CISM COURSE COMPUTATIONAL ACOUSTICS

Solvers Part 4: Multigrid I

Ulrich Langer and **Martin Neumüller** Institute of Computational Mathematics Johannes Kepler University Linz Udine, May 23-27, 2016

- 1. A first idea
- 2. Two-grid cycle
- 3. Multigrid cycle
- 4. Numerical examples

Summary

CISM

- 2. Two-grid cycle
- 3. Multigrid cycle
- 4. Numerical examples

Summary

Idea: Analyze the damped Jacobi method in more detail **Simplification:** 1d-Poisson problem:

■ $\Omega = (0, 1)$, V_0 continuous and piecwise linear functions ■ Find $u \in V_0$: $\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx \ \forall v \in V_0$

Linear system:

$$\mathbf{K}\underline{u} = \underline{f},$$

with

$$\mathbf{K} = \frac{1}{h} \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix} \text{ and } \underline{f} = \left[\int_0^1 f(x) N_i(x) dx \right]_{i=1}^{n_h}$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = 1:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \text{ for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

$$\square_{0,0}^{1,0} = \left[\frac{1}{0,0} \right]_{0,0}^{1,0} = \left[\frac{1}{0,0} \right]_{$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Damped Jacobi method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

$$\blacksquare \text{ Use } \underline{f} = 0 \text{ and } \underline{u}^{(0)} = [\text{rand}(0, 1)]_{j=1}^{n_h}.$$

$$\blacksquare \text{ Apply Jacobi method for } \alpha = \frac{2}{3}:$$

Observations:

In all cases the error is converging very slowly For $\alpha = \frac{2}{3}$ the error is getting smoother

Explanation: Fourier expansion: $\mathbf{K} \underline{\phi}_i = \lambda_i \underline{\phi}_i$ with

$$\lambda_{i} = \frac{4}{h} \sin^{2} \left(\frac{i \pi}{2n} \right) \quad \text{and} \quad \underline{\phi}_{i} = \left[\sqrt{2n} \sin(ik\pi h) \right]_{k=1}^{n_{h}}$$
$$\rightarrow \quad \underline{e}^{(0)} := \underline{u}^{(0)} - \underline{u} = \sum_{i=1}^{n_{h}} \alpha_{i} \underline{\phi}_{i}.$$

Error propagation:

$$\underline{e}^{(k+1)} = \mathbf{S} \underline{e}^{(k)} = \left[I - \alpha \mathbf{D}^{-1} \mathbf{K}\right] \underline{e}^{(k)} = \left[I - \alpha \mathbf{D}^{-1} \mathbf{K}\right]^k \sum_{i=1}^{n_h} \alpha_i \underline{\phi}_i$$
$$= \sum_{i=1}^{n_h} \alpha_i \left[1 - \alpha \frac{h}{2} \lambda_i\right]^k \underline{\phi}_i = \sum_{i=1}^{n_h} \alpha_i \left[1 - 2\alpha \sin^2\left(\frac{i\pi}{2n}\right)\right]^k \underline{\phi}_i.$$

Estimate:

JZ

CISM

$$\begin{vmatrix} 1 - 2\alpha \sin^2\left(\frac{i\pi}{2n}\right) & \text{for } i = 1, \dots, n-1 \\ i = \frac{n}{2}, \dots, n-1; \\ \left| 1 - 2\alpha \sin^2\left(\frac{i\pi}{2n}\right) \right| \le \max\left\{ |1 - \alpha|, |1 - 2\alpha| \right\} = \frac{1}{3} \quad \text{for } \alpha^* = \frac{2}{3} \\ i = 1, \dots, \frac{n}{2}; \\ \left| 1 - 2\alpha \sin^2\left(\frac{i\pi}{2n}\right) \right| \le \max\left\{ \left| 1 - 2\alpha \sin^2\left(\frac{\pi}{2n}\right) \right|, |1 - \alpha| \right\} \\ = \mathcal{O}(1 - \alpha \frac{\pi^2}{2}h^2) \approx 1. \end{aligned}$$

- $\blacksquare \rightarrow$ fast reduction of the high oscillating error components
 - \rightarrow almost no reduction of the smooth part of the error

2. Two-grid cycle

- 3. Multigrid cycle
- 4. Numerical examples

Summary

Idea: Damped Jacob method + subspace correction step:

- The damped Jacobi method leads to a "smooth" error
- ightarrow the correction has to be smooth
- A smooth correction can be good approximated on a coarser grid

Algorithm Two-grid cycle

Require: Approximation $\underline{u}^{(k)}$

- 1: Apply **smoothing** procedure $\rightarrow \underline{u}^{(k+1/3)}$
- 2: Apply subspace correction $\rightarrow \underline{u}^{(k+2/3)}$
- 3: Apply **smoothing** procedure $\rightarrow \underline{u}^{(k+1)}$

Subspace correction

- Given smoothed approximation $u^{(k)} \in V_0 \leftrightarrow \underline{u}^{(k)} \in \mathbb{R}^{n_h}$
- Cosider subspace comming from a coarser grid: $W_0 \subset V_0$

Subspace correction:

$$\underline{w}^{(k)} \in \mathbb{R}^{n_h} \leftrightarrow w^{(k)} \in W_0: \ a(w^{(k)}, v) = \ell(v) - a(u^{(k)}, v) \quad \forall v \in W_0,$$

with equivalent system of linear equations

$$\mathbf{K}_C \, \underline{w}_C^{(k)} = \underline{r}_C^{(k)}$$

Connection
$$\underline{w}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \leftrightarrow \underline{w}^{(k)} \in \mathbb{R}^{n_{h}}$$
?
Connection $\underline{r}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \leftrightarrow \underline{r}^{(k)} = \underline{f} - \mathbf{K} \underline{u}^{(k)} \in \mathbb{R}^{n_{h}}$?

Connection $\underline{w}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{w}^{(k)} \in \mathbb{R}^{n_{h}}$?

For any $w^{(k)} \in W_0 \subset V_0$

$$w^{(k)} = \sum_{i=1}^{n_C} w_i^C N_i^C$$
 or $w^{(k)} = \sum_{j=1}^{n_h} w_j N_j.$

Basis transformation:

$$W_{0} \ni N_{i}^{C} = \sum_{j=1}^{n_{h}} P[j,i]N_{j}, \text{ with } P[j,i] \in \mathbb{R} \text{ for } j = 1, \dots, n_{h}.$$
$$w^{(k)} = \sum_{i=1}^{n_{C}} w_{i}^{C} N_{i}^{C} = \sum_{i=1}^{n_{C}} w_{i}^{C} \left[\sum_{j=1}^{n_{h}} P[j,i]N_{j} \right]$$
$$= \sum_{j=1}^{n_{h}} \left[\sum_{i=1}^{n_{C}} P[j,i]w_{i}^{C} \right] N_{j} = \sum_{j=1}^{n_{h}} \left[\mathbf{P}\underline{w}_{C}^{(k)} \right]_{j} N_{j}.$$

Hence we have

 $\underline{w}^{(k)} = \mathbf{P}w_C^{(k)}.$ with **prolongation** matrix $\mathbf{P} \in \mathbb{R}^{n_h \times n_C}$.

Connection $\underline{r}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{r}^{(k)} \in \mathbb{R}^{n_{h}}$?

Consider the coarse grid residual

$$\underline{r}_C^{(k)} \in \mathbb{R}^{n_C} \quad \leftrightarrow \quad \langle R^{(k)}, v \rangle := \ell(v) - a(u^{(k)}, v) \quad \text{for all } v \in W_0.$$

We have

$$\underline{r}_{C}^{(k)}[i] = \langle R^{(k)}, N_{i}^{C} \rangle = \langle R^{(k)}, \sum_{j=1}^{n_{h}} P[j, i] N_{j} \rangle$$
$$= \sum_{j=1}^{n_{h}} P[j, i] \langle R^{(k)}, N_{j} \rangle = \sum_{j=1}^{n_{h}} P[j, i] \underline{r}^{(k)}[j] = \left[\mathbf{P}^{\top} \, \underline{r}^{(k)} \right]_{i}.$$

Hence we have

$$\underline{r}_{C}^{(k)} = \mathbf{P}^{\top} \underline{r}^{(k)} =: \mathbf{R} \underline{r}^{(k)} = \mathbf{R} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right]$$

with the **restriction** matrix $\mathbf{R} := \mathbf{P}^{\top} \in \mathbb{R}^{n_C \times n_h}$.

Basis transformation:

Grid transfer operators

Prolongation and restriction matrices:

- \mathbf{P} and \mathbf{R} are sparse matrices
- $I \rightarrow$ Grid transfer is of optimal complexity

Two-grid cycle

This results in the following algorithm:

Algorithm Two-grid cycle **Require:** Approximation $u^{(k)}$, f 1: Pre-smoothing: $u^{(k)} = S^{\nu}(u^{(k)}, f)$ 2: Compute defect: $\underline{d}^{(k)} = f - \mathbf{K} \, \underline{u}^{(k)}$ $d_C = \mathbf{R} \, d^{(k)}$ 3: Restriction: 4: Solve coarse problem: $\mathbf{K}_C w_C = d_C$ $w^{(k)} = \mathbf{P} w_C$ 5: Prolongation: $u^{(k)} = u^{(k)} + w^{(k)}$ 6: Correction: $u^{(k)} = S^{\nu}(u^{(k)}, f)$ 7: Post-smoothing:

Convergence?

What to do if coarse problem is still to large?

Two possible ways:

Fourier analysis (using eigenvalues and eigenvectors of K)

- \rightarrow additive splitting
- Multiplicative splitting

Need: iteration matrix for the error

Start with smoother: damped Jacobi method:

Consider exact solution $\underline{u} \in \mathbb{R}^{n_h}$ and approximation $\underline{u}^{(k)} \in \mathbb{R}^{n_h}$. Then we have

$$\underline{e}^{(k+1)} := \underline{u}^{(k+1)} - \underline{u} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \, \underline{u}^{(k)} \right] - \underline{u}$$
$$= \underline{u}^{(k)} - \underline{u} + \alpha \mathbf{D}^{-1} \mathbf{K} \left[\underline{u} - \underline{u}^{(k)} \right]$$
$$= \left[I - \alpha \, \mathbf{D}^{-1} \mathbf{K} \right] \underline{e}^{(k)} =: \mathbf{S} \underline{e}^{(k)} = \dots = \mathbf{S}^{k} \underline{e}^{(0)}.$$

Coarse grid correction:

$$\underline{e}_{cor}^{(k)} := \left(\underline{u}^{(k)} + \underline{w}^{(k)}\right) - \underline{u} = \underline{e}^{(k)} + \underline{w}^{(k)} = \underline{e}^{(k)} + \mathbf{P} \, \underline{w}_{C}$$

$$= \underline{e}^{(k)} + \mathbf{P} \, \mathbf{K}_{C}^{-1} \, \mathbf{R} \, \underline{d}^{(k)} = \underline{e}^{(k)} + \mathbf{P} \, \mathbf{K}_{C}^{-1} \, \mathbf{R} \left[\underline{f} - \mathbf{K} \, \underline{u}^{(k)}\right]$$

$$= \underline{e}^{(k)} - \mathbf{P} \, \mathbf{K}_{C}^{-1} \, \mathbf{R} \, \mathbf{K} \, \underline{e}^{(k)} = \left[I - \mathbf{P} \, \mathbf{K}_{C}^{-1} \, \mathbf{R} \, \mathbf{K}\right] \underline{e}^{(k)}$$

$$=: \mathbf{T} \underline{e}^{(k)}.$$

Error of the two-grid cycle:

$$\underline{e}_{\mathrm{tg}}^{(k+1)} = \mathbf{S}^{\nu} \, \mathbf{T} \, \mathbf{S}^{\nu} \, \underline{e}_{\mathrm{tg}}^{(k)} = \mathbf{S}^{\nu} \left[I - \mathbf{P} \, \mathbf{K}_{C}^{-1} \, \mathbf{R} \, \mathbf{K} \right] \mathbf{S}^{\nu} \, \underline{e}_{\mathrm{tg}}^{(k)} =: \mathbf{M} \, \underline{e}_{\mathrm{tg}}^{(k)}.$$

Estimate:

$$||\underline{e}_{\mathrm{tg}}^{(k+1)}|| \leq ||\mathbf{M}|| \ ||\underline{e}_{\mathrm{tg}}^{(k)}|| \leq ||\mathbf{M}||^k \ ||\underline{e}_{\mathrm{tg}}^{(0)}||.$$

First attempt:

$$||\mathbf{M}|| = ||\mathbf{S}^{\nu} \mathbf{T} \mathbf{S}^{\nu}|| \le ||\mathbf{T}|| ||\mathbf{S}||^{2\nu}.$$

We know

$$||\mathbf{S}||^{\nu} = \left[1 - \mathcal{O}(h^{\alpha})\right]^{\nu} \to 0 \quad \text{for } \nu \to \infty.$$

But:

$$\begin{aligned} ||\mathbf{T}|| &= \sup_{0 \neq \underline{v} \in \mathbb{R}^{n_h}} \frac{||\mathbf{T} \, \underline{v}||}{||\underline{v}||} = \sup_{0 \neq \underline{v} \in \mathbb{R}^{n_h}} \frac{||\left[I - \mathbf{P} \, \mathbf{K}_C^{-1} \, \mathbf{R} \, \mathbf{K}\right] \underline{v}||}{||\underline{v}||} \\ &\geq \sup_{\substack{0 \neq \underline{v} \in \mathbb{R}^{n_h} \\ \mathbf{K} \, \underline{v} \in \ker(\mathbf{R})}} \frac{||\left[I - \mathbf{P} \, \mathbf{K}_C^{-1} \, \mathbf{R} \, \mathbf{K}\right] \underline{v}||}{||\underline{v}||} = 1. \end{aligned}$$

Overestimation of

 $||\mathbf{M}||$?

Better splitting:

 $||\mathbf{T} \mathbf{S}^{\nu}|| = ||\mathbf{T} \mathbf{K}^{-1} \mathbf{K} \mathbf{S}^{\nu}|| \le ||\mathbf{T} \mathbf{K}^{-1}|| ||\mathbf{K} \mathbf{S}^{\nu}||.$

Approximation property

$$||\mathbf{T}\,\mathbf{K}^{-1}|| \le c\,h^{\delta}$$

Smoothing property

 $||\mathbf{K}\,\mathbf{S}^{\nu}|| \leq \eta(\nu)h^{-\delta} \quad \text{with } \eta(\nu) \to 0 \quad \text{as } \nu \to \infty.$

Then we have convergence

$$||M|| \le ||\mathbf{T} \mathbf{S}^{\nu}|| \le c \, \eta(\nu) < 1,$$

for $\nu \in \mathbb{N}$ large enough.

Assumptions:

- d-dimensional Poisson problem
- Some regularity assumptions (\rightarrow restriction for the domain Ω)

Theorem (Approximation property)

 $||\mathbf{T} \mathbf{K}^{-1}|| \le c_1 h^{2-d}.$

Theorem (Smoothing property)

$$||\mathbf{K}\,\mathbf{S}^{\nu}|| \le \frac{c_2}{\nu}\,h^{d-2}.$$

 \rightarrow convergence of two-grid cycle for ν large enough!

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

What to do if coarse problem is still to large?

Idea: Approximate the solution of the coarse grid problem by another two-grid cycle \rightarrow repeat this idea recursively

 \rightarrow Need: hierarchy of grids

- System matrices \mathbf{K}_{ℓ} on each level $\ell = 0, 1, \dots, L$.
- Restriction matrix \mathbf{R}_{ℓ} between level ℓ and level $\ell 1$

Prolongation matrix \mathbf{P}_{ℓ} between level ℓ and level $\ell - 1$ Solve

$$K_{\ell} \underline{u}_{\ell} = \underline{f}_{\ell} \qquad \text{for } \ell = L.$$

CISM

Algorithm MGCycle **Require:** $\underline{u}_{\ell}, f_{\ell}$ 1: if $\ell = 0$ then Coarse grid solver: $\underline{u}_{\ell} = \mathbf{K}_{\ell}^{-1} f_{\ell}$ 2: 3: else Pre-smoothing: $\underline{u}_{\ell} = S_{\ell}(\underline{u}_{\ell}, f_{\ell})$ 4: 5: Compute defect: $\underline{d}_{\ell} = f_{\ell} - \mathbf{K}_{\ell} \, \underline{u}_{\ell}$ 6: Restriction: $d_{\ell-1} = \mathbf{R}_{\ell} d_{\ell}$ Initialize: $w_{\ell-1} = 0$ 7: 8: for $i = 1, \ldots, \gamma$ do $MGCycle(w_{\ell-1}, d_{\ell-1})$ 9: 10: end for 11: Prolongation: $w_{\ell} = \mathbf{P}_{\ell} \underline{w}_{\ell-1}$ Correction: 12: $\underline{u}_{\ell} = \underline{u}_{\ell} + \underline{w}_{\ell}$ Post-smoothing: $\underline{u}_{\ell} = S_{\ell}(\underline{u}_{\ell}, f_{\ell})$ 13: 14: end if

Possible cycles:

■ $\gamma = 1$ V-cycle: cheapest cycle \rightarrow analysis for general problems difficult

\square $\gamma = 2$ **W-cycle**: more expensive \rightarrow analysis easier

Full multigrid cycle (Nested iteration)

Idea: Start with coarsest level \rightarrow use as initial guess for the next finer level:

Algorithm Full multigrid cycle	
1: Coarse problem:	$\underline{u}_0 = \mathbf{K}_0^{-1} \underline{f}_0$
2: for $\ell = 1, \ldots, L$ do	· · · · · · · · · · · · · · · · · · ·
3: Prolongate:	$\underline{u}_{\ell} = \mathbf{P}_{\ell} \underline{u}_{\ell-2}$
4: Apply multigrid-cycle:	$\mathrm{MGCycle}(\underline{u}_{\ell}, \underline{f}_{\ell})$
5: end for	

- Adaptivity \rightarrow construction of the finer grids
- Non-linear problems \rightarrow good initial guess

- 2. Two-grid cycle
- 3. Multigrid cycle

4. Numerical examples

Summary

Multigrid - example

- $\Omega = (0, 1)$, decomposed with constant mesh size $h_{\ell} = 2^{-\ell}$ ■ Find $u \in V_0$: $\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx \ \forall v \in V_0$
- Prec. CG-method. rel. residual error reduction $\varepsilon = 10^{-8}$

		MDS		MG	
level	dof n _h	iter	time [s]	iter	time [s]
3	9	5	-	5	-
4	17	11	-	6	-
5	33	16	-	7	-
6	65	20	-	7	-
7	129	22	-	8	-
8	257	24	-	8	-
9	513	26	-	8	-
10	1 025	26	-	8	-
11	2 049	27	0.0015	8	0.0014
12	4 097	29	0.0029	8	0.0024
13	8 193	29	0.0060	8	0.0049
14	16 385	30	0.0131	8	0.0103
15	32 769	32	0.0315	8	0.0255
16	65 537	33	0.0668	9	0.0558
17	131 073	33	0.1377	9	0.1273
18	262 145	34	0.3147	9	0.2359
19	524 289	34	0.6527	9	0.4715
20	1 048 577	35	1.3391	9	0.9583

- 2. Two-grid cycle
- 3. Multigrid cycle
- 4. Numerical examples

Summary

Two-grid cycle

- Coarse grid correction
- □ Grid transfer operators
- Two-grid analysis
- Multigrid cycle
- Numerica experiments

[1] W. Hackbusch.

Multigrid methods and applications, volume 4 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1985.

[2] U. Trottenberg, C. W. Oosterlee, and A. Schüller. *Multigrid*.

Academic Press, Inc., San Diego, CA, 2001.

With contributions by A. Brandt, P. Oswald and K. Stüben.

