 23, 2020 10:15 - 11:45 Room: --Tutorial 13
Tutorial 14Tue, June 30, 2020 10:15 - 11:45 Room: --Tutorial 14

Transparencies      up
Transparency 00a: colourMath. Models
Transparency 00b: colourRemark 1.2
Transparency 01: colour Ex 1.1 - 1.2
Transparency 02: colour Ex 1.3 - 1.4
Transparency 03: colour Ex 1.5 - 1.6
Transparency 04a: colour 1.2.2 Linear elasticity I
Transparency 04b: colour 1.2.2 Linear elasticity II
Transparency 04c: colour 1.2.2 Linear elasticity III
Transparency 04d: colour 1.2.2 Linear elasticity IV
Transparency 04e: colour 1.2.2 Linear elasticity V
Transparency 05: colour Ex 1.10 - 1.11
Transparency 05a: b/w 1.3.1. Mixed VF I: General
Transparency 05b: b/w 1.3.1. Mixed VF II: Navier-Stokes
Transparency 05c: b/w 1.3.1. Mixed VF III: Oseen/Stokes
Transparency 05d: b/w 1.3.1. Mixed VF IV: Poisson equ.
Transparency 05e: b/w 1.3.1. Mixed VF V: 1st bih. BVP
Transparency 05f: b/w 1.3.2. Dual VF I: General
Transparency 05g: b/w 1.3.2. Dual VF II: Cont.
Transparency 05h: b/w 1.3.2. Dual VF III: Example
Transparency 2-01: colourD(/Omega)
Transparency 2-02: colourWeek derivatives
Transparency 2-03: colourDistributions
Transparency 2-04: colourDistributive derivatives
Transparency 2-05: colourLebesgue spaces Lp
Transparency 2-06: colourSobolev spaces W_p^k
Transparency 2-07: colourTraces
Transparency 2-08: colourNegative-order Sobolev spaces
Transparency 2-09: colourH(div), H(curl), H^s
Transparency 2-10: colourH^{1/2}(\Gamma) ~ \gamma_oH^1(\Omega)
Transparency 2-11: colourTh. 2.13 Norm equivalence theorem
Transparency 2-12: colourExercise 2.14
Transparency 2-13: colourFriedrichs' inequalities I
Transparency 2-14: colourFriedrichs' inequalities II
Transparency 2-15: colour2.4. Poincaré
Transparency 2-16: colour2.5. Main Formula of DIC
Transparency 2-17: colour2.5. Gauss' Theorem
Transparency 2-18: colour2.5. Further Integration Formulas
Transparency 2-19: colour2.5. H(div) - Trace Theorem
Transparency 2-20: colour2.5. H(div) Inverse Trace Theorem
Transparency 2-21: colour2.6. Extension Problem
Transparency 2-22: colour2.6. Extension Problem (cont)
Transparency 2-23: colour2.7. Embedding
Transparency 2-24: colour2.7. Embedding (cont)
Transparency 06: colour GALERKIN-RITZ-Scheme
Transparency 06a: b/w Courant's idea
Transparency 06b: colour Illustration
Transparency 07a: colour Remark 2.1.1-2
Transparency 07b: b/w Remark 2.1.3-4
Transparency 08a: colour Model Problem
Transparency 08b: colour CHIP
Transparency 09: colour Mesh for CHIP
Transparency 10a: b/w CHIP.NET
Transparency 10b: colour Meshing
Transparency 10c: colour Tables
Transparency 10d: b/w Finer Mesh
Transparency 11a: b/w Mesh Generation 1.-2.
Transparency 11b: b/w Mesh Generation 3.
Transparency 11c: colour Mesh Generation 4.
Transparency 11d: colour Mesh Generation 5.
Transparency 12: colour Mapping principle
Transparency 13a: colour stiffness matrix (1)
Transparency 13b: b/w stiffness matrix (2)
Transparency 13c: b/w stiffness matrix (3)
Transparency 14a: b/w 2nd kind BC
Transparency 14b: b/w 3rd kind BC
Transparency 14c: b/w 1st kind BC
Transparency 15: colour Illustration
Transparency 16: b/w Exercises 2.5 - 2.8
Transparency 17a: colour Road Map I
Transparency 17b: b/w Road Map II
Transparency 17c: colour Theorem 2.6 = Approximation Theorem
Transparency 17d: colour Sketch of the Proof
Transparency 18a: colour Remark 2.7.1
Transparency 18b: b/w Remark 2.7.2-5, E 2.9, E 2.10
Transparency 19: b/w Theorem 2.8 (H1-Convergence)
Transparency 20: b/w Remark 2.9.1-4
Transparency 21: b/w Remark 2.9.5
Transparency 22: b/w Remark 2.14
Transparency 23: colour Var.Crimes I
Transparency 24: colour Var.Crimes II
Transparency 25: colour Var.Crimes III
Transparency 26: colour Remark 3.21
Transparency 27a: b/w DWR I
Transparency 27b: b/w DWR II
Transparency 27c: colour AFEM
Transparency T4-01a: colour4.1.1 DG VF: model problem
Transparency T4-01b: colour4.1.1 DG VF: notations and formulation
Transparency T4-02: colour4.1.1 DG VF: DG bilinear form
Transparency T4-03: colourAlternative Proof
Transparency T4-04: colourConsistency + DG-Scheme
Transparency T4-05: colourRemark 4.3.: Pros & Cons
Transparency T4-06a: colourLemma 4.4.
Transparency T4-06b: colourAlternative Proof
Transparency T4-07: colourLemma 4.5.: ellipticity
Transparency T4-08: colourProof
Transparency T4-09: colourLemma 4.7.: boundedness
Transparency T4-10: colourLemma 4.9.: Trace inequality
Transparency T4-11: colourTheoerem 4.10.: Error estimate
Transparency T4-12: colourProof (cont.)
Transparency T4-13: colourProof (cont.)
Transparency T4-14: colourProof (cont.) + Remark 4.11
Transparency T4-15: colour4.2.: FDM
Transparency T4-16: colour4.2.: FVM
Transparency T4-17: colour4.2.: Stability+Appr.=>discrete Conv.
Transparency T4-18: colourSummary

Additional Transparencies      up
Transparency 28: colour Remark 3.1
Transparency 29: colour Example, Remark 3.2
Transparency 30: b/w Secondary Grids I
Transparency 31: b/w Secondary Grids II
Transparency 32: colour Remark 3.3 + E 3.1
Transparency 33: b/w Remark 3.4
Transparency 34: colour Boundary boxes
Transparency 35: colour Remark 3.5 + E 3.2
Transparency 36a: b/w Galerkin-Petrov I
Transparency 36b: b/w Galerkin-Petrov II
Transparency 36c: colourGalerkin-Petrov Approach
Transparency 36d: colourTwo Galerkin-Petrov Schemes
Transparency 36e: colourSystem of FV-Equations
Transparency 37a: b/w Remark 3.6.1-3.6.4
Transparency 37b: b/w Remark 3.6.5-3.6.6
Transparency 38: colour Ref + Remark 3.7
Transparency 39: colour Discrete Convergence I
Transparency 40: b/w Discrete Convergence II
Transparency 41: b/w Discrete Convergence III
Transparency 42: b/w Discrete Convergence IV (E 3.3)
Transparency 43: b/w Discrete Convergence V
Transparency 44: colour Discrete Convergence VI
Transparency 39-44: b/wSummary
Transparency 45: b/w 4. BEM 4.1 Introduction I
Transparency 46: b/w 4.1 Introduction II
Transparency 47: b/w 4.1 Introduction III
Transparency 48: b/w 4.1 Introduction IV
Transparency 49a: b/w Subsection 4.2.1
Transparency 50a: colourSection 4.3: CM I
Transparency 50b: b/w Section 4.3: CM II
Transparency 51a: colourSection 4.3: CM III
Transparency 51b: b/w Section 4.3: CM IV
Transparency 52a: b/w Section 4.3: CM V
Transparency 52b: colourSection 4.3: CM VI
Transparency 53: b/w Section 4.3: CM VII
Transparency 54: b/w Section 4.3: CM VIII
Transparency 55: b/w Section 4.3: CM IV
Transparency 56: b/w Section 4.3: CM X
Transparency 57: b/w Section 4.3: CM XI
Transparency 58a: b/w BIO: Def.
Transparency 58b: b/w BIO: Calderon
Transparency 58c: b/w BIO: D2N
Transparency 59a: b/w 4.4.2 Properties I
Transparency 59b: b/w 4.4.2 Properties II
Transparency 60: b/w Galerkin I
Transparency 61: b/w Galerkin II
Transparency 62: b/w Galerkin III
Transparency 63: b/w Galerkin IV
Transparency 64: b/w Galerkin V

- CISM Courses up
[Part 1] Direct Solvers
[Part 2] Iterative Solvers
[Part 3] Preconditioners
[Part 4] Multigrid I
[Part 5] Multigrid II

see also [9] in Basic Lecture Notes.

Basic Lecture Notes:      up
[1]   Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
Postscript-File
[2]   Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996 (FEM and FVM).
Postscript-File
[3]   Jung M., Langer U.: Methode der finiten Elemente für Ingenieure: Eine Einführung in die numerischen Grundlagen und Computersimulation. Springer Fachmedien, Wiesbaden 2013, 2., überarb. u. erw. Aufl. 2013, XVI, 639 S. 172 Abb. (practical aspects of the FEM).
http://www.springer.com/springer+vieweg/maschinenbau/book/978-3-658-01100-0
[4]   Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements. Springer, New York 2008 (FEM and BEM):
FEBEBook
[5]   Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005 (solvers for systems of algebraic equations).
[6]   Zulehner W.: Numerische Mathematik: Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme. Mathematik Kompakt. Birkhäuser Verlag, Basel-Bosten-Berlin 2008.
[7]   Rivière B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia 2008.
[8]   Di Pietro D.A., Ern A.: Mathematical Aspects of Discontinuous Galerkin Method. Springer-Verlag, Berlin, Heidelberg, 2012.
[9]   Langer U. and Neumæller M.: Direct and iterative solvers. In M. Kaltenbacher, editor, Computational Acoustics, volume 579 of CISM International Centre for Mechanical Sciences: Courses and Lectures, pages 205-251. Springer-Verlag, 2017.

Additional Literature:      up
[1]   Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version: Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9 Homepage: http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/ftp.html#books
[2]   Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3]   Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002. [4]   Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5]   Deuflhard P., Weiser M.: Numerische Mathematik: Band 3 "Adaptive Lösung partieller Differentialgleichungen. de Gruyter Verlag, Berlin 2011 (englische Version ist 2012 ebenfalls bei de Gruyter erschienen).
[6]   Heinrich B.: Finite Difference Methods on Irregular Networks. Akademie-Verlag, Berlin 1987.
[7]   Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin-Heidelberg 2000.
[8]   Monk P.: Finite Element Methods for Maxwell's Equations. Oxford Science Publications, Oxford 2003.
[9]   Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[10]   Schwarz H.R.: Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[11]   Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley - Teubner, 1996.


History:      up

      Historical Papers
      Gander's presentation
      M.J. Gander and G. Wanner: From Euler, Ritz and Galerkin to Modern Computing , SIAM Review, 54(4)


Software:      up
FEM1D FEM2D NETREFINER FEM EP Mesh Generation


Links:      up

      NETGEN
      NGSolve
      SPIDER

General Information      up
Previous Knowledge:
These lectures are required for:
Objectives of the Lectures:
Get familiar with advanced numerical methods for the solution of multidimensional elliptic Boundary Value Problems (BVP) for Partial Differential Equations (PDE) and with tools for their analysis.

Contents:
Additional Information:
Examinations:
Lecture:
The lecture contains an oral examination.

Tutorial:
The mark of the tutorial consists of the assessment of the individual exercises, the presentations on the blackboard and a practical exercise on a LTTP (Long-Term Training Problem).