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The last week’s seminar

B The initial mesh is sufficiently refined to resolve data within a tolerance pe < €
(mesh fineness).

B The sum of the local error indicators of elements marked for refinement
amounts to a fixed portion of the global error estimator (marking strategy).




Framework |

B Q c R d € {2,3} polygonal/polyhedral bounded domain

B fecl?Q)

B (u,v)a6 = (AVy, Vv)o g With (u,v)o e the L(G)-inner product, G C .
B A is piecewise constant positive definite symmetric

B Continuous: Seek u € H}(Q) : (u,v)a0 = (f,v)o v € HE(Q)

|

Tu conforming regular triangulation of Q with piecewise constant mesh-size
H,ie., H|p =diamT for T € Ty.

VH space of continuous piecewise linear functions over Ty

Vi c VH with vanishing boundary
B Discrete: Seek uy € Vi : (up, ¢)an = (f,v)oa ¢ €V



Framework i

B f; piecewise constant function over 7y that is equal to mean value fr of F'
onelement T € Ty.

B Sy the set of inner sides of Ty
B For S € Sy define Qg as union of the two elements in Ty sharing S

B Hg denotes the diameter of S

B All partitions 7i match the discontinuities of A, i.e., the jumps of A are
located on Sp.



The DIFFERENCE to the last week’s seminar |

B Introduce data oscillation,

ose(/, ) = ( Y I~ o))

TeTH

B osc(f — Ty) measures intrinsic information missing in the averaging process
associated with finite elements, which fail to detect fine structures of f.

B The definition of osc(.) is unrelated to quadrature and quantifies data
oscillation with the least amount of information per element, namely one
degree of freedom associated with fr.




The DIFFERENCE to the last week’s seminar Il

B Last week mesh fineness

1/2
(D 1) " < pe
TeET
B This week oscillations

(X 00— o) " < e

TeTH



The MAIN result

Theorem
Let (uy)r be a sequence of FE solution produced by Algorithm C. Then there
exist positive constants Cy and 5 < 1, depending only on f and the initial grid,
such that

u — ug| a0 < CoB”,

with [[ul|% o := (u,u) a0

Comparison to PREVIOUS SEMINAR

B Any prescribed error tolerance e is met in finite steps
WITHOUT special tuning of initial mesh

B Theorem does NOT imply that the error decays in every single step: It may be
constant for a number of steps due to unresolved data oscillations



RESIDUAL-TYPE a posteriori error estimator

B Local error indicators

1/2
2 = | Hg Ts|% + |Hf |12,

with Jg = [AVUH]S Sz
B Global error estimator

M= Y 08

SeESH

lu — upl% 0 < Cing
lu — unl% o > Cong — CsllH(f — fa)ll5.q.



Marking |

Marking Strategy E

Given a parameter 0 < 6 < 1
1. Construct a subset Sy Sy such that

2. Let 7 be the set of elements with one side in Sy; and mark all these
elements.



Marking Il

Theorem (error reduction)

Let T;, be a refinement of T; such that each element of Ty, as well as each side
in Sy, contains a node of Ty, in its interior.

Then there exist constants . > 0 and 0 < « < 1, depending only on the initial
triangulation, such that for any e > 0

osc(f, Th) < pe = [lu—upllan <eVlu—unllan < allu—ugllagn.



Lemmata |

Lemma (Error reduction = ||ugy — us||% )

Let T, be a local refinement of Ty such that V. c V*. Then

lu —unlfo = llu = uali o = llur — unlli o

Galerkin orthogonality.

(u—uh,vh)AVQ:O,mevh = (u—wup, up—ug )ao=0
—

=u—uptup—ug



Lemmata |l
Lemma (|lug — unl|%q > ???||u — ugl|% o, proportional error decrease)

Let T;, be a refinement of Ty satisfying the assumption of the THEOREM. Then
there exist constants Cy4, C5 depending only on the initial triangulation such that

g < Callun —unlias + CsIH(f = fo)l3as VS € Sa

CONSTRUCTIVE: Integration by parts, Poincare inequality, triangle inequality.
O



Lemmata Il

Corollary (GLOBAL lower bound for the error decrease)
Assumptions as in THEOREM. Then

2

Cs
llu — UH||,%1,Q - 7030(f, Ti)?.

0
2
= >
L UHHA’Q - 20,04 C



Lemmata IV

By previous LEMMA and MARKING STRATEGY E we have

Py < D0k

SESH
<Cs Y lun—unlbas +Cs D IHF — fa)ll5as
SGSH SESH
< 2Cy|lun — unlh g + 2G5 H(f = fa)lF 0

= | Ba > " - O
Up — U — - =
h T UHIAQ = 55 H T 5

IH(f = fa)l§.0-

Insert error-estimator-LEMMA. O



Proof of THEOREM

lu—unlao = llu—unl?o — lug —unllig
62 Cs
< |lu — ug|? (1—7) —20sc 2,
<| alla0 5CiCh + 3 (f, Ta)
Case ||u — upllan > €. Hence

=l < lu = uslfr (1 - o + 22)
rllA G = Hlao \" " oc,cr T

<1 for p > 0 sufficiently small




EXAMPLES: Ingredients for CONVERGERNCE |

Interior node 1

Necessity of creating an interior node inside each refined triangle
A=1d,f=1,Q=(0,1)2

Tug = (1/12)”

Ty = 1/24(1,1,2,1,1)”



EXAMPLES: Ingredients for CONVERGERNCE II

F1G. 3.1. Refinement by bisecting all triangles twice.



EXAMPLES: Ingredients for CONVERGERNCE il

Interior node 2

Also happens "later" for osc(f,7,) =0

f is orthogonal to the basis functions of 7,k =0,1,2 = u, =0,k =0,1,2.
ur = 0,k = 3,4,...0on "squares" where f changes sign (symmetry of problem).
us, us behave like in previous example, ie. uz = uy




EXAMPLES: Ingredients for CONVERGERNCE IV

1l -1 1| -1 -1 1) -1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Th— T I

Fic. 3.2. Values of the function f of Example 3.6 for n = 3 (left), and grids Ty, for k =
0,1,2 (right).



EXAMPLES: Ingredients for CONVERGERNCE V

Data oscillation

osc(f,7u) has to be small
See previous example with additional refinement (interior nodes)



EXAMPLES: Ingredients for CONVERGERNCE VI

Th— T T— T

Fic. 3.3. Resulting grid T1 (left) and T3 (right) after performing three bisections on each
element of Tg and 77, respectively.



EXAMPLES: Ingredients for CONVERGERNCE VII

CONCLUSION

B Interior nodes are necessary for error decrease.

B Interior nodes are not sufficient if mesh does not sufficiently resolve
oscillation.

B We must readjust the mesh to
resolve osc( f, Ty) according to a decreasing tolerance.




EXAMPLES: Ingredients for CONVERGERNCE VIl

Lemma

Let 0 < v < 1 reduction factor of element size in one refinement step. Let
0<6<1,6:=(1—(1—~262)2 LetTy C Ty such that

OSC(f, 72H) > éOSC(f, TH)
Then if Ty, is obtained from Ty by refining AT LEAST Ty one has

osc(f,Tn) < aosc(f, Ta).



EXAMPLES: Ingredients for CONVERGERNCE IX

Per definition, fr = |T'|~! [, f is L?-projection of f onto piecewise constants on
T. LetT € T;,,T € Ty, T C T. Hence || f — frlr < ||f — fzllr. Per definition
hT < ’yhT

osc(f, Tn)® = Y hllf — frlls.r
T€77L
<7D half = Felost D BRI - Frlgr
TeTy TETH\%H
= (v* — 1)osc(f, Tu)? + osc(f, Tu)* < &*osc(f, Tu)>.



EXAMPLES: Ingredients for CONVERGERNCE X

Lemma

Let f be piecewise H®,0 < s < 1 over initial mesh. Redefine

osc(f,Tn) : ( Z h2+28”D5f||2 )

TET),

Let & := (1 — (1 —~4*+25)42)Y/2_ Then osc(f, Tr) < aosc(f, Ta).

Analogous to previous lemma. O



EXAMPLES: Ingredients for CONVERGERNCE XI

Marking Strategy D

Given a parameter 0 < § < 1 and the subset 7;; C T produced by Marking
Strategy E:
1. Enlarge Ty such that

osc(f, Ta) = Bosc(f, Tw ).

2. Mark all elements in 73 for refinement.



Convergent Algorithm C
Choose parameters 0 < 6,6 < 1.
Pick up any initial mesh 7, such that A is piecewise constant over 7.

Solve the system on 7 for the discrete solution .
Let k = 0.

Compute the local indicators 7g.
Construct 7;, by Marking Strategy D and parameter 6.

o o B~ w0 D=

Let 751 be a refinement of 7;, such that each element of 7, as well as each
of its sides, contains a node of 7.4 in its interior.

7. Solve the system on 7, for the discrete solution u.;.
8. Let k =k + 1 and go to 4.



The MAIN RESULT |

Theorem (CONVERGENCE)

For0 < 6,60 <1,let0 < o < 1, > 0 be given by the "error decreas theorem"
and 0 < & < 1 by the previous lemmata. Algorithm C produces a convergent
sequence (uy)ren, With

lu — wrllae < Co",
B = max{a, &},

osc(f, To
Co = max{|lu — uo|| 4.0, ose(f, To)

}.



The MAIN RESULT II

Proof.
INDUCTION. IA k=0 v.

IS Case study
1. Jlu — ugllan > Cop™t!

2. Jlu—upflap < CoBM.



The MAIN RESULT Il

Proof continued.

1. Marking Strategy D gives
osc(f, i) < a"osc(f, To) < *osc(f, To)
Hence for ¢ := Cp k!
osc(f, k) < pCoaf* < pCoB ' = pe.
Since, per assumption, ||u — ug|| 4,0 > € use IH and Error Reduction THEOREM

lu—uks1lla0 < Bllu — ukllan < CoBFt.



The MAIN RESULT IV

2. Since Ty is refinement of 7y, error cannot increase,

lu — ukrallag < llu—ukllag < Cos*H

0l

Practical method?

Algorithm C only needs 6, 4. The unknown constants «, &, x are not needed (but
give convergence rate).



EXAMPLE: Crack problem

B O={fz[+]|y/<P\{0<z<Ly=0}
W ou(r, ) =r'/? 51112 1.
BA=I1f=1
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Fic. 5.2. Comparison of CPU time for GERS and CONYV.
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FIG. 5.3. Comparison of reduction rate o* for GERS, CONV.



log(flu = uxllg)

0.00 = GERS
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FiG. 5.4. Quasioptimality of GERS and CONV. The optimal decay is indicated by the dashed
line with slope —1/2.
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Fic. 5.6. Comparison of local meshsizes h on the line y = 0 for GERS (dotted line) and CONV
(solid line) on meshes with approzimately same errors |[u — ug||q .
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FiG. 5.7. Comparison of CONV and MS.



EXAMPLE: Discontinuous coefficients

Q= (-1,1)>

B A = ay/ inthe first and third quadrants

B A = a-! in the second and fourth quadrants

B Exact weak solution of u for f = 0 is given by u(r, 0) = r7u(0) with

cos((m/2 —a)y) - cos((6 — 7/2 + p)7y) if0<6<7/2,
cos(py) - cos((0 — 7+ o)) ifr/2<6<m,
cos(a7y) - cos((0 — 7 — p)y) if 7 <6 <3m/2,
cos((w/2 = p)y) -cos(( —3n/2 —0)y) if3r/2<6< 2w



lw = ukll and n

1e+00 . = vkl
\ Mk
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Fi1a. 5.8. Error reduction: estimate and true error.



log([lu — urllg) and log(m)
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F1G. 5.9. Quasioptimality of CONYV: estimate and true error. The optimal decay is indicated
by the dashed line with slope —1/2.















Fi1G. 5.11. Graph of the discrete solution and underlying grid.



EXAMPLE: Variable source

BQ=(-1,1)%d=2,3
W u(z) = ¢ 10k
B A =1 and nonconstant f = —Au.

B f exhibits large variations in €, forcing "additional" refinement due to
oscillation.



TaBLE 5.1
Total number and number of marked elements per iteration in two dimensions (left) and three
dimensions (right): est.: marked elements due to error estimator, osc.: additionally marked ele-
ments to data oscillation.

‘ iter. || elements ‘ est. ‘ osc. | | iter. || elements | est. | osc. ‘
0 4 8 0 0 6 6 0
1 64 16 16 1 384 48 0
2 704 56 8 2 7776 48 48
3 2256 80 0 3 15936 576 0
4 4208 96 8 4 112320 5040 0
5 6624 112 24 5 860592 5136 | 720
6 8752 344 0 6 1693536 | 30144 0
7 17512 432 0
8 28368 608 0
9 42896 768 16

10 60216 | 2192 0
11 113040 | 2296 24
12 160592 | 3816 24




log([lu — ukllg) and log(ns)
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Fic. 5.12. Quasioptimality of CONV: estimate and true error in two dimensions. The optimal
decay is indicated by the line with slope —1/2.



log([lu — ufl) and log(7)
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Fic. 5.13. Quasioptimality of CONV: estimate and true error in three dimensions. The optimal
decay is indicated by the line with slope —1/3.
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full grid

5.14. Adaptive grids of the three-dimensional simulation on 9((—1,1)3\(0,1)3):
zoom into the grid of the 4th iteration (right).

Fic.
of the 2nd iteration (left),



