Numerical Methods for Elliptic Partial Differential Equations

last update:

[
Lecture ]  [ Tutorial ]  [ Tutorials ]   [ Practical exercises ]   [ Transparencies ]  [ Lecture Notes ]   [ Additional literature ]   [ Software ]  [ Links ]  [ General ]   [ Home ]

Lecture      up

Numerical Methods for Elliptic Partial Differential Equations - Lectures

(CourseId 327.003, 4 hours per week, Semester 6)

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

- Examination questions: up
as   pdf-file  

- The super question: up
as   pdf-file  

- Examination dates: up
Link to examination dates


Time and room:

Wed, March 6, 201908:30 - 10:00 Room: HS 12Lecture 01
Thu, March 7, 201908:30 - 10:00 Room: HS 12Lecture 02
Tue, March 13, 201908:30 - 10:00 Room: HS 12Lecture 03
Wed, March 14, 201908:30 - 10:00 Room: HS 12Lecture 04
Thu, March 20, 201908:30 - 10:00 Room: HS 12Lecture 05
Thu, March 21, 201908:30 - 10:00 Room: HS 12Lecture 06
Thu, March 27, 201908:30 - 10:00 Room: HS 12Lecture 07
Thu, March 28, 201908:30 - 10:00 Room: HS 12Lecture 08
Wed, April 3, 201908:30 - 10:00 Room: HS 12Lecture 09
Thu, April 4, 201908:30 - 10:00 Room: HS 12Lecture 10
Wed, April 10, 201908:30 - 10:00 Room: HS 12Lecture 11
Thu, April 11, 201908:30 - 10:00 Room: HS 12Lecture 12
Easter Break
Thu, May 2, 201908:30 - 10:00 Room: HS 12Lecture 13
Wed, May 8, 201908:30 - 10:00 Room: HS 12Lecture 14
Thu, May 9, 201908:30 - 10:00 Room: HS 14Lecture 15
Wed, May 15, 201908:30 - 10:00 Room: HS 12Lecture 16
Thu, May 16, 201908:30 - 10:00 Room: HS 12Lecture 17
Wed, May 22, 201908:30 - 10:00 Room: HS 12Lecture 18
Thu, May 23, 201908:30 - 10:00 Room: HS 12Lecture 19
Wed, May 29, 201908:30 - 10:00 Room: HS 12Lecture 20
Thu, May 30, 2019Christi HimmelfahrtLecture is canceled
Wed, June 05, 201908:30 - 10:00 Room: HS 12Lecture 21
Thu, June 06, 2019Lecture is canceled
Wed, June 12, 201908:30 - 10:00 Room: HS 12Lecture 22
Thu, June 13, 201908:30 - 10:00 Room: HS 12Lecture 23
Tue, June 18, 201908:30 - 10:00 Room: S2 346Lecture 24
Wed, June 19, 201908:30 - 10:00 Room: HS 12Lecture 25
Thu, June 20, 2019FronleichnamLecture is canceled
Wed, June 26, 201908:30 - 10:00 Room: HS 12Lecture 26
Thu, June 27, 201908:30 - 10:00 Room: HS 12Lecture 27

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer



Tutorial      up

Numerical Methods for Elliptic Partial Differential Equations - Tutorials

(CourseId 327.004, 2 hours per week, Semester 6)

Tutorials held by: DI Rainer Schneckenleitner

Time and room:

Tue, March 12, 201910:15 - 11:45 Room: S3 047Tutorial 01
Tue, March 19, 201910:15 - 11:45 Room: S3 047Tutorial 02
Tue, March 26, 201910:15 - 11:45 Room: S3 047Tutorial 03
Tue, April 2, 201910:15 - 11:45 Room: S3 047Tutorial 04
Tue, April 9, 201910:15 - 11:45 Room: S3 047Tutorial 05
Easter Break
Tue, April 30, 201910:15 - 11:45 Room: S3 047Tutorial 06
Tue, May 7, 201910:15 - 11:45 Room: S3 047Tutorial 07
Tue, May 14, 201910:15 - 11:45 Room: S3 047Tutorial 08
Tue, May 21, 201910:15 - 11:45 Room: S3 047Tutorial 09
Tue, May 28, 201910:15 - 11:45 Room: S3 047Tutorial 10
Tue, June 4, 201910:15 - 11:45 Room: S3 047Tutorial 11
Tue, June 11, 2019Pfingstdienstagcanceled
Tue, June 18, 201910:15 - 11:45 Room: S3 047Tutorial 12
Tue, June 25, 201910:15 - 11:45 Room: S3 047Tutorial 13

Tutorials      up
Tutorial 01March 12, 2019pdf
Tutorial 02March 19, 2019pdf
Tutorial 03March 26, 2019
Tutorial 04April 2, 2019
Tutorial 05April 9, 2019
Easter Break
Tutorial 06April 30, 2019
Tutorial 07May 7, 2019
Tutorial 08May 14, 2019
Tutorial 09May 21, 2019
Tutorial 10May 28, 2019
Tutorial 11June 4, 2019
Tutorial 12June 12, 2019
Tutorial 13June 13, 2019

Transparencies      up
Transparency 00a: colourMath. Models
Transparency 00b: colourRemark 1.2
Transparency 01: colourEx 1.1 - 1.2
Transparency 02: colourEx 1.3 - 1.4
Transparency 03: colourEx 1.5 - 1.6
Transparency 04: colour1.2.2 Linear elasticity
Transparency 04a: colourEx 1.7 - 1.9
Transparency 04b: colourRemark 1.5
Transparency 05: colourEx 1.10 - 1.11
Transparency 05a: b/w1.3.1. Mixed VF I: General
Transparency 05b: b/w1.3.1. Mixed VF II: Navier-Stokes
Transparency 05c: b/w1.3.1. Mixed VF III: Oseen/Stokes
Transparency 05d: b/w1.3.1. Mixed VF IV: Poisson equ.
Transparency 05e: b/w1.3.1. Mixed VF V: 1st bih. BVP
Transparency 05f: b/w1.3.2. Dual VF I: General
Transparency 05g: b/w1.3.2. Dual VF II: Cont.
Transparency 05h: b/w1.3.2. Dual VF III: Example
Transparency 2-01: colourD(/Omega)
Transparency 2-02: colourWeek derivatives
Transparency 2-03: colourDistributions
Transparency 2-04: colourDistributive derivatives
Transparency 2-05: colourLebesgue spaces Lp
Transparency 2-06: colourSobolev spaces W_p^k
Transparency 2-07: colourTraces
Transparency 2-08: colourNegative-order Sobolev spaces
Transparency 2-09: colourH(div), H(curl), H^s
Transparency 2-10: colourH^{1/2}(\Gamma) ~ \gamma_oH^1(\Omega)
Transparency 2-11: colourTh. 2.13 Norm equivalence theorem
Transparency 2-12: colourExercise 2.14
Transparency 2-13: colourFriedrichs' inequalities I
Transparency 2-14: colourFriedrichs' inequalities II
Transparency 2-15: colour2.4. Poincaré
Transparency 2-16: colour2.5. Main Formula of DIC
Transparency 2-17: colour2.5. Gauss' Theorem
Transparency 2-18: colour2.5. Further Integration Formulas
Transparency 2-19: colour2.5. H(div) - Trace Theorem
Transparency 2-20: colour2.5. H(div) Inverse Trace Theorem
Transparency 2-21: colour2.6. Extension Problem
Transparency 2-22: colour2.6. Extension Problem (cont)
Transparency 2-23: colour2.7. Embedding
Transparency 2-24: colour2.7. Embedding (cont)
Transparency 06: colourGALERKIN-RITZ-Scheme
Transparency 06a: b/wCourant's idea
Transparency 06b: colourIllustration
Transparency 07a: colourRemark 2.1.1-2
Transparency 07b: b/wRemark 2.1.3-4
Transparency 08a: colourModel Problem
Transparency 08b: colourCHIP
Transparency 09: colourMesh for CHIP
Transparency 10a: b/wCHIP.NET
Transparency 10b: colourMeshing
Transparency 10c: colourTables
Transparency 10d: b/wFiner Mesh
Transparency 11a: b/wMesh Generation 1.-2.
Transparency 11b: b/wMesh Generation 3.
Transparency 11c: colourMesh Generation 4.
Transparency 11d: colourMesh Generation 5.
Transparency 12: colourMapping principle
Transparency 13a: colourstiffness matrix (1)
Transparency 13b: b/wstiffness matrix (2)
Transparency 13c: b/wstiffness matrix (3)
Transparency 14a: b/w2nd kind BC
Transparency 14b: b/w3rd kind BC
Transparency 14c: b/w1st kind BC
Transparency 15: colourIllustration
Transparency 16: b/wExercises 2.5 - 2.8
Transparency 17a: colourRoad Map I
Transparency 17b: b/wRoad Map II
Transparency 17c: colourTheorem 2.6 = Approximation Theorem
Transparency 17d: colourSketch of the Proof
Transparency 18a: colourRemark 2.7.1
Transparency 18b: b/wRemark 2.7.2-5, E 2.9, E 2.10
Transparency 19: b/wTheorem 2.8 (H1-Convergence)
Transparency 20: b/wRemark 2.9.1-4
Transparency 21: b/wRemark 2.9.5
Transparency 22: b/wRemark 2.14
Transparency 23: colourVar.Crimes I
Transparency 24: colourVar.Crimes II
Transparency 25: colourVar.Crimes III
Transparency 26: colourRemark 3.21
Transparency 27a: b/wDWR I
Transparency 27b: b/wDWR II
Transparency 27c: colourAFEM
Transparency T4-01a: colour4.1.1 DG VF: model problem
Transparency T4-01b: colour4.1.1 DG VF: notations and formulation
Transparency T4-02: colour4.1.1 DG VF: DG bilinear form
Transparency T4-03: colourAlternative Proof
Transparency T4-04: colourConsistency + DG-Scheme
Transparency T4-05: colourRemark 4.3.: Pros & Cons
Transparency T4-06a: colourLemma 4.4.
Transparency T4-06b: colourAlternative Proof
Transparency T4-07: colourLemma 4.5.: ellipticity
Transparency T4-08: colourProof
Transparency T4-09: colourLemma 4.7.: boundedness
Transparency T4-10: colourLemma 4.9.: Trace inequality
Transparency T4-11: colourTheoerem 4.10.: Error estimate
Transparency T4-12: colourProof (cont.)
Transparency T4-13: colourProof (cont.)
Transparency T4-14: colourProof (cont.) + Remark 4.11
Transparency T4-15: colour4.2.: FDM
Transparency T4-16: colour4.2.: FVM
Transparency T4-17: colour4.2.: Stability+Appr.=>discrete Conv.
Transparency T4-18: colourSummary

Additional Transparencies      up
Transparency 28: colourRemark 3.1
Transparency 29: colourExample, Remark 3.2
Transparency 30: b/wSecondary Grids I
Transparency 31: b/wSecondary Grids II
Transparency 32: colourRemark 3.3 + E 3.1
Transparency 33: b/wRemark 3.4
Transparency 34: colourBoundary boxes
Transparency 35: colourRemark 3.5 + E 3.2
Transparency 36a: b/wGalerkin-Petrov I
Transparency 36b: b/wGalerkin-Petrov II
Transparency 36c: colourGalerkin-Petrov Approach
Transparency 36d: colourTwo Galerkin-Petrov Schemes
Transparency 36e: colourSystem of FV-Equations
Transparency 37a: b/wRemark 3.6.1-3.6.4
Transparency 37b: b/wRemark 3.6.5-3.6.6
Transparency 38: colourRef + Remark 3.7
Transparency 39: colourDiscrete Convergence I
Transparency 40: b/wDiscrete Convergence II
Transparency 41: b/wDiscrete Convergence III
Transparency 42: b/wDiscrete Convergence IV (E 3.3)
Transparency 43: b/wDiscrete Convergence V
Transparency 44: colourDiscrete Convergence VI
Transparency 39-44: b/wSummary
Transparency 45: b/w4. BEM 4.1 Introduction I
Transparency 46: b/w4.1 Introduction II
Transparency 47: b/w4.1 Introduction III
Transparency 48: b/w4.1 Introduction IV
Transparency 49a: b/wSubsection 4.2.1
Transparency 50a: colourSection 4.3: CM I
Transparency 50b: b/wSection 4.3: CM II
Transparency 51a: colourSection 4.3: CM III
Transparency 51b: b/wSection 4.3: CM IV
Transparency 52a: b/wSection 4.3: CM V
Transparency 52b: colourSection 4.3: CM VI
Transparency 53: b/wSection 4.3: CM VII
Transparency 54: b/wSection 4.3: CM VIII
Transparency 55: b/wSection 4.3: CM IV
Transparency 56: b/wSection 4.3: CM X
Transparency 57: b/wSection 4.3: CM XI
Transparency 58a: b/wBIO: Def.
Transparency 58b: b/wBIO: Calderon
Transparency 58c: b/wBIO: D2N
Transparency 59a: b/w4.4.2 Properties I
Transparency 59b: b/w4.4.2 Properties II
Transparency 60: b/wGalerkin I
Transparency 61: b/wGalerkin II
Transparency 62: b/wGalerkin III
Transparency 63: b/wGalerkin IV
Transparency 64: b/wGalerkin V


Basic Lecture Notes:      up
[1]   Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
Postscript-File
[2]   Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996 (FEM and FVM).
Postscript-File
[3]   Jung M., Langer U.: Methode der finiten Elemente für Ingenieure: Eine Einführung in die numerischen Grundlagen und Computersimulation. Springer Fachmedien, Wiesbaden 2013, 2., überarb. u. erw. Aufl. 2013, XVI, 639 S. 172 Abb. (practical aspects of the FEM).
http://www.springer.com/springer+vieweg/maschinenbau/book/978-3-658-01100-0
[4]   Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements. Springer, New York 2008 (FEM and BEM):
FEBEBook
[5]   Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005 (solvers for systems of algebraic equations).
[6]   Zulehner W.: Numerische Mathematik: Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme. Mathematik Kompakt. Birkhäuser Verlag, Basel-Bosten-Berlin 2008.
[7]   Rivière B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia 2008.
[8]   Di Pietro D.A., Ern A.: Mathematical Aspects of Discontinuous Galerkin Method. Springer-Verlag, Berlin, Heidelberg, 2012.

Additional Literature:      up
[1]   Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version: Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9 Homepage: http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/ftp.html#books
[2]   Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3]   Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002. [4]   Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5]   Deuflhard P., Weiser M.: Numerische Mathematik: Band 3 "Adaptive Lösung partieller Differentialgleichungen. de Gruyter Verlag, Berlin 2011 (englische Version ist 2012 ebenfalls bei de Gruyter erschienen).
[6]   Heinrich B.: Finite Difference Methods on Irregular Networks. Akademie-Verlag, Berlin 1987.
[7]   Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin-Heidelberg 2000.
[8]   Monk P.: Finite Element Methods for Maxwell's Equations. Oxford Science Publications, Oxford 2003.
[9]   Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[10]   Schwarz H.R.: Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[11]   Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley - Teubner, 1996.


History:      up

      Historical Papers
      Gander's presentation
      M.J. Gander and G. Wanner: From Euler, Ritz and Galerkin to Modern Computing , SIAM Review, 54(4)


Software:      up
FEM1D FEM2D NETREFINER FEM EP Mesh Generation


Links:      up

      NETGEN
      NGSolve
      SPIDER

General Information      up
Previous Knowledge:
These lectures are required for:
Objectives of the Lectures:
Get familiar with advanced numerical methods for the solution of multidimensional elliptic Boundary Value Problems (BVP) for Partial Differential Equations (PDE) and with tools for their analysis.

Contents:
Additional Information:
Examinations:
Lecture:
The lecture contains an oral examination.

Tutorial:
The mark of the tutorial consists of the assessment of the individual exercises, the presentations on the blackboard and a practical exercise on a LLTP (Long-Term Training Problem).