DATA OSCILLATION AND CONVERGENCE OF ADAPTIVE FEM

P. Morin, R. Nochetto, and K. Siebert SIAM J. Numer. Anal., 38(2):466–488,2000

The last week's seminar

Assumptions

- The initial mesh is sufficiently refined to resolve data within a tolerance $\mu \epsilon \ll \epsilon$ (mesh fineness).
- The sum of the local error indicators of elements marked for refinement amounts to a fixed portion of the global error estimator (marking strategy).

Framework I

- $\Omega \subset \mathbb{R}^d, d \in \{2, 3\}$ polygonal/polyhedral bounded domain
 $f \in L^2(\Omega)$

■ *A* is piecewise constant positive definite symmetric

- **Continuous:** Seek $u \in H_0^1(\Omega) : (u, v)_{A,\Omega} = (f, v)_{0,\Omega}$ $v \in H_0^1(\Omega)$
- **T**_{*H*} conforming regular triangulation of Ω with piecewise constant mesh-size *H*, i.e., $H|_T = \text{diam}T$ for $T \in \mathcal{T}_H$.

 \blacksquare V^H space of continuous piecewise linear functions over \mathcal{T}_H

 $\blacksquare V_0^H \subset V^H$ with vanishing boundary

Discrete: Seek $u_H \in V_0^H : (u_H, \phi)_{A,\Omega} = (f, v)_{0,\Omega} \qquad \phi \in V_0^H$

Framework II

- f_H piecewise constant function over \mathcal{T}_H that is equal to mean value f_T of F on element $T \in \mathcal{T}_H$.
- \blacksquare S_H the set of inner sides of T_H
- For $S \in S_H$ define Ω_S as union of the two elements in \mathcal{T}_H sharing S
- \blacksquare H_S denotes the diameter of S

Assumptions

All partitions \mathcal{T}_H match the discontinuities of A, i.e., the jumps of A are located on \mathcal{S}_H .

The DIFFERENCE to the last week's seminar I

Introduce <u>data oscillation</u>,

$$\operatorname{osc}(f, \mathcal{T}_H) := \left(\sum_{T \in \mathcal{T}_H} \|H(f - f_T)\|_{0,T}^2\right)^{1/2}$$

- $osc(f T_H)$ measures intrinsic information missing in the averaging process associated with finite elements, which fail to detect fine structures of f.
- The definition of osc(.) is <u>unrelated to quadrature</u> and quantifies data oscillation with the least amount of information per element, namely one degree of freedom associated with f_T .

The DIFFERENCE to the last week's seminar II

Last week mesh fineness

$$\left(\sum_{T\in\mathcal{T}_H} \|Hf\|_H^2\right)^{1/2} \le \mu\epsilon.$$

This week <u>oscillations</u>

$$\left(\sum_{T\in\mathcal{T}_H} \|H(f-f_T)\|_H^2\right)^{1/2} \le \mu\epsilon.$$

The MAIN result

Theorem

Let $(u_k)_k$ be a sequence of FE solution produced by Algorithm C. Then there exist positive constants C_0 and $\beta < 1$, depending only on f and the initial grid, such that

$$|u - u_k||_{A,\Omega} \le C_0 \beta^k,$$

with $||u||^2_{A,\Omega} := (u, u)_{A,\Omega}$.

Comparison to PREVIOUS SEMINAR

Theorem does NOT imply that the error decays in every single step: It may be constant for a number of steps due to unresolved data oscillations

RESIDUAL-TYPE a posteriori error estimator

Local error indicators

$$\eta_S^2 := \|H_S^{1/2} J_S\|_S^2 + \|Hf\|_{\Omega_S}^2$$

with $J_S := [A \nabla u_H]_S \cdot \nu$.

Global error estimator

$$\eta_H^2 := \sum_{S \in \mathcal{S}_H} \eta_S^2$$

Theorem

$$\begin{aligned} \|u - u_h\|_{A,\Omega}^2 &\leq C_1 \eta_H^2 \\ \|u - u_h\|_{A,\Omega_S}^2 &\geq C_2 \eta_S^2 - C_3 \|H(f - f_h)\|_{0,\Omega_s}^2 \end{aligned}$$

Marking I

Marking Strategy E

Given a parameter $0 < \theta < 1$

1. Construct a subset $\hat{\mathcal{S}}_H \subset \mathcal{S}_H$ such that

$$\left(\sum_{S\in\hat{\mathcal{S}}_H}\eta_S^2\right)^{1/2} \ge \theta\eta_H.$$

2. Let $\hat{\mathcal{T}}_H$ be the set of elements with one side in $\hat{\mathcal{S}}_H$ and mark all these elements.

Marking II

Theorem (error reduction)

Let \mathcal{T}_h be a refinement of \mathcal{T}_H such that each element of $\hat{\mathcal{T}}_H$, as well as each side in $\hat{\mathcal{S}}_H$, contains a node of \mathcal{T}_h in its interior.

Then there exist constants $\mu > 0$ and $0 < \alpha < 1$, depending only on the initial triangulation, such that for any $\epsilon > 0$

$$osc(f, \mathcal{T}_H) \le \mu \epsilon \implies \|u - u_H\|_{A,\Omega} \le \epsilon \lor \|u - u_h\|_{A,\Omega} \le \alpha \|u - u_H\|_{A,\Omega}.$$

Lemmata I

Lemma (Error reduction = $||u_H - u_h||^2_{A,\Omega}$)

Let \mathcal{T}_h be a local refinement of \mathcal{T}_H such that $V^H \subset V^h$. Then

$$||u - u_h||_{A,\Omega}^2 = ||u - u_H||_{A,\Omega}^2 - ||u_H - u_h||_{A,\Omega}^2.$$

Proof.

Galerkin orthogonality.

$$(u - u_h, v_h)_{A,\Omega} = 0, \forall v_h \in V^h \implies (u - u_h, \underbrace{u_h - u_H}_{=u - u_h + u_h - u_H})_{A,\Omega} = 0$$

Lemmata II

Lemma $(||u_H - u_h||^2_{A,\Omega} \ge ???||u - u_H||^2_{A,\Omega}$ proportional error decrease)

Let \mathcal{T}_h be a refinement of \mathcal{T}_H satisfying the assumption of the THEOREM. Then there exist constants C_4, C_5 depending only on the initial triangulation such that

$$\eta_S^2 \le C_4 \|u_h - u_H\|_{A,\Omega_S}^2 + C_5 \|H(f - f_H)\|_{0,\Omega_S}^2 \qquad \forall S \in \hat{\mathcal{S}}_H.$$

Proof.

CONSTRUCTIVE: Integration by parts, Poincare inequality, triangle inequality.

Lemmata III

Corollary (GLOBAL lower bound for the error decrease)

Assumptions as in THEOREM. Then

$$\|u_h - u_H\|_{A,\Omega}^2 \ge \frac{\theta^2}{2C_4C_1} \|u - u_H\|_{A,\Omega}^2 - \frac{C_5}{C_4} osc(f, \mathcal{T}_H)^2.$$

Lemmata IV

Proof.

By previous LEMMA and MARKING STRATEGY E we have

$$\begin{aligned} \theta^2 \eta_H^2 &\leq \sum_{S \in \hat{\mathcal{S}}_H} \eta_S^2 \\ &\leq C_4 \sum_{S \in \hat{\mathcal{S}}_H} \|u_h - u_H\|_{A,\Omega_S}^2 + C_5 \sum_{S \in \hat{\mathcal{S}}_H} \|H(f - f_H)\|_{0,\Omega_s}^2 \\ &\leq 2C_4 \|u_h - u_H\|_{A,\Omega}^2 + 2C_5 \|H(f - f_H)\|_{0,\Omega_s}^2. \\ &\implies \|u_h - u_H\|_{A,\Omega}^2 \geq \frac{\theta^2}{2C_4} \eta_H^2 - \frac{C_5}{C_4} \|H(f - f_H)\|_{0,\Omega_s}^2. \end{aligned}$$

Insert error-estimator-LEMMA.

Proof of THEOREM

Proof.

$$\begin{aligned} \|u - u_h\|_{A,\Omega}^2 &= \|u - u_H\|_{A,\Omega}^2 - \|u_H - u_h\|_{A,\Omega}^2 \\ &\leq \|u - u_H\|_{A,\Omega}^2 \Big(1 - \frac{\theta^2}{2C_4C_1}\Big) + \frac{C_5}{C_4} \mathsf{osc}(f,\mathcal{T}_H)^2. \end{aligned}$$

Case $||u - u_H||_{A,\Omega} > \epsilon$. Hence

$$\|u - u_h\|_{A,\Omega}^2 \le \|u - u_H\|_{A,\Omega}^2 \underbrace{\left(1 - \frac{\theta^2}{2C_4C_1} + \frac{C_5}{C_4}\mu^2\right)}_{\mathbf{u} - \mathbf{u}_H}$$

<1 for $\mu > 0$ sufficiently small

EXAMPLES: Ingredients for CONVERGERNCE I

Interior node 1

Necessity of creating an interior node inside each refined triangle

$$A = \mathsf{Id}, f \equiv 1, \Omega = (0, 1)^2$$

" $u_H = (1/12)$ "
" $u_h = 1/24(1, 1, 2, 1, 1)$ "

EXAMPLES: Ingredients for CONVERGERNCE II

FIG. 3.1. Refinement by bisecting all triangles twice.

EXAMPLES: Ingredients for CONVERGERNCE III

Interior node 2

Also happens "later" for $osc(f, T_n) = 0$

f is orthogonal to the basis functions of $\mathcal{T}_k, k = 0, 1, 2 \implies u_k \equiv 0, k = 0, 1, 2$.

 $u_k = 0, k = 3, 4, ...$ on "squares" where *f* changes sign (symmetry of problem). u_3, u_4 behave like in previous example, ie. $u_3 = u_4$

EXAMPLES: Ingredients for CONVERGERNCE IV

FIG. 3.2. Values of the function f of Example 3.6 for n = 3 (left), and grids T_k for k = 0, 1, 2 (right).

EXAMPLES: Ingredients for CONVERGERNCE V

Data oscillation

 $osc(f, T_H)$ has to be small

See previous example with additional refinement (interior nodes)

EXAMPLES: Ingredients for CONVERGERNCE VI

FIG. 3.3. Resulting grid \mathcal{T}_1 (left) and \mathcal{T}_2 (right) after performing three bisections on each element of \mathcal{T}_0 and \mathcal{T}_1 , respectively.

EXAMPLES: Ingredients for CONVERGERNCE VII

CONCLUSION

- Interior nodes are necessary for error decrease.
- Interior nodes are not sufficient if mesh does not sufficiently resolve oscillation.
- We must readjust the mesh to resolve $osc(f, T_H)$ according to a decreasing tolerance.

EXAMPLES: Ingredients for CONVERGERNCE VIII

Lemma

Let $0 < \gamma < 1$ reduction factor of element size in one refinement step. Let $0 < \hat{\theta} < 1, \hat{\alpha} := (1 - (1 - \gamma^2)\hat{\theta}^2)^{1/2}$. Let $\hat{\mathcal{T}}_H \subset \mathcal{T}_H$ such that

 $osc(f, \hat{\mathcal{T}}_H) \geq \hat{\theta}osc(f, \mathcal{T}_H).$

Then if \mathcal{T}_h is obtained from \mathcal{T}_H by refining AT LEAST $\hat{\mathcal{T}}_H$ one has

 $osc(f, \mathcal{T}_h) \leq \hat{\alpha}osc(f, \mathcal{T}_H).$

EXAMPLES: Ingredients for CONVERGERNCE IX

Proof.

Per definition, $f_T = |T|^{-1} \int_T f$ is L^2 -projection of f onto piecewise constants on T. Let $T \in \mathcal{T}_h, \hat{T} \in \hat{\mathcal{T}}_H, T \subset \hat{T}$. Hence $||f - f_T||_T \leq ||f - f_{\hat{T}}||_T$. Per definition $h_T \leq \gamma h_{\hat{T}}$.

$$\begin{aligned} &\mathsf{osc}(f,\mathcal{T}_{h})^{2} = \sum_{T\in\mathcal{T}_{h}} h_{T}^{2} \|f - f_{T}\|_{0,T}^{2} \\ &\leq \gamma^{2} \sum_{\hat{T}\in\hat{\mathcal{T}}_{H}} h_{\hat{T}}^{2} \|f - f_{\hat{T}}\|_{0,\hat{T}}^{2} + \sum_{T\in\mathcal{T}_{H}\setminus\hat{\mathcal{T}}_{H}} h_{T}^{2} \|f - f_{T}\|_{0,T}^{2} \\ &= (\gamma^{2} - 1)\mathsf{osc}(f,\hat{\mathcal{T}}_{H})^{2} + \mathsf{osc}(f,\mathcal{T}_{H})^{2} \leq \hat{\alpha}^{2}\mathsf{osc}(f,\mathcal{T}_{H})^{2} \end{aligned}$$

EXAMPLES: Ingredients for CONVERGERNCE X

Lemma

Let f be piecewise $H^s, 0 < s \le 1$ over initial mesh. Redefine

$$osc(f, \mathcal{T}_h) := \Big(\sum_{T \in \mathcal{T}_h} h_T^{2+2s} \|D^s f\|_{0,T}^2 \Big)^{1/2}.$$

Let
$$\hat{\alpha} := (1 - (1 - \gamma^{2+2s})\hat{\theta}^2)^{1/2}$$
. Then $osc(f, \mathcal{T}_h) \leq \hat{\alpha}osc(f, \mathcal{T}_H)$.

Proof.

Analogous to previous lemma.

EXAMPLES: Ingredients for CONVERGERNCE XI

Marking Strategy D

Given a parameter $0 < \hat{\theta} < 1$ and the subset $\hat{\mathcal{T}}_H \subset \mathcal{T}_H$ produced by Marking Strategy E:

1. Enlarge $\hat{\mathcal{T}}_H$ such that

$$\operatorname{osc}(f, \hat{\mathcal{T}}_H) \geq \hat{\theta} \operatorname{osc}(f, \mathcal{T}_H).$$

2. Mark all elements in $\hat{\mathcal{T}}_H$ for refinement.

Convergent Algorithm C

Choose parameters $0 < \theta, \hat{\theta} < 1$.

- 1. Pick up any initial mesh \mathcal{T}_0 such that *A* is piecewise constant over \mathcal{T}_0 .
- **2**. Solve the system on T_0 for the discrete solution u_0 .

3. Let k = 0.

- 4. Compute the local indicators η_S .
- 5. Construct $\hat{\mathcal{T}}_k$ by **Marking Strategy D** and parameter $\hat{\theta}$.
- 6. Let \mathcal{T}_{k+1} be a refinement of \mathcal{T}_k such that each element of $\hat{\mathcal{T}}_k$, as well as each of its sides, contains a node of \mathcal{T}_{k+1} in its interior.
- 7. Solve the system on \mathcal{T}_{k+1} for the discrete solution u_{k+1} .
- 8. Let k = k + 1 and go to 4.

The MAIN RESULT I

Theorem (CONVERGENCE)

For $0 < \theta, \hat{\theta} < 1$, let $0 < \alpha < 1, \mu > 0$ be given by the "error decreas theorem" and $0 < \hat{\alpha} < 1$ by the previous lemmata. Algorithm *C* produces a convergent sequence $(u_k)_{k \in \mathbb{N}_0}$ with

$$\begin{aligned} \|u - u_k\|_{A,\Omega} &\leq C_0 \beta^k, \\ \beta &= \max\{\alpha, \hat{\alpha}\}, \\ C_0 &= \max\{\|u - u_0\|_{A,\Omega}, \frac{\textit{osc}(f, \mathcal{T}_0)}{\alpha \mu}\}. \end{aligned}$$

The MAIN RESULT II

Proof.

INDUCTION. IA $k = 0 \checkmark$.

IS Case study

- 1. $||u u_k||_{A,\Omega} > C_0 \beta^{k+1}$ 2. $||u u_k||_{A,\Omega} \le C_0 \beta^{k+1}$.

The MAIN RESULT III

Proof continued.

1. Marking Strategy D gives

 $\operatorname{osc}(f, \mathcal{T}_k) \leq \hat{\alpha}^k \operatorname{osc}(f, \mathcal{T}_0) \leq \beta^k \operatorname{osc}(f, \mathcal{T}_0)$

Hence for $\epsilon := C_0 \beta^{k+1}$

$$\operatorname{osc}(f, \mathcal{T}_k) \le \mu C_0 \alpha \beta^k \le \mu C_0 \beta^{k+1} = \mu \epsilon.$$

Since, per assumption, $||u - u_k||_{A,\Omega} > \epsilon$ use IH and Error Reduction THEOREM

$$||u - u_{k+1}||_{A,\Omega} \le \beta ||u - u_k||_{A,\Omega} \le C_0 \beta^{k+1}.$$

The MAIN RESULT IV

Proof continued.

2. Since T_{k+1} is refinement of T_k , error cannot increase,

$$||u - u_{k+1}||_{A,\Omega} \le ||u - u_k||_{A,\Omega} \le C_0 \beta^{k+1}$$

Practical method?

Algorithm C only needs θ , $\hat{\theta}$. The unknown constants α , $\hat{\alpha}$, μ are not needed (but give convergence rate).

EXAMPLE: Crack problem

$$\Omega = \{ |x| + |y| < 1 \} \setminus \{ 0 \le x \le 1, y = 0 \}$$
$$u(r, \theta) = r^{1/2} \sin \frac{\theta}{2} - \frac{1}{4}r^2.$$
$$A = I, f = 1.$$

FIG. 5.2. Comparison of CPU time for GERS and CONV.

FIG. 5.3. Comparison of reduction rate α^k for GERS, CONV.

FIG. 5.4. Quasioptimality of GERS and CONV. The optimal decay is indicated by the dashed line with slope -1/2.

FIG. 5.6. Comparison of local meshsizes h on the line y = 0 for GERS (dotted line) and CONV (solid line) on meshes with approximately same errors $|||u - u_k|||_{\Omega}$.

FIG. 5.7. Comparison of CONV and MS.

EXAMPLE: Discontinuous coefficients

 $\square \Omega = (-1,1)^2$

- $A = a_1 I$ in the first and third quadrants
- $A = a_2 I$ in the second and fourth quadrants

Exact weak solution of u for $f \equiv 0$ is given by $u(r, \theta) = r^{\gamma} \mu(\theta)$ with

$$\mu(\theta) = \begin{cases} \cos((\pi/2 - \sigma)\gamma) \cdot \cos((\theta - \pi/2 + \rho)\gamma) & \text{if } 0 \le \theta \le \pi/2, \\ \cos(\rho\gamma) \cdot \cos((\theta - \pi + \sigma)\gamma) & \text{if } \pi/2 \le \theta \le \pi, \\ \cos(\sigma\gamma) \cdot \cos((\theta - \pi - \rho)\gamma) & \text{if } \pi \le \theta < 3\pi/2, \\ \cos((\pi/2 - \rho)\gamma) \cdot \cos((\theta - 3\pi/2 - \sigma)\gamma) & \text{if } 3\pi/2 \le \theta \le 2\pi \end{cases}$$

FIG. 5.8. Error reduction: estimate and true error.

FIG. 5.9. Quasioptimality of CONV: estimate and true error. The optimal decay is indicated by the dashed line with slope -1/2.

FIG. 5.11. Graph of the discrete solution and underlying grid.

EXAMPLE: Variable source

$$\Omega = (-1, 1)^d, d = 2, 3$$
$$u(x) = e^{-10|x|^2}$$

•
$$A = I$$
 and nonconstant $f = -\Delta u$.

f exhibits large variations in Ω, forcing "additional" refinement due to oscillation.

TABLE 5.1

Total number and number of marked elements per iteration in two dimensions (left) and three dimensions (right): est.: marked elements due to error estimator, osc.: additionally marked elements to data oscillation.

iter.	elements	est.	OSC.
0	4	8	0
1	64	16	16
2	704	56	8
3	2256	80	0
4	4208	96	8
5	6624	112	24
6	8752	344	0
7	17512	432	0
8	28368	608	0
9	42896	768	16
10	60216	2192	0
11	113040	2296	24
12	160592	3816	24

iter.	elements	est.	OSC.
0	6	6	0
1	384	48	0
2	7776	48	48
3	15936	576	0
4	112320	5040	0
5	860592	5136	720
6	1693536	30144	0

FIG. 5.12. Quasioptimality of CONV: estimate and true error in two dimensions. The optimal decay is indicated by the line with slope -1/2.

FIG. 5.13. Quasioptimality of CONV: estimate and true error in three dimensions. The optimal decay is indicated by the line with slope -1/3.

FIG. 5.14. Adaptive grids of the three-dimensional simulation on $\partial((-1,1)^3\setminus(0,1)^3)$: full grid of the 2nd iteration (left), zoom into the grid of the 4th iteration (right).