CISM COURSE COMPUTATIONAL ACOUSTICS

Solvers Part 3: Preconditioners

Ulrich Langer and **Martin Neumüller** Institute of Computational Mathematics Johannes Kepler University Linz Udine, May 23-27, 2016

1. Basic idea

2. Preconditioned iterative methods

- Preconditioned Richardson method
- Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods
- Multiplicative-Schwarz methods
- 4. Multilevel diagonal scaling

1. Basic idea

2. Preconditioned iterative methods

- Preconditioned Richardson method
- Preconditioned CG method
- 3. Subspace correction methods
 - Additive-Schwarz methods
 - Multiplicative-Schwarz methods
- 4. Multilevel diagonal scaling

Weak formulation: Find $u \in V_0$: $a(u, v) = \ell(v) \ \forall v \in V_0$ Equivalent linear system:

$$\mathbf{K}\underline{u} = \underline{f}$$

with $\mathbf{K} \in \mathbb{R}^{n_h imes n_h}$ symmetric and positive definite

- **Condition number:** $\kappa(\mathbf{K}) \to \infty$ as $h \to 0$
- Iteration numbers: $\mathcal{O}(\kappa(\mathbf{K})^{\alpha}) \to \infty$ as $h \to 0$

Idea: Multiply with regular matrix $\mathbf{C}^{-1} \in \mathbb{R}^{n_h \times n_h}$

$$\mathbf{C}^{-1}\mathbf{K}\underline{u} = \mathbf{C}^{-1}\underline{f},$$

such that

$$\kappa(\mathbf{C}^{-1}\mathbf{K}) \le c \ne c(h).$$

Preconditioned linear system:

$$\mathbf{C}^{-1}\mathbf{K}\underline{u} = \mathbf{C}^{-1}\underline{f},$$

Requirements:

- **Reduce condition number:** $\kappa(\mathbf{C}^{-1}\mathbf{K}) \leq c \neq c(h)$
- Cheap realization of C^{-1} , i.e. with complexity

$$\mathcal{O}(n_h)$$
 or $\mathcal{O}(n_h \log(n_h))$.

Lemma

For $\mathbf{K}, \mathbf{C} \in \mathbb{R}^{n_h \times n_h}$ symmetric and positive definite let the spectral equivalence inequalities be fulfilled, i.e.

 $c_1(\mathbf{C}\underline{v},\underline{v}) \le (\mathbf{K}\underline{v},\underline{v}) \le c_2(\mathbf{C}\underline{v},\underline{v}) \quad \forall \underline{v} \in \mathbb{R}^{n_h}.$

Then there holds the estimate

$$\kappa(\mathbf{C}^{-1}\mathbf{K}) \le \frac{c_2}{c_1}.$$

Algebraic preconditioners:

- □ Incomplete LU-factorization (ILU)
- □ Incomplete Cholesky-factorization (IC)
- □ Algebraic multigrid method (AMG)
- □ ...
- Preconditioners using variational backround:
 - Schwarz methods
 - □ Multilevel methods (BPX, MDS, AMLI,...)
 - □ Multigrid methods (GMG, AMG)
 - .

1. Basic idea

2. Preconditioned iterative methods

- Preconditioned Richardson method
- Preconditioned CG method
- 3. Subspace correction methods
 - Additive-Schwarz methods
 - Multiplicative-Schwarz methods
- 4. Multilevel diagonal scaling

Applying the Richardson method to the preconditioned linear system:

$$\mathbf{C}^{-1}\mathbf{K}\underline{u} = \mathbf{C}^{-1}\underline{f},$$

gives

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \left[\mathbf{C}^{-1} \underline{f} - \mathbf{C}^{-1} \mathbf{K} \, \underline{u}^{(k)} \right] = \underline{u}^{(k)} + \alpha \, \mathbf{C}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right]$$

the preconditioned Richardson method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \mathbf{C}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, 2, \dots$$

Preconditioned CG method

Applying the CG-method to the preconditioned linear system:

$$\mathbf{C}^{-1}\mathbf{K}\underline{u} = \mathbf{C}^{-1}\underline{f},$$

gives the

Algorithm Preconditioned CG-method

1: $r^{(0)} := f - \mathbf{K} u^{(0)}, \quad v^{(0)} := \mathbf{C}^{-1} r^{(0)}, \quad p^{(0)} := v^{(0)}$ 2: for k = 0, 1... do $w^{(k)} = \mathbf{K} p^{(k)}$ 3: 4: $\alpha_k = \frac{(\underline{r}^{(k)}, \underline{v}^{(k)})}{(w^{(k)}, p^{(k)})}$ 5: $u^{(k+1)} = u^{(k)} + \alpha_k p^{(k)}$ 6: $r^{(k+1)} = r^{(k)} - \alpha_k w^{(k)}$ 7: $v^{(k+1)} = \mathbf{C}^{-1} r^{(k)}$ $\beta_k = \frac{(\underline{r}^{(k+1)}, \underline{v}^{(k+1)})}{(r^{(k)}, v^{(k)})}, \quad \underline{p}^{(k+1)} = \underline{v}^{(k+1)} + \beta_k \underline{p}^{(k)}$ 8:

9: end for

CISM

JΣ

Theorem (prec. CG-method convergence)

For the preconditioned CG-method there holds the estimate

$$||\underline{u} - \underline{u}^{(k)}||_A \le \frac{2q^k}{1 + q^{2k}} ||\underline{u} - \underline{u}^{(0)}||_A \le 2q^k ||\underline{u} - \underline{u}^{(0)}||_A$$

with

$$q = \frac{\sqrt{\kappa(\mathbf{C}^{-1}\mathbf{K})} - 1}{\sqrt{\kappa(\mathbf{C}^{-1}\mathbf{K})} + 1}$$

- 1. Basic idea
- 2. Preconditioned iterative methods
 - Preconditioned Richardson method
 - Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods
- Multiplicative-Schwarz methods
- 4. Multilevel diagonal scaling

Subspace correction methods

Use variational backround:

$$\mathbf{K}\underline{u} = \underline{f} \quad \Leftrightarrow \quad u \in V_0 : a(u, v) = \ell(v) \; \forall v \in V_0.$$

First idea: Use coercivity and boundedness of $a(\cdot, \cdot)$:

$$c_1(\mathbf{B}\underline{v},\underline{v}) := c_1(v,v)_V$$

= $c_1||v||_V^2 \le a(v,v) = (\mathbf{K}\underline{v},\underline{v}) \le c_2||v||_V^2 = c_2(\mathbf{B}\underline{v},\underline{v})$

for all $\underline{v} \in \mathbb{R}^{n_h}$.

- Spectral equivalence estimate fulfilled for $\mathbf{B} \checkmark$
- Efficient realization of \mathbf{B}^{-1} not directly possible for spaces like $V = H^1(\Omega) \times$
- BEM: the Preconditioner B⁻¹ can often be realized by a boundary integral operator → operators of inverse order

Subspace correction methods

Let $\underline{u}^{(k)} \in \mathbb{R}^{n_h} \leftrightarrow u^{(k)} \in V_0$ be an approximation of

$$\mathbf{K}\underline{u} = \underline{f} \quad \leftrightarrow \quad u \in V_0 : a(u, v) = \ell(v) \; \forall v \in V_0.$$

Second idea: Use a subspace $W_0 \subset V_0$ and the variational problem:

$$\underline{w}^{(k)} \in \mathbb{R}^{n_h} \leftrightarrow w^{(k)} \in W_0: \ a(w^{(k)}, v) = \ell(v) - a(u^{(k)}, v) \quad \forall v \in W_0.$$

If $W_0 = V_0$, then $\underline{u} = \underline{u}^{(k)} + \underline{w}^{(k)} \in \mathbb{R}^{n_h} \quad \leftrightarrow \quad u = u^{(k)} + w^{(k)} \in V_0.$ This motivates to define for $W_0 \subset V_0$ and $\alpha > 0$ the

This motivates to define for $W_0 \subset V_0$ and $\alpha > 0$ the correction

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \, \underline{w}^{(k)} \in \mathbb{R}^{n_h} \quad \leftrightarrow \quad u^{(k+1)} = u^{(k)} + \alpha \, w^{(k)} \in V_0.$$

If $W_0 \subset V_0$, then **not** all components of V_0 can be corrected \times

CISM

Subspace correction methods

Third idea: Use a subspace decomposition. Consider the subspaces $W_{0,s} \subset V_0$ for $s = 1, \ldots, P$ with

$$V_0 = \sum_{s=1}^P W_{0,s} := \left\{ \sum_{s=1}^P w_s : w_s \in W_{0,s} \text{ for } s = 1, \dots, P \right\}.$$

For every subspace $W_{0,s}$ we obtain a subspace correction

$$\underline{w}_{s}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow w_{s}^{(k)} \in W_{0,s}:$$
$$a(w_{s}^{(k)}, v_{s}) = \ell(v_{s}) - a(u^{(k)}, v_{s}) \quad \forall v_{s} \in W_{0,s}.$$

How to combine all the corrections?

Additive

Multiplicative

Additive-Schwarz methods

Approximation:
$$\underline{u}^{(k)} \in \mathbb{R}^{n_h} \leftrightarrow u^{(k)} \in V_0$$
.
Subspaces

$$V_0 = \sum_{s=1}^P W_{0,s}.$$

Subspace corrections

$$w_s^{(k)} \in W_{0,s} : a(w_s^{(k)}, v_s) = \ell(v_s) - a(u^{(k)}, v_s) \quad \forall v_s \in W_{0,s}.$$

Define the correction

$$w^{(k)} := \sum_{s=1}^{P} w_s^{(k)} \in V_0 \quad \leftrightarrow \quad \underline{w}^{(k)} := \sum_{s=1}^{P} \underline{w}_s^{(k)} \in \mathbb{R}^{n_h}.$$

Next iterate

$$u^{(k+1)} = u^{(k)} + \alpha \, w^{(k)} \in V_0 \quad \leftrightarrow \quad \underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \, \underline{w}^{(k)} \in \mathbb{R}^{n_h}$$

•

Additive-Schwarz methods - example

Discrete space:
$$V_0 = span\{N_j\}_{j=1}^{n_h}$$

Consider the subspaces

$$W_{0,s} := span\{N_s\} \text{ for } s = 1, \dots, n_h.$$

Then the additive correction is given by

$$w^{(k)} = \sum_{s=1}^{n_h} w_s^{(k)} = \sum_{s=1}^{n_h} w_s N_s \quad \leftrightarrow \quad \underline{w}^{(k)} = [w_s]_{s=1}^{n_h} \in \mathbb{R}^{n_h}.$$

We further obtain the subspace corrections

$$w_s^{(k)} \in W_{0,s}: \quad a(w_s^{(k)}, v_s) = \ell(v_s) - a(u^{(k)}, v_s) \quad \forall v_s \in W_{0,s},$$

$$\Leftrightarrow \quad w_s \in \mathbb{R} \quad : \quad a(N_s, N_s)w_s = \ell(N_s) - a(u^{(k)}, N_s),$$

$$\Leftrightarrow \quad w_s \in \mathbb{R} \quad : \quad K_{ss}w_s = f_s - \left[\mathbf{K}\underline{u}^{(k)}\right]_s = \left[\underline{f} - \mathbf{K}\underline{u}^{(k)}\right]_s.$$

Additive-Schwarz methods - example

Summerizing we have

$$\underline{w}^{(k)} = [w_s]_{s=1}^{n_h} \in \mathbb{R}^{n_h} \quad \text{with} \quad w_s = K_{ss}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right]_s.$$

Hence the correction is given by

$$\underline{w}^{(k)} = \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \text{ with } \mathbf{D} := diag(\mathbf{K}).$$

The next iterate is then given by

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \underline{w}^{(k)} = \underline{u}^{(k)} + \alpha \mathbf{D}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right].$$

- \rightarrow prec. Richardson method with "preconditioner" \mathbf{D}^{-1} or damped Jacobi method.
- \rightarrow in general not an optimal method (see prevoluse lecture)

Multiplicative-Schwarz methods

Approximation:
$$\underline{u}^{(k)} \in \mathbb{R}^{n_h} \leftrightarrow u^{(k)} \in V_0$$
.

Subspaces

 \mathbf{N}

CISM

$$V_0 = \sum_{s=1}^{P} W_{0,s}.$$

Algorithm Multiplicative Schwarz

1:
$$u_0^{(k)} := u^{(k)}$$

2: for $s = 1, ..., P$ do
3: $w_s^{(k)} \in W_{0,s} : a(w_s^{(k)}, v_s) = \ell(v_s) - a(u_{s-1}^{(k)}, v_s) \ \forall v_s \in W_{0,s}$
4: $u_s^{(k)} = u_{s-1}^{(k)} + w_s^{(k)}$
5: end for
6: $u^{(k+1)} = u_P^{(k)}$

 \rightarrow ordering of the subspaces $W_{0,s}$ plays a role!

Multiplicative-Schwarz methods - example

Discrete space:
$$V_0 = span\{N_j\}_{j=1}^{n_h}$$

Consider the subspaces

$$W_{0,s} := span\{N_s\}$$
 for $s = 1, \dots, n_h$.

Then the correction is given by

 $\underline{w}^{(k)} = \mathbf{L}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right], \quad \mathbf{L} := \text{lower triangular mat. of } \mathbf{K}.$

The next iterate is then given by

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \mathbf{L}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right]$$

 \rightarrow Gauß-Seidel method

 \rightarrow in general not an optimal method (see prevoluse lecture) It is possible to combine additive and multiplicative methods, e.g.

 \rightarrow Multigrid methods (see later)

- 1. Basic idea
- 2. Preconditioned iterative methods
 - Preconditioned Richardson method
 - Preconditioned CG method
- 3. Subspace correction methods
 - Additive-Schwarz methods
 - Multiplicative-Schwarz methods

4. Multilevel diagonal scaling

Simple additive example \rightarrow not efficient preconditioner **Idea:** Consider a hierarchy of nested subspaces. **Simplification:** 1d-Poisson problem:

■ $\Omega = (0, 1)$, V_0 continuous and piecwise linear functions ■ Find $u \in V_0$: $\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx \ \forall v \in V_0$

Nested spaces

$$V_0^0 \subset V_0^1 \subset \ldots \subset V_0^L = V_0.$$

Basis functions for each level:
$$V_0^{\ell} = span\{N_j^{\ell}\}_{j=1}^{n_{\ell}}$$
.

For each level we consider the subspaces

$$W_{0,i}^{\ell} := span\{N_i^{\ell}\} \text{ for } i = 1, \dots, n_{\ell}, \ \ell = 0, \dots, L.$$

Subspace decomposition:

$$V_0 = V_L = \sum_{\ell=0}^{L} \sum_{i=1}^{n_\ell} W_{0,i}^{\ell}.$$

Additive correction:

$$w^{(k)} = \sum_{\ell=1}^{L} \sum_{i=1}^{n_{\ell}} w_i^{\ell} N_i^{\ell} =: \sum_{\ell=1}^{L} w^{\ell},$$

with the coefficents from the subspace corrections

$$w_i^\ell \in \mathbb{R}: \quad a(N_i^\ell, N_i^\ell) w_i^\ell = \ell(N_i^\ell) - a(u^{(k)}, N_i^\ell) =: \langle R^\ell, N_i^\ell \rangle =: \left[\underline{r}^\ell\right]_i$$

Multi diagonal scaling (MDS) procedure:

Given approximation

$$\underline{u}^{(k)} \in \mathbb{R}^{n_h} \quad \leftrightarrow \quad u^{(k)} \in V_0.$$

■ For each level we apply a diagonal scaling to the residual $\underline{r}^{\ell} := \left[\ell(N_i^{\ell}) - a(u^{(k)}, N_i^{\ell})\right]_{i=1}^{n_{\ell}}$ $\underline{w}^{\ell} = \mathbf{D}_{\ell}^{-1} \underline{r}^{\ell} \quad \leftrightarrow \quad w^{\ell} \in V_0^{\ell}.$

Sum up all corrections from each level

$$w^{(k)} = \sum_{\ell=0}^{L} w^{\ell} \in V_0 \quad \leftrightarrow \quad \underline{w}^{(k)} \in \mathbb{R}^{n_h}$$

Compute update

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \, \underline{w}^{(k)}.$$

Every computation of one MDS update is linear w.r.t the residual

There exists

$$\mathbf{C}_{\mathrm{MDS}}^{-1}: \mathbb{R}^{n_h} \to \mathbb{R}^{n_h},$$

with

$$\underline{w}^{(k)} = \mathbf{C}_{\mathrm{MDS}}^{-1} \underline{r} = \mathbf{C}_{\mathrm{MDS}}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right].$$

This scheme gives the preconditioned Richardson method

$$\underline{u}^{(k+1)} = \underline{u}^{(k)} + \alpha \operatorname{\mathbf{C}_{MDS}}^{-1} \left[\underline{f} - \mathbf{K} \underline{u}^{(k)} \right] \quad \text{for } k = 0, 1, \dots$$

The preconditioner $C_{\rm MDS}^{-1}$ can be also used in other iterative schmes like the **CG-method**.

MDS scheme has optimal complexity $O(n_h)$

■ The MDS scheme is usually implemented by using transfer operators between the different levels → see later

Theorem

For the MDS preconditioner one can show the spectral equivalence estimates

 $c_1(\mathbf{C}_{\mathrm{MDS}}\underline{v},\underline{v}) \le (\mathbf{K}\underline{v},\underline{v}) \le c_2(\mathbf{C}_{\mathrm{MDS}}\underline{v},\underline{v}) \quad \forall \underline{v} \in \mathbb{R}^{n_h},$

with constants c_1, c_2 independent of h (only log(h)).

Multilevel diagonal scaling - example

■ $\Omega = (0, 1)$, decomposed with constant mesh size $h_{\ell} = 2^{-\ell}$ ■ Find $u \in V_0$: $\int_0^1 u'(x)v'(x)dx = \int_0^1 f(x)v(x)dx \ \forall v \in V_0$

Prec. CG-method, rel. residual error reduction $\varepsilon = 10^{-8}$

level	dof n_h	iter	time [s]
3	9	5	-
4	17	11	-
5	33	16	-
6	65	20	-
7	129	22	-
8	257	24	-
9	513	26	-
10	1 025	26	-
11	2 049	27	0.0015
12	4 097	29	0.0029
13	8 193	29	0.0060
14	16 385	30	0.0131
15	32 769	32	0.0315
16	65 537	33	0.0668
17	131 073	33	0.1377
18	262 145	34	0.3147
19	524 289	34	0.6527
20	1 048 577	35	1.3391

- 1. Basic idea
- 2. Preconditioned iterative methods
 - Preconditioned Richardson method
 - Preconditioned CG method
- 3. Subspace correction methods
 - Additive-Schwarz methods
 - Multiplicative-Schwarz methods
- 4. Multilevel diagonal scaling

Basic idea of preconditioning

- Preconditioned iterative methods
- Subspace correction methods
 - Additive
 - Multiplicative
- Multileve diagonal scaling (MDS)

[1] A. Toselli and O. Widlund.

Domain decomposition methods—algorithms and theory, volume 34 of Springer Series in Computational Mathematics.

Springer-Verlag, Berlin, 2005.

[2] W. Zulehner.

Numerische Mathematik: eine Einführung anhand von Differentialgleichungsproblemen. Band 1. Stationäre Probleme.

Mathematik Kompakt. [Compact Mathematics]. Birkhäuser Verlag, Basel, 2008.

