DATA OSCILLATION AND CONVERGENCE OF ADAPTIVE FEM

P. Morin, R. Nochetto, and K. Siebert

SIAM J. Numer. Anal., 38(2):466-488,2000

The last week's seminar

Assumptions

- The initial mesh is sufficiently refined to resolve data within a tolerance $\mu \epsilon \ll \epsilon$ (mesh fineness).
- The sum of the local error indicators of elements marked for refinement amounts to a fixed portion of the global error estimator (marking strategy).

Framework I

$■ \Omega \subset \mathbb{R}^{d}, d \in\{2,3\}$ polygonal/polyhedral bounded domain
■ $f \in L^{2}(\Omega)$
■ $(u, v)_{A, G}:=(A \nabla u, \nabla v)_{0, G}$ with $(u, v)_{0, G}$ the $L^{2}(G)$-inner product, $G \subset \Omega$.
■ A is piecewise constant positive definite symmetric
■ Continuous: Seek $u \in H_{0}^{1}(\Omega):(u, v)_{A, \Omega}=(f, v)_{0, \Omega} \quad v \in H_{0}^{1}(\Omega)$

- \mathcal{T}_{H} conforming regular triangulation of Ω with piecewise constant mesh-size H, i.e., $\left.H\right|_{T}=\operatorname{diam} T$ for $T \in \mathcal{T}_{H}$.
■ V^{H} space of continuous piecewise linear functions over \mathcal{T}_{H}
- $V_{0}^{H} \subset V^{H}$ with vanishing boundary

■ Discrete: Seek $u_{H} \in V_{0}^{H}:\left(u_{H}, \phi\right)_{A, \Omega}=(f, v)_{0, \Omega} \quad \phi \in V_{0}^{H}$

Framework II

- f_{H} piecewise constant function over \mathcal{T}_{H} that is equal to mean value f_{T} of F on element $T \in \mathcal{T}_{H}$.
- \mathcal{S}_{H} the set of inner sides of \mathcal{T}_{H}

■ For $S \in \mathcal{S}_{H}$ define Ω_{S} as union of the two elements in \mathcal{T}_{H} sharing S

- H_{S} denotes the diameter of S

Assumptions

- All partitions \mathcal{T}_{H} match the discontinuities of A, i.e., the jumps of A are located on \mathcal{S}_{H}.

The DIFFERENCE to the last week's seminar I

■ Introduce data oscillation,

$$
\operatorname{osc}\left(f, \mathcal{T}_{H}\right):=\left(\sum_{T \in \mathcal{T}_{H}}\left\|H\left(f-f_{T}\right)\right\|_{0, T}^{2}\right)^{1 / 2}
$$

- osc $\left(f-\mathcal{T}_{H}\right)$ measures intrinsic information missing in the averaging process associated with finite elements, which fail to detect fine structures of f.
- The definition of $\operatorname{osc}($.$) is unrelated to quadrature and quantifies data$ oscillation with the least amount of information per element, namely one degree of freedom associated with f_{T}.

The DIFFERENCE to the last week's seminar II

■ Last week mesh fineness

$$
\left(\sum_{T \in \mathcal{T}_{H}}\|H f\|_{H}^{2}\right)^{1 / 2} \leq \mu \epsilon
$$

- This week oscillations

$$
\left(\sum_{T \in \mathcal{T}_{H}}\left\|H\left(f-f_{T}\right)\right\|_{H}^{2}\right)^{1 / 2} \leq \mu \epsilon
$$

The MAIN result

Theorem

Let $\left(u_{k}\right)_{k}$ be a sequence of FE solution produced by Algorithm C. Then there exist positive constants C_{0} and $\beta<1$, depending only on f and the initial grid, such that

$$
\left\|u-u_{k}\right\|_{A, \Omega} \leq C_{0} \beta^{k}
$$

with $\|u\|_{A, \Omega}^{2}:=(u, u)_{A, \Omega}$.

Comparison to PREVIOUS SEMINAR

- Any prescribed error tolerance ϵ is met in finite steps WITHOUT special tuning of initial mesh
- Theorem does NOT imply that the error decays in every single step: It may be constant for a number of steps due to unresolved data oscillations

RESIDUAL-TYPE a posteriori error estimator

- Local error indicators

$$
\eta_{S}^{2}:=\left\|H_{S}^{1 / 2} J_{S}\right\|_{S}^{2}+\|H f\|_{\Omega_{S}}^{2}
$$

with $J_{S}:=\left[A \nabla u_{H}\right]_{S} \cdot \nu$.

- Global error estimator

$$
\eta_{H}^{2}:=\sum_{S \in \mathcal{S}_{H}} \eta_{S}^{2}
$$

Theorem

$$
\begin{aligned}
& \left\|u-u_{h}\right\|_{A, \Omega}^{2} \leq C_{1} \eta_{H}^{2} \\
& \left\|u-u_{h}\right\|_{A, \Omega_{S}}^{2} \geq C_{2} \eta_{S}^{2}-C_{3}\left\|H\left(f-f_{h}\right)\right\|_{0, \Omega_{s}}^{2}
\end{aligned}
$$

Marking I

Marking Strategy E

Given a parameter $0<\theta<1$

1. Construct a subset $\hat{\mathcal{S}}_{H} \subset \mathcal{S}_{H}$ such that

$$
\left(\sum_{S \in \hat{\mathcal{S}}_{H}} \eta_{S}^{2}\right)^{1 / 2} \geq \theta \eta_{H}
$$

2. Let $\hat{\mathcal{T}}_{H}$ be the set of elements with one side in $\hat{\mathcal{S}}_{H}$ and mark all these elements.

Marking II

Theorem (error reduction)

Let \mathcal{T}_{h} be a refinement of \mathcal{T}_{H} such that each element of $\hat{\mathcal{T}}_{H}$, as well as each side in $\hat{\mathcal{S}}_{H}$, contains a node of \mathcal{T}_{h} in its interior.
Then there exist constants $\mu>0$ and $0<\alpha<1$, depending only on the initial triangulation, such that for any $\epsilon>0$

$$
\operatorname{osc}\left(f, \mathcal{T}_{H}\right) \leq \mu \epsilon \Longrightarrow\left\|u-u_{H}\right\|_{A, \Omega} \leq \epsilon \vee\left\|u-u_{h}\right\|_{A, \Omega} \leq \alpha\left\|u-u_{H}\right\|_{A, \Omega} .
$$

Lemmata I

Lemma (Error reduction $\left.=\left\|u_{H}-u_{h}\right\|_{A, \Omega}^{2}\right)$
Let \mathcal{T}_{h} be a local refinement of \mathcal{T}_{H} such that $V^{H} \subset V^{h}$. Then

$$
\left\|u-u_{h}\right\|_{A, \Omega}^{2}=\left\|u-u_{H}\right\|_{A, \Omega}^{2}-\left\|u_{H}-u_{h}\right\|_{A, \Omega}^{2}
$$

Proof.

Galerkin orthogonality.

$$
\left(u-u_{h}, v_{h}\right)_{A, \Omega}=0, \forall v_{h} \in V^{h} \Longrightarrow(u-u_{h}, \underbrace{u_{h}-u_{H}}_{=u-u_{h}+u_{h}-u_{H}})_{A, \Omega}=0
$$

Lemmata II

Lemma ($\left\|u_{H}-u_{h}\right\|_{A, \Omega}^{2} \geq$??? $\left\|u-u_{H}\right\|_{A, \Omega}^{2}$ proportional error decrease)
Let \mathcal{T}_{h} be a refinement of \mathcal{T}_{H} satisfying the assumption of the THEOREM. Then there exist constants C_{4}, C_{5} depending only on the initial triangulation such that

$$
\eta_{S}^{2} \leq C_{4}\left\|u_{h}-u_{H}\right\|_{A, \Omega_{S}}^{2}+C_{5}\left\|H\left(f-f_{H}\right)\right\|_{0, \Omega_{S}}^{2} \quad \forall S \in \hat{\mathcal{S}}_{H}
$$

Proof.

CONSTRUCTIVE: Integration by parts, Poincare inequality, triangle inequality.

Lemmata III

Corollary (GLOBAL lower bound for the error decrease)
Assumptions as in THEOREM. Then

$$
\left\|u_{h}-u_{H}\right\|_{A, \Omega}^{2} \geq \frac{\theta^{2}}{2 C_{4} C_{1}}\left\|u-u_{H}\right\|_{A, \Omega}^{2}-\frac{C_{5}}{C_{4}} \operatorname{osc}\left(f, \mathcal{T}_{H}\right)^{2}
$$

Lemmata IV

Proof.

By previous LEMMA and MARKING STRATEGY E we have

$$
\begin{aligned}
& \quad \theta^{2} \eta_{H}^{2} \leq \sum_{S \in \hat{\mathcal{S}}_{H}} \eta_{S}^{2} \\
& \quad \leq C_{4} \sum_{S \in \hat{\mathcal{S}}_{H}}\left\|u_{h}-u_{H}\right\|_{A, \Omega_{S}}^{2}+C_{5} \sum_{S \in \hat{\mathcal{S}}_{H}}\left\|H\left(f-f_{H}\right)\right\|_{0, \Omega_{S}}^{2} \\
& \quad \leq 2 C_{4}\left\|u_{h}-u_{H}\right\|_{A, \Omega}^{2}+2 C_{5}\left\|H\left(f-f_{H}\right)\right\|_{0, \Omega}^{2} . \\
& \Longrightarrow\left\|u_{h}-u_{H}\right\|_{A, \Omega}^{2} \geq \frac{\theta^{2}}{2 C_{4}} \eta_{H}^{2}-\frac{C_{5}}{C_{4}}\left\|H\left(f-f_{H}\right)\right\|_{0, \Omega}^{2} .
\end{aligned}
$$

Insert error-estimator-LEMMA.

Proof of THEOREM

Proof.

$$
\begin{aligned}
& \left\|u-u_{h}\right\|_{A, \Omega}^{2}=\left\|u-u_{H}\right\|_{A, \Omega}^{2}-\left\|u_{H}-u_{h}\right\|_{A, \Omega}^{2} \\
& \leq\left\|u-u_{H}\right\|_{A, \Omega}^{2}\left(1-\frac{\theta^{2}}{2 C_{4} C_{1}}\right)+\frac{C_{5}}{C_{4}} \operatorname{osc}\left(f, \mathcal{T}_{H}\right)^{2}
\end{aligned}
$$

Case $\left\|u-u_{H}\right\|_{A, \Omega}>\epsilon$. Hence

$$
\left\|u-u_{h}\right\|_{A, \Omega}^{2} \leq\left\|u-u_{H}\right\|_{A, \Omega}^{2} \underbrace{\left(1-\frac{\theta^{2}}{2 C_{4} C_{1}}+\frac{C_{5}}{C_{4}} \mu^{2}\right)}_{<1 \text { for } \mu>0 \text { sufficiently small }}
$$

EXAMPLES: Ingredients for CONVERGERNCE I

```
Interior node 1
Necessity of creating an interior node inside each refined triangle
\(A=\mathrm{ld}, f \equiv 1, \Omega=(0,1)^{2}\)
\(" u_{H}=(1 / 12)\) "
\(" u_{h}=1 / 24(1,1,2,1,1) "\)
```


EXAMPLES: Ingredients for CONVERGERNCE II

Fig. 3.1. Refinement by bisecting all triangles twice.

EXAMPLES: Ingredients for CONVERGERNCE III

Interior node 2

Also happens "later" for $\operatorname{osc}\left(f, \mathcal{T}_{n}\right)=0$
f is orthogonal to the basis functions of $\mathcal{T}_{k}, k=0,1,2 \Longrightarrow u_{k} \equiv 0, k=0,1,2$.
$u_{k}=0, k=3,4, \ldots$ on "squares" where f changes sign (symmetry of problem).
u_{3}, u_{4} behave like in previous example, ie. $u_{3}=u_{4}$

EXAMPLES: Ingredients for CONVERGERNCE IV

1	-1	1	-1	1	-1	1	-1
-1	1	-1	1	-1	1	-1	1
1	-1	1	-1	1	-1	1	-1
-1	1	-1	1	-1	1	-1	1
1	-1	1	-1	1	-1	1	-1
-1	1	-1	1	-1	1	-1	1
1	-1	1	-1	1	-1	1	-1
-1	1	-1	1	-1	1	-1	1

Fig. 3.2. Values of the function f of Example 3.6 for $n=3$ (left), and grids \mathcal{T}_{k} for $k=$ $0,1,2$ (right).

EXAMPLES: Ingredients for CONVERGERNCE V

Data oscillation
$\operatorname{osc}\left(f, \mathcal{T}_{H}\right)$ has to be small
See previous example with additional refinement (interior nodes)

EXAMPLES: Ingredients for CONVERGERNCE VI

Fig. 3.3. Resulting grid \mathcal{I}_{1} (left) and \mathcal{I}_{2} (right) after performing three bisections on each element of \mathcal{T}_{0} and \mathcal{T}_{1}, respectively.

EXAMPLES: Ingredients for CONVERGERNCE VII

CONCLUSION

- Interior nodes are necessary for error decrease.
- Interior nodes are not sufficient if mesh does not sufficiently resolve oscillation.
- We must readjust the mesh to
resolve $\operatorname{osc}\left(f, \mathcal{T}_{H}\right)$ according to a decreasing tolerance.

EXAMPLES: Ingredients for CONVERGERNCE VIII

Lemma

Let $0<\gamma<1$ reduction factor of element size in one refinement step. Let
$0<\hat{\theta}<1, \hat{\alpha}:=\left(1-\left(1-\gamma^{2}\right) \hat{\theta}^{2}\right)^{1 / 2}$. Let $\hat{\mathcal{T}}_{H} \subset \mathcal{T}_{H}$ such that

$$
\operatorname{osc}\left(f, \hat{\mathcal{T}}_{H}\right) \geq \hat{\theta} \operatorname{osc}\left(f, \mathcal{T}_{H}\right)
$$

Then if \mathcal{T}_{h} is obtained from \mathcal{T}_{H} by refining AT LEAST $\hat{\mathcal{T}}_{H}$ one has

$$
\operatorname{osc}\left(f, \mathcal{T}_{h}\right) \leq \hat{\alpha} \operatorname{Osc}\left(f, \mathcal{T}_{H}\right)
$$

EXAMPLES: Ingredients for CONVERGERNCE IX

Proof.

Per definition, $f_{T}=|T|^{-1} \int_{T} f$ is L^{2}-projection of f onto piecewise constants on T. Let $T \in \mathcal{T}_{h}, \hat{T} \in \hat{\mathcal{T}}_{H}, T \subset \hat{T}$. Hence $\left\|f-f_{T}\right\|_{T} \leq\left\|f-f_{\hat{T}}\right\|_{T}$. Per definition $h_{T} \leq \gamma h_{\hat{T}}$.

$$
\begin{aligned}
& \operatorname{osc}\left(f, \mathcal{T}_{h}\right)^{2}=\sum_{T \in \mathcal{T}_{h}} h_{T}^{2}\left\|f-f_{T}\right\|_{0, T}^{2} \\
& \leq \gamma^{2} \sum_{\hat{T} \in \hat{\mathcal{T}}_{H}} h_{\hat{T}}^{2}\left\|f-f_{\hat{T}}\right\|_{0, \hat{T}}^{2}+\sum_{T \in \mathcal{T}_{H} \backslash \hat{\mathcal{T}}_{H}} h_{T}^{2}\left\|f-f_{T}\right\|_{0, T}^{2} \\
& =\left(\gamma^{2}-1\right) \operatorname{osc}\left(f, \hat{\mathcal{T}}_{H}\right)^{2}+\operatorname{osc}\left(f, \mathcal{T}_{H}\right)^{2} \leq \hat{\alpha}^{2} \operatorname{osc}\left(f, \mathcal{T}_{H}\right)^{2} .
\end{aligned}
$$

EXAMPLES: Ingredients for CONVERGERNCE X

Lemma

Let f be piecewise $H^{s}, 0<s \leq 1$ over initial mesh. Redefine

$$
\operatorname{osc}\left(f, \mathcal{T}_{h}\right):=\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{2+2 s}\left\|D^{s} f\right\|_{0, T}^{2}\right)^{1 / 2}
$$

Let $\hat{\alpha}:=\left(1-\left(1-\gamma^{2+2 s}\right) \hat{\theta}^{2}\right)^{1 / 2}$. Then osc $\left(f, \mathcal{T}_{h}\right) \leq \hat{\alpha} \operatorname{Osc}\left(f, \mathcal{T}_{H}\right)$.

Proof.

Analogous to previous lemma.

EXAMPLES: Ingredients for CONVERGERNCE XI

Marking Strategy D

Given a parameter $0<\hat{\theta}<1$ and the subset $\hat{\mathcal{T}}_{H} \subset \mathcal{T}_{H}$ produced by Marking Strategy E:

1. Enlarge $\hat{\mathcal{T}}_{H}$ such that

$$
\operatorname{osc}\left(f, \hat{\mathcal{T}}_{H}\right) \geq \hat{\theta} \operatorname{osc}\left(f, \mathcal{T}_{H}\right)
$$

2. Mark all elements in $\hat{\mathcal{T}}_{H}$ for refinement.

Convergent Algorithm C

Choose parameters $0<\theta, \hat{\theta}<1$.

1. Pick up any initial mesh \mathcal{T}_{0} such that A is piecewise constant over \mathcal{T}_{0}.
2. Solve the system on \mathcal{T}_{0} for the discrete solution u_{0}.
3. Let $k=0$.
4. Compute the local indicators η_{S}.
5. Construct $\hat{\mathcal{T}}_{k}$ by Marking Strategy \mathbf{D} and parameter $\hat{\theta}$.
6. Let \mathcal{T}_{k+1} be a refinement of \mathcal{T}_{k} such that each element of $\hat{\mathcal{T}}_{k}$, as well as each of its sides, contains a node of \mathcal{T}_{k+1} in its interior.
7. Solve the system on \mathcal{T}_{k+1} for the discrete solution u_{k+1}.
8. Let $k=k+1$ and go to 4 .

The MAIN RESULT I

Theorem (CONVERGENCE)

For $0<\theta, \hat{\theta}<1$, let $0<\alpha<1, \mu>0$ be given by the "error decreas theorem" and $0<\hat{\alpha}<1$ by the previous lemmata. Algorithm C produces a convergent sequence $\left(u_{k}\right)_{k \in \mathbb{N}_{0}}$ with

$$
\begin{aligned}
& \left\|u-u_{k}\right\|_{A, \Omega} \leq C_{0} \beta^{k} \\
& \beta=\max \{\alpha, \hat{\alpha}\} \\
& C_{0}=\max \left\{\left\|u-u_{0}\right\|_{A, \Omega}, \frac{\operatorname{osc}\left(f, \mathcal{T}_{0}\right)}{\alpha \mu}\right\} .
\end{aligned}
$$

The MAIN RESULT II

Proof.

INDUCTION. IA $k=0 \checkmark$.
IS Case study

1. $\left\|u-u_{k}\right\|_{A, \Omega}>C_{0} \beta^{k+1}$
2. $\left\|u-u_{k}\right\|_{A, \Omega} \leq C_{0} \beta^{k+1}$.

The MAIN RESULT III

Proof continued.

1. Marking Strategy D gives

$$
\operatorname{osc}\left(f, \mathcal{T}_{k}\right) \leq \hat{\alpha}^{k} \operatorname{osc}\left(f, \mathcal{T}_{0}\right) \leq \beta^{k} \operatorname{osc}\left(f, \mathcal{T}_{0}\right)
$$

Hence for $\epsilon:=C_{0} \beta^{k+1}$

$$
\operatorname{osc}\left(f, \mathcal{T}_{k}\right) \leq \mu C_{0} \alpha \beta^{k} \leq \mu C_{0} \beta^{k+1}=\mu \epsilon .
$$

Since, per assumption, $\left\|u-u_{k}\right\|_{A, \Omega}>\epsilon$ use IH and Error Reduction THEOREM

$$
\left\|u-u_{k+1}\right\|_{A, \Omega} \leq \beta\left\|u-u_{k}\right\|_{A, \Omega} \leq C_{0} \beta^{k+1} .
$$

The MAIN RESULT IV

Proof continued.

2. Since \mathcal{T}_{k+1} is refinement of \mathcal{T}_{k}, error cannot increase,

$$
\left\|u-u_{k+1}\right\|_{A, \Omega} \leq\left\|u-u_{k}\right\|_{A, \Omega} \leq C_{0} \beta^{k+1}
$$

Practical method?

Algorithm C only needs $\theta, \hat{\theta}$. The unknown constants $\alpha, \hat{\alpha}, \mu$ are not needed (but give convergence rate).

EXAMPLE: Crack problem

■ $\Omega=\{|x|+|y|<1\} \backslash\{0 \leq x \leq 1, y=0\}$

- $u(r, \theta)=r^{1 / 2} \sin \frac{\theta}{2}-\frac{1}{4} r^{2}$.
- $A=I, f=1$.

Fig. 5.2. Comparison of CPU time for GERS and CONV.

Fig. 5.3. Comparison of reduction rate α^{k} for GERS, CONV.

FIG. 5.4. Quasioptimality of GERS and CONV. The optimal decay is indicated by the dashed line with slope $-1 / 2$.

Fig. 5.6. Comparison of local meshsizes h on the line $y=0$ for GERS (dotted line) and CONV (solid line) on meshes with approximately same errors $\left\|u-u_{k}\right\|_{\Omega}$.

Fig. 5.7. Comparison of $C O N V$ and $M S$.

EXAMPLE: Discontinuous coefficients

■ $\Omega=(-1,1)^{2}$
■ $A=a_{1} I$ in the first and third quadrants

- $A=a_{2} I$ in the second and fourth quadrants

■ Exact weak solution of u for $f \equiv 0$ is given by $u(r, \theta)=r^{\gamma} \mu(\theta)$ with

$$
\mu(\theta)= \begin{cases}\cos ((\pi / 2-\sigma) \gamma) \cdot \cos ((\theta-\pi / 2+\rho) \gamma) & \text { if } 0 \leq \theta \leq \pi / 2 \\ \cos (\rho \gamma) \cdot \cos ((\theta-\pi+\sigma) \gamma) & \text { if } \pi / 2 \leq \theta \leq \pi \\ \cos (\sigma \gamma) \cdot \cos ((\theta-\pi-\rho) \gamma) & \text { if } \pi \leq \theta<3 \pi / 2 \\ \cos ((\pi / 2-\rho) \gamma) \cdot \cos ((\theta-3 \pi / 2-\sigma) \gamma) & \text { if } 3 \pi / 2 \leq \theta \leq 2 \pi\end{cases}
$$

$\left\|u-u_{k}\right\|_{\Omega}$ and η_{k}

Fig. 5.8. Error reduction: estimate and true error.

Fig. 5.9. Quasioptimality of CONV: estimate and true error. The optimal decay is indicated by the dashed line with slope $-1 / 2$.

Fig. 5.11. Graph of the discrete solution and underlying grid.

EXAMPLE: Variable source

■ $\Omega=(-1,1)^{d}, d=2,3$
■ $u(x)=e^{-10|x|^{2}}$

- $A=I$ and nonconstant $f=-\Delta u$.

■ f exhibits large variations in Ω, forcing "additional" refinement due to oscillation.

Table 5.1
Total number and number of marked elements per iteration in two dimensions (left) and three dimensions (right): est.: marked elements due to error estimator, osc.: additionally marked elements to data oscillation.

iter.	elements	est.	osc.
0	4	8	0
1	64	16	16
2	704	56	8
3	2256	80	0
4	4208	96	8
5	6624	112	24
6	8752	344	0
7	17512	432	0
8	28368	608	0
9	42896	768	16
10	60216	2192	0
11	113040	2296	24
12	160592	3816	24

iter.	elements	est.	osc.
0	6	6	0
1	384	48	0
2	7776	48	48
3	15936	576	0
4	112320	5040	0
5	860592	5136	720
6	1693536	30144	0

FIG. 5.12. Quasioptimality of CONV: estimate and true error in two dimensions. The optimal decay is indicated by the line with slope $-1 / 2$.

FIG. 5.13. Quasioptimality of CONV: estimate and true error in three dimensions. The optimal decay is indicated by the line with slope $-1 / 3$.

Fig. 5.14. Adaptive grids of the three-dimensional simulation on $\partial\left((-1,1)^{3} \backslash(0,1)^{3}\right)$: full grid of the $2 n d$ iteration (left), zoom into the grid of the 4 th iteration (right).

