CISM COURSE COMPUTATIONAL ACOUSTICS

Solvers

Part 4: Multigrid I

Ulrich Langer and Martin Neumüller Institute of Computational Mathematics Johannes Kepler University Linz Udine, May 23-27, 2016

Outline

1. A first idea
2. Two-grid cycle
3. Multigrid cycle
4. Numerical examples

Summary

Outline

1. A first idea

2. Two-grid cycle
3. Multigrid cycle
4. Numerical examples

Summary

A first idea

Idea: Analyze the damped Jacobi method in more detail Simplification: 1d-Poisson problem:

- $\Omega=(0,1), V_{0}$ continuous and piecwise linear functions
\square Find $u \in V_{0}: \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \forall v \in V_{0}$
Linear system:

$$
\mathbf{K} \underline{u}=\underline{f},
$$

with

$$
\mathbf{K}=\frac{1}{h}\left(\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \text { and } \underline{f}=\left[\int_{0}^{1} f(x) N_{i}(x) \mathrm{d} x\right]_{i=1}^{n_{h}}
$$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=0$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=1$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=2$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=3$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=4$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=5$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=10$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=15$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=20$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=25$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=30$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=35$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=40$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=45$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=50$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=55$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=1$:

Figure: $k=60$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=0$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=1$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=2$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=3$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=4$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=5$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=10$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

■ Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=15$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=20$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=25$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=30$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=35$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=40$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=45$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=50$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=55$

A first idea

Damped Jacobi method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

\square Use $\underline{f}=0$ and $\underline{u}^{(0)}=[\operatorname{rand}(0,1)]_{j=1}^{n_{h}}$.

- Apply Jacobi method for $\alpha=\frac{2}{3}$:

Figure: $k=60$

A first idea

Observations:

- In all cases the error is converging very slowly
- For $\alpha=\frac{2}{3}$ the error is getting smoother

Explanation: Fourier expansion: $\mathbf{K} \underline{\phi}_{i}=\lambda_{i} \underline{\phi}_{i}$ with

$$
\begin{gathered}
\lambda_{i}=\frac{4}{h} \sin ^{2}\left(\frac{i \pi}{2 n}\right) \quad \text { and } \quad \underline{\phi}_{i}=[\sqrt{2 n} \sin (i k \pi h)]_{k=1}^{n_{h}} \\
\rightarrow \quad \underline{e}^{(0)}:=\underline{u}^{(0)}-\underline{u}=\sum_{i=1}^{n_{h}} \alpha_{i} \underline{\phi}_{i}
\end{gathered}
$$

Error propagation:

$$
\begin{aligned}
\underline{e}^{(k+1)} & =\mathbf{S} \underline{e}^{(k)}=\left[I-\alpha \mathbf{D}^{-1} \mathbf{K}\right] \underline{e}^{(k)}=\left[I-\alpha \mathbf{D}^{-1} \mathbf{K}\right]^{k} \sum_{i=1}^{n_{h}} \alpha_{i} \underline{\phi}_{i} \\
& =\sum_{i=1}^{n_{h}} \alpha_{i}\left[1-\alpha \frac{h}{2} \lambda_{i}\right]^{k} \underline{\phi}_{i}=\sum_{i=1}^{n_{h}} \alpha_{i}\left[1-2 \alpha \sin ^{2}\left(\frac{i \pi}{2 n}\right)\right]^{k} \underline{\phi}_{i} .
\end{aligned}
$$

A frist idea

Estimate:

$$
\left|1-2 \alpha \sin ^{2}\left(\frac{i \pi}{2 n}\right)\right| \quad \text { for } i=1, \ldots, n-1
$$

$\square i=\frac{n}{2}, \ldots, n-1$:

$$
\left|1-2 \alpha \sin ^{2}\left(\frac{i \pi}{2 n}\right)\right| \leq \max \{|1-\alpha|,|1-2 \alpha|\}=\frac{1}{3} \quad \text { for } \alpha^{*}=\frac{2}{3}
$$

$\square i=1, \ldots, \frac{n}{2}$:

$$
\begin{aligned}
\left|1-2 \alpha \sin ^{2}\left(\frac{i \pi}{2 n}\right)\right| & \leq \max \left\{\left|1-2 \alpha \sin ^{2}\left(\frac{\pi}{2 n}\right)\right|,|1-\alpha|\right\} \\
& =\mathcal{O}\left(1-\alpha \frac{\pi^{2}}{2} h^{2}\right) \approx 1
\end{aligned}
$$

$\square \rightarrow$ fast reduction of the high oscillating error components
$\square \rightarrow$ almost no reduction of the smooth part of the error

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

Two-grid cycle

Idea: Damped Jacob method + subspace correction step:

- The damped Jacobi method leads to a "smooth" error
$\square \rightarrow$ the correction has to be smooth
- A smooth correction can be good approximated on a coarser grid

Algorithm Two-grid cycle

Require: Approximation $\underline{u}^{(k)}$
1: Apply smoothing procedure $\rightarrow \underline{u}^{(k+1 / 3)}$
2: Apply subspace correction $\rightarrow \underline{u}^{(k+2 / 3)}$
3: Apply smoothing procedure $\rightarrow \underline{u}^{(k+1)}$

Subspace correction

\square Given smoothed approximation $u^{(k)} \in V_{0} \leftrightarrow \underline{u}^{(k)} \in \mathbb{R}^{n_{h}}$
\square Cosider subspace comming from a coarser grid: $W_{0} \subset V_{0}$

Subspace correction:

$\underline{w}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow w^{(k)} \in W_{0}: a\left(w^{(k)}, v\right)=\ell(v)-a\left(u^{(k)}, v\right) \quad \forall v \in W_{0}$,
with equivalent system of linear equations

$$
\mathbf{K}_{C} \underline{w}_{C}^{(k)}=\underline{r}_{C}^{(k)}
$$

\square Connection $\underline{w}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{w}^{(k)} \in \mathbb{R}^{n_{h}}$?
\square Connection $\underline{r}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{r}^{(k)}=\underline{f}-\mathbf{K} \underline{u}^{(k)} \in \mathbb{R}^{n_{h}}$?

Connection $\underline{w}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{w}^{(k)} \in \mathbb{R}^{n_{n}}$?

For any $w^{(k)} \in W_{0} \subset V_{0}$

$$
w^{(k)}=\sum_{i=1}^{n_{C}} w_{i}^{C} N_{i}^{C} \quad \text { or } \quad w^{(k)}=\sum_{j=1}^{n_{h}} w_{j} N_{j}
$$

Basis transformation:

$$
\begin{aligned}
W_{0} \ni N_{i}^{C} & =\sum_{j=1}^{n_{h}} P[j, i] N_{j}, \quad \text { with } P[j, i] \in \mathbb{R} \text { for } j=1, \ldots, n_{h} \\
w^{(k)} & =\sum_{i=1}^{n_{C}} w_{i}^{C} N_{i}^{C}=\sum_{i=1}^{n_{C}} w_{i}^{C}\left[\sum_{j=1}^{n_{h}} P[j, i] N_{j}\right] \\
& =\sum_{j=1}^{n_{h}}\left[\sum_{i=1}^{n_{C}} P[j, i] w_{i}^{C}\right] N_{j}=\sum_{j=1}^{n_{h}}\left[\mathbf{P}_{C}^{(k)}\right]_{j} N_{j}
\end{aligned}
$$

Hence we have

$$
\underline{w}^{(k)}=\mathbf{P} \underline{w}_{C}^{(k)}, \quad \text { with prolongation matrix } \mathbf{P} \in \mathbb{R}^{n_{h} \times n_{C}} .
$$

Connection $\underline{r}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad \underline{r}^{(k)} \in \mathbb{R}^{n_{n}}$?

Consider the coarse grid residual

$$
\underline{r}_{C}^{(k)} \in \mathbb{R}^{n_{C}} \quad \leftrightarrow \quad\left\langle R^{(k)}, v\right\rangle:=\ell(v)-a\left(u^{(k)}, v\right) \quad \text { for all } v \in W_{0}
$$

We have

$$
\begin{aligned}
\underline{r}_{C}^{(k)}[i] & =\left\langle R^{(k)}, N_{i}^{C}\right\rangle=\left\langle R^{(k)}, \sum_{j=1}^{n_{h}} P[j, i] N_{j}\right\rangle \\
& =\sum_{j=1}^{n_{h}} P[j, i]\left\langle R^{(k)}, N_{j}\right\rangle=\sum_{j=1}^{n_{h}} P[j, i] \underline{r}^{(k)}[j]=\left[\mathbf{P}^{\top} \underline{r}^{(k)}\right]_{i} .
\end{aligned}
$$

Hence we have

$$
\underline{r}_{C}^{(k)}=\mathbf{P}^{\top} \underline{r}^{(k)}=: \mathbf{R} \underline{r}^{(k)}=\mathbf{R}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]
$$

with the restriction matrix $\mathbf{R}:=\mathbf{P}^{\top} \in \mathbb{R}^{n_{C} \times n_{h}}$.

Grid transfer operators

Basis transformation:

$$
W_{0} \ni N_{i}^{C}=\sum_{j=1}^{n_{h}} P[j, i] N_{j}, \quad \text { with } P[j, i] \in \mathbb{R} \text { for } j=1, \ldots, n_{h}
$$

For example:

$$
P[3,2]=\frac{1}{2}, \quad P[4,2]=1, \quad P[5,2]=\frac{1}{2} .
$$

Grid transfer operators

Prolongation and restriction matrices:

$$
\mathbf{P}=\left(\begin{array}{cccccc}
1 & & & & & 0 \\
\frac{1}{2} & & & & & \\
1 & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & \\
& 1 & & & & \\
& \frac{1}{2} & \frac{1}{2} & & & \\
& & & \ddots & & \\
& & & & \frac{1}{2} & \frac{1}{2} \\
0 & & & & & 1
\end{array}\right) \quad \text { and } \quad \mathbf{R}=\mathbf{P}^{\top} .
$$

- \mathbf{P} and \mathbf{R} are sparse matrices
$\square \rightarrow$ Grid transfer is of optimal complexity

Two-grid cycle

This results in the following algorithm:
Algorithm Two-grid cycle
Require: Approximation $\underline{u}^{(k)}, \underline{f}$
1: Pre-smoothing:
2: Compute defect:

$$
\begin{array}{r}
\underline{u}^{(\underline{-}}=S^{\nu}\left(\underline{u}^{(k)}, \underline{f}\right) \\
\underline{d}^{(k)}=\underline{f}-\mathbf{K} \underline{u}^{(k)} \\
\underline{d}_{C}=\mathbf{R} \underline{d}^{(k)}
\end{array}
$$

3: Restriction:
4: Solve coarse problem:

$$
\mathbf{K}_{C} \underline{w}_{C}=\underline{d}_{C}
$$

5: Prolongation:
6: Correction:

$$
\begin{array}{r}
\underline{w}^{(k)}=\mathbf{P} \underline{w}_{C} \\
\underline{u}^{(k)}=\underline{u}^{(k)}+\underline{w}^{(k)} \\
\underline{u}^{(k)}=S^{\nu}\left(\underline{u}^{(k)}, \underline{f}\right)
\end{array}
$$

7: Post-smoothing:

- Convergence?

What to do if coarse problem is still to large?

Two-grid analysis

Two possible ways:

- Fourier analysis (using eigenvalues and eigenvectors of \mathbf{K}) \rightarrow additive splitting
■ Multiplicative splitting
Need: iteration matrix for the error
Start with smoother: damped Jacobi method:
Consider exact solution $\underline{u} \in \mathbb{R}^{n_{h}}$ and approximation $\underline{u}^{(k)} \in \mathbb{R}^{n_{h}}$. Then we have

$$
\begin{aligned}
\underline{e}^{(k+1)} & =\underline{u}^{(k+1)}-\underline{u}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]-\underline{u} \\
& =\underline{u}^{(k)}-\underline{u}+\alpha \mathbf{D}^{-1} \mathbf{K}\left[\underline{u}-\underline{u}^{(k)}\right] \\
& =\left[I-\alpha \mathbf{D}^{-1} \mathbf{K}\right] \underline{e}^{(k)}=: \mathbf{S} \underline{e}^{(k)}=\ldots=\mathbf{S}^{k} \underline{e}^{(0)} .
\end{aligned}
$$

Two-grid analysis

Coarse grid correction:

$$
\begin{aligned}
\underline{e}_{\mathrm{cor}}^{(k)} & :=\left(\underline{u}^{(k)}+\underline{w}^{(k)}\right)-\underline{u}=\underline{e}^{(k)}+\underline{w}^{(k)}=\underline{e}^{(k)}+\mathbf{P} \underline{w}_{C} \\
& =\underline{e}^{(k)}+\mathbf{P} \mathbf{K}_{C}^{-1} \underline{d}_{C} \\
& =\underline{e}^{(k)}+\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \underline{d}^{(k)}=\underline{e}^{(k)}+\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \\
& =\underline{e}^{(k)}-\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \mathbf{K} \underline{e}^{(k)}=\left[I-\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \mathbf{K}\right] \underline{e}^{(k)} \\
& =: \mathbf{T}_{e^{(k)}} .
\end{aligned}
$$

Error of the two-grid cycle:

$$
\underline{e}_{\mathrm{tg}}^{(k+1)}=\mathbf{S}^{\nu} \mathbf{T} \mathbf{S}^{\nu} \underline{e}_{\mathrm{tg}}^{(k)}=\mathbf{S}^{\nu}\left[I-\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \mathbf{K}\right] \mathbf{S}^{\nu} \underline{e}_{\mathrm{tg}}^{(k)}=: \mathbf{M} \underline{e}_{\mathrm{tg}}^{(k)}
$$

Estimate:

$$
\left\|\underline{t}_{\mathrm{tg}}^{(k+1)}\right\| \leq\|\mathbf{M}\|\left\|\underline{\mathrm{tg}}_{(k)}^{(\underline{x}} \leq\right\| \mathbf{M}\left\|^{k}\right\| \underline{e}_{\mathrm{tg}}^{(0)} \|
$$

Two-grid analysis

First attempt:

$$
\|\mathbf{M}\|=\left\|\mathbf{S}^{\nu} \mathbf{T} \mathbf{S}^{\nu}\right\| \leq\|\mathbf{T}\|\|\mathbf{S}\|^{2 \nu}
$$

We know

$$
\|\mathbf{S}\|^{\nu}=\left[1-\mathcal{O}\left(h^{\alpha}\right)\right]^{\nu} \rightarrow 0 \quad \text { for } \nu \rightarrow \infty
$$

But:

$$
\begin{aligned}
\|\mathbf{T}\| & =\sup _{\substack{0 \neq \underline{v} \in \mathbb{R}^{n_{h}}}} \frac{\|\mathbf{T} \underline{v}\|}{\|\underline{v}\|}=\sup _{\substack{0 \neq \underline{v} \in \mathbb{R}^{n} h}} \frac{\left\|\left[I-\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \mathbf{K}\right] \underline{v}\right\|}{\|\underline{v}\|} \\
& \geq \sup _{\substack{0 \neq v \in \mathbb{R}^{n_{h}} \\
\mathbf{K} \underline{v} \in \operatorname{ker}(\mathbf{R})}} \frac{\left\|\left[I-\mathbf{P} \mathbf{K}_{C}^{-1} \mathbf{R} \mathbf{K}\right] \underline{v}\right\|}{\|\underline{v}\|}=1 .
\end{aligned}
$$

Overestimation of

$$
\|\mathrm{M}\| ?
$$

Two-grid analysis

Better splitting:

$$
\left\|\mathbf{T} \mathbf{S}^{\nu}\right\|=\left\|\mathbf{T} \mathbf{K}^{-1} \mathbf{K} \mathbf{S}^{\nu}\right\| \leq\left\|\mathbf{T} \mathbf{K}^{-1}\right\|\left\|\mathbf{K} \mathbf{S}^{\nu}\right\|
$$

- Approximation property

$$
\left\|\mathbf{T} \mathbf{K}^{-1}\right\| \leq c h^{\delta}
$$

- Smoothing property

$$
\left\|\mathbf{K} \mathbf{S}^{\nu}\right\| \leq \eta(\nu) h^{-\delta} \quad \text { with } \eta(\nu) \rightarrow 0 \quad \text { as } \nu \rightarrow \infty
$$

Then we have convergence

$$
\|M\| \leq\left\|\mathbf{T} \mathbf{S}^{\nu}\right\| \leq c \eta(\nu)<1
$$

for $\nu \in \mathbb{N}$ large enough.

Two-grid analysis

Assumptions:

- d-dimensional Poisson problem
- Some regularity assumptions (\rightarrow restriction for the domain Ω)

Theorem (Approximation property)

$$
\left\|\mathbf{T} \mathbf{K}^{-1}\right\| \leq c_{1} h^{2-d}
$$

Theorem (Smoothing property)

$$
\left\|\mathbf{K} \mathbf{S}^{\nu}\right\| \leq \frac{c_{2}}{\nu} h^{d-2}
$$

\rightarrow convergence of two-grid cycle for ν large enough!

Outline

1. A first idea

2. Two-grid cycle

3. Multigrid cycle

4. Numerical examples

Summary

Multigrid cycle

What to do if coarse problem is still to large?
Idea: Approximate the solution of the coarse grid problem by another two-grid cycle \rightarrow repeat this idea recursively
\rightarrow Need: hierarchy of grids

- System matrices \mathbf{K}_{ℓ} on each level $\ell=0,1, \ldots, L$.
\square Restriction matrix \mathbf{R}_{ℓ} between level ℓ and level $\ell-1$
- Prolongation matrix \mathbf{P}_{ℓ} between level ℓ and level $\ell-1$

Solve

$$
K_{\ell} \underline{u}_{\ell}=\underline{f}_{\ell} \quad \text { for } \ell=L
$$

Multigrid cycle

Algorithm MGCycle
Require: $\underline{u}_{\ell}, \underline{f}_{\ell}$
1: if $\ell=0$ then
2: \quad Coarse grid solver: $\quad \underline{u}_{\ell}=\mathbf{K}_{\ell}^{-1} \underline{f}_{\ell}$
3: else
4: Pre-smoothing: $\quad \underline{u}_{\ell}=S_{\ell}\left(\underline{u}_{\ell}, \underline{f}_{\ell}\right)$
5: \quad Compute defect: $\underline{d}_{\ell}=\underline{f}_{\ell}-\mathbf{K}_{\ell} \underline{u}_{\ell}$
6: Restriction: $\quad \underline{d}_{\ell-1}=\mathbf{R}_{\ell} \underline{d}_{\ell}$
7: Initialize:

$$
\underline{w}_{\ell-1}=0
$$

8: \quad for $i=1, \ldots, \gamma$ do
9: $\quad \operatorname{MGCycle}\left(\underline{w}_{\ell-1}, \underline{d}_{\ell-1}\right)$
10: end for
11: Prolongation: $\quad \underline{w}_{\ell}=\mathbf{P}_{\ell} \underline{w}_{\ell-1}$
12: Correction: $\quad \underline{u}_{\ell}=\underline{u}_{\ell}+\underline{w}_{\ell}$
13: Post-smoothing: $\quad \underline{u}_{\ell}=S_{\ell}\left(\underline{u}_{\ell}, \underline{f}_{\ell}\right)$
14: end if

Multigrid cycle

Possible cycles:

■ $\gamma=1$ V-cycle: cheapest cycle \rightarrow analysis for general problems difficult
■ $\gamma=2$ W-cycle: more expensive \rightarrow analysis easier

Multigrid cycle

Full multigrid cycle (Nested iteration)
Idea: Start with coarsest level \rightarrow use as initial guess for the next finer level:

Algorithm Full multigrid cycle
1: Coarse problem:
2: for $\ell=1, \ldots, L$ do
3: Prolongate:
4: Apply multigrid-cycle: $\quad \operatorname{MGCycle}\left(\underline{u}_{\ell}, \underline{f}_{\ell}\right)$
5: end for

- Adaptivity \rightarrow construction of the finer grids

■ Non-linear problems \rightarrow good initial guess

Outline

1. A first idea

2. Two-grid cycle
3. Multigrid cycle

4. Numerical examples

Summary

Multigrid - example

- $\Omega=(0,1)$, deocmposed with constant mesh size $h_{\ell}=2^{-\ell}$
- Find $u \in V_{0}: \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \forall v \in V_{0}$
- Prec. CG-method, rel. residual error reduction $\varepsilon=10^{-8}$

		MDS		MG	
level	dof n_{h}	iter	time [s]	iter	time [s]
3	9	5	-	5	-
4	17	11	-	6	-
5	33	16	-	7	-
6	65	20	-	7	-
7	129	22	-	8	-
8	257	24	-	8	-
9	513	26	-	8	-
10	1025	26	-	8	-
11	2049	27	0.0015	8	0.0014
12	4097	29	0.0029	8	0.0024
13	8193	29	0.0060	8	0.0049
14	16385	30	0.0131	8	0.0103
15	32769	32	0.0315	8	0.0255
16	65537	33	0.0668	9	0.0558
17	131073	33	0.1377	9	0.1273
18	262145	34	0.3147	9	0.2359
19	524289	34	0.6527	9	0.4715
20	1048577	35	1.3391	9	0.9583

Outline

1. A first idea

2. Two-grid cycle
3. Multigrid cycle
4. Numerical examples

Summary

Summary

- Two-grid cycle
\square Coarse grid correction
\square Grid transfer operators
\square Two-grid analysis
■ Multigrid cycle
- Numerica experiments
[1] W. Hackbusch.
Multigrid methods and applications, volume 4 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, 1985.
[2] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid.
Academic Press, Inc., San Diego, CA, 2001.
With contributions by A. Brandt, P. Oswald and K. Stüben.

