CISM COURSE COMPUTATIONAL ACOUSTICS

Solvers

Part 3: Preconditioners

Ulrich Langer and Martin Neumüller Institute of Computational Mathematics Johannes Kepler University Linz Udine, May 23-27, 2016

Outline

1. Basic idea
2. Preconditioned iterative methods

- Preconditioned Richardson method

■ Preconditioned CG method
3. Subspace correction methods

■ Additive-Schwarz methods
■ Multiplicative-Schwarz methods

4. Multilevel diagonal scaling

Summary

Outline

1. Basic idea

2. Preconditioned iterative methods

- Preconditioned Richardson method
- Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods

■ Multiplicative-Schwarz methods
4. Multilevel diagonal scaling

Summary

Basic idea

Weak formulation: Find $u \in V_{0}: a(u, v)=\ell(v) \forall v \in V_{0}$

- Equivalent linear system:

$$
\mathbf{K} \underline{u}=\underline{f}
$$

with $\mathbf{K} \in \mathbb{R}^{n_{h} \times n_{h}}$ symmetric and positive definite

- Condition number: $\kappa(\mathbf{K}) \rightarrow \infty$ as $h \rightarrow 0$

■ Iteration numbers: $\mathcal{O}\left(\kappa(\mathbf{K})^{\alpha}\right) \rightarrow \infty$ as $h \rightarrow 0$
Idea: Multiply with regular matrix $\mathbf{C}^{\mathbf{- 1}} \in \mathbb{R}^{n_{h} \times n_{h}}$

$$
\mathbf{C}^{-1} \mathbf{K} \underline{u}=\mathbf{C}^{-\mathbf{1}} \underline{f}
$$

such that

$$
\kappa\left(\mathbf{C}^{-1} \mathbf{K}\right) \leq c \neq c(h) .
$$

Basic idea

Preconditioned linear system:

$$
\mathbf{C}^{-1} \mathbf{K} \underline{u}=\mathbf{C}^{-1} \underline{f},
$$

Requirements:

- Reduce condition number: $\kappa\left(\mathbf{C}^{-1} \mathbf{K}\right) \leq c \neq c(h)$
\square Cheap realization of \mathbf{C}^{-1}, i.e. with complexity

$$
\mathcal{O}\left(n_{h}\right) \quad \text { or } \quad \mathcal{O}\left(n_{h} \log \left(n_{h}\right)\right) .
$$

Basic idea

Lemma

For $\mathbf{K}, \mathbf{C} \in \mathbb{R}^{n_{h} \times n_{h}}$ symmetric and positive definite let the spectral equivalence inequalities be fulfilled, i.e.

$$
c_{1}(\mathbf{C} \underline{v}, \underline{v}) \leq(\mathbf{K} \underline{v}, \underline{v}) \leq c_{2}(\mathbf{C} \underline{v}, \underline{v}) \quad \forall \underline{v} \in \mathbb{R}^{n_{h}}
$$

Then there holds the estimate

$$
\kappa\left(\mathbf{C}^{-1} \mathbf{K}\right) \leq \frac{c_{2}}{c_{1}}
$$

- Algebraic preconditioners:
\square Incomplete LU-factorization (ILU)
\square Incomplete Cholesky-factorization (IC)
\square Algebraic multigrid method (AMG)
\square...
- Preconditioners using variational backround:
\square Schwarz methods
\square Multilevel methods (BPX, MDS, AMLI,...)
\square Multigrid methods (GMG, AMG)
\square...

Outline

1. Basic idea
2. Preconditioned iterative methods

■ Preconditioned Richardson method
■ Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods
- Multiplicative-Schwarz methods

4. Multilevel diagonal scaling

Summary

Preconditioned Richardson method

Applying the Richardson method to the preconditioned linear system:

$$
\mathbf{C}^{-1} \mathbf{K} \underline{u}=\mathbf{C}^{-1} \underline{f},
$$

gives
$\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha\left[\mathbf{C}^{-1} \underline{f}-\mathbf{C}^{-1} \mathbf{K} \underline{u}^{(k)}\right]=\underline{u}^{(k)}+\alpha \mathbf{C}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]$
the preconditioned Richardson method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{C}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1,2, \ldots
$$

Preconditioned CG method

Applying the CG-method to the preconditioned linear system:

$$
\mathbf{C}^{-1} \mathbf{K} \underline{u}=\mathbf{C}^{-1} \underline{f}
$$

gives the
Algorithm Preconditioned CG-method
1: $\underline{r}^{(0)}:=\underline{f}-\mathbf{K} \underline{u}^{(0)}, \quad \underline{v}^{(0)}:=\mathbf{C}^{-1} \underline{r}^{(0)}, \quad \underline{p}^{(0)}:=\underline{v}^{(0)}$
2: $\mathbf{f o r} k=0,1 \ldots$ do
3: $\quad \underline{w}^{(k)}=\mathbf{K} \underline{p}^{(k)}$
4: $\quad \alpha_{k}=\frac{\left(\underline{r}^{(k)}, \underline{v}^{(k)}\right)}{\left(\underline{w}^{(k)}, p^{(k)}\right)}$
5: $\quad \underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha_{k} \underline{p}^{(k)}$
6: $\quad \underline{r}^{(k+1)}=\underline{r}^{(k)}-\alpha_{k} \underline{w}^{(k)}$
7: $\quad \underline{v}^{(k+1)}=\mathbf{C}^{-1} \underline{r}^{(k)}$
8: $\quad \bar{\beta}_{k}=\frac{\left(\underline{r}^{(k+1)}, v^{(\bar{k}+1)}\right)}{\left(\underline{r}^{(k)}, \underline{v}^{(k)}\right)}, \quad \underline{p}^{(k+1)}=\underline{v}^{(k+1)}+\beta_{k} \underline{p}^{(k)}$
9: end for

Preconditioned CG method

Theorem (prec. CG-method convergence)
For the preconditioned CG-method there holds the estimate

$$
\left\|\underline{u}-\underline{u}^{(k)}\right\|_{A} \leq \frac{2 q^{k}}{1+q^{2 k}}\left\|\underline{u}-\underline{u}^{(0)}\right\|_{A} \leq 2 q^{k}\left\|\underline{u}-\underline{u}^{(0)}\right\|_{A},
$$

with

$$
q=\frac{\sqrt{\kappa\left(\mathbf{C}^{-1} \mathbf{K}\right)}-1}{\sqrt{\kappa\left(\mathbf{C}^{-1} \mathbf{K}\right)}+1}
$$

Outline

1. Basic idea
2. Preconditioned iterative methods

- Preconditioned Pichardson method
- Preconditioned CG method

3. Subspace correction methods

■ Additive-Schwarz methods
■ Multiplicative-Schwarz methods
4. Multilevel diagonal scaling

Summary

Subspace correction methods

Use variational backround:

$$
\mathbf{K} \underline{u}=\underline{f} \quad \Leftrightarrow \quad u \in V_{0}: a(u, v)=\ell(v) \forall v \in V_{0}
$$

First idea: Use coercivity and boundedness of $a(\cdot, \cdot)$:

$$
\begin{aligned}
c_{1}(\mathbf{B} \underline{v}, \underline{v}) & :=c_{1}(v, v)_{V} \\
& =c_{1}\|v\|_{V}^{2} \leq a(v, v)=(\mathbf{K} \underline{v}, \underline{v}) \leq c_{2}\|v\|_{V}^{2}=c_{2}(\mathbf{B} \underline{v}, \underline{v})
\end{aligned}
$$

for all $\underline{v} \in \mathbb{R}^{n_{h}}$.

- Spectral equivalence estimate fulfilled for B \checkmark
- Efficient realization of \mathbf{B}^{-1} not directly possible for spaces like $V=H^{1}(\Omega)$
BEM: the Preconditioner \mathbf{B}^{-1} can often be realized by a boundary integral operator \rightarrow operators of inverse order

Subspace correction methods

Let $\underline{u}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow u^{(k)} \in V_{0}$ be an approximation of

$$
\mathbf{K} \underline{u}=\underline{f} \quad \leftrightarrow \quad u \in V_{0}: a(u, v)=\ell(v) \forall v \in V_{0} .
$$

Second idea: Use a subspace $W_{0} \subset V_{0}$ and the variational problem:
$\underline{w}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow w^{(k)} \in W_{0}: a\left(w^{(k)}, v\right)=\ell(v)-a\left(u^{(k)}, v\right) \quad \forall v \in W_{0}$.

■ If $W_{0}=V_{0}$, then

$$
\underline{u}=\underline{u}^{(k)}+\underline{w}^{(k)} \in \mathbb{R}^{n_{h}} \quad \leftrightarrow \quad u=u^{(k)}+w^{(k)} \in V_{0} .
$$

- This motivates to define for $W_{0} \subset V_{0}$ and $\alpha>0$ the correction

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \underline{w}^{(k)} \in \mathbb{R}^{n_{h}} \quad \leftrightarrow \quad u^{(k+1)}=u^{(k)}+\alpha w^{(k)} \in V_{0}
$$

If $W_{0} \subset V_{0}$, then not all components of V_{0} can be corrected

Subspace correction methods

Third idea: Use a subspace decomposition. Consider the subspaces $W_{0, s} \subset V_{0}$ for $s=1, \ldots, P$ with

$$
V_{0}=\sum_{s=1}^{P} W_{0, s}:=\left\{\sum_{s=1}^{P} w_{s}: w_{s} \in W_{0, s} \text { for } s=1, \ldots, P\right\} .
$$

For every subspace $W_{0, s}$ we obtain a subspace correction

$$
\begin{aligned}
& \underline{w}_{s}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow w_{s}^{(k)} \in W_{0, s}: \\
& \quad a\left(w_{s}^{(k)}, v_{s}\right)=\ell\left(v_{s}\right)-a\left(u^{(k)}, v_{s}\right) \quad \forall v_{s} \in W_{0, s} .
\end{aligned}
$$

How to combine all the corrections?
■ Additive

- Multiplicative

Additive-Schwarz methods

\square Approximation: $\underline{u}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow u^{(k)} \in V_{0}$.

- Subspaces

$$
V_{0}=\sum_{s=1}^{P} W_{0, s}
$$

- Subspace corrections

$$
w_{s}^{(k)} \in W_{0, s}: a\left(w_{s}^{(k)}, v_{s}\right)=\ell\left(v_{s}\right)-a\left(u^{(k)}, v_{s}\right) \quad \forall v_{s} \in W_{0, s} .
$$

Define the correction

$$
w^{(k)}:=\sum_{s=1}^{P} w_{s}^{(k)} \in V_{0} \quad \leftrightarrow \quad \underline{w}^{(k)}:=\sum_{s=1}^{P} \underline{w}_{s}^{(k)} \in \mathbb{R}^{n_{h}} .
$$

Next iterate

$u^{(k+1)}=u^{(k)}+\alpha w^{(k)} \in V_{0} \quad \leftrightarrow \quad \underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \underline{w}^{(k)} \in \mathbb{R}^{n_{h}}$.

Additive-Schwarz methods - example

\square Discrete space: $V_{0}=\operatorname{span}\left\{N_{j}\right\}_{j=1}^{n_{h}}$
■ Consider the subspaces

$$
W_{0, s}:=\operatorname{span}\left\{N_{s}\right\} \quad \text { for } s=1, \ldots, n_{h}
$$

Then the additive correction is given by

$$
w^{(k)}=\sum_{s=1}^{n_{h}} w_{s}^{(k)}=\sum_{s=1}^{n_{h}} w_{s} N_{s} \quad \leftrightarrow \quad \underline{w}^{(k)}=\left[w_{s}\right]_{s=1}^{n_{h}} \in \mathbb{R}^{n_{h}} .
$$

We further obtain the subspace corrections

$$
\begin{array}{rll}
& w_{s}^{(k)} \in W_{0, s}: & a\left(w_{s}^{(k)}, v_{s}\right)=\ell\left(v_{s}\right)-a\left(u^{(k)}, v_{s}\right) \quad \forall v_{s} \in W_{0, s}, \\
\Leftrightarrow & w_{s} \in \mathbb{R}: & a\left(N_{s}, N_{s}\right) w_{s}=\ell\left(N_{s}\right)-a\left(u^{(k)}, N_{s}\right) \\
\Leftrightarrow & w_{s} \in \mathbb{R} \quad: & K_{s s} w_{s}=f_{s}-\left[\mathbf{K} \underline{u}^{(k)}\right]_{s}=\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]_{s} .
\end{array}
$$

Additive-Schwarz methods - example

Summerizing we have

$$
\underline{w}^{(k)}=\left[w_{s}\right]_{s=1}^{n_{h}} \in \mathbb{R}^{n_{h}} \quad \text { with } \quad w_{s}=K_{s s}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]_{s}
$$

Hence the correction is given by

$$
\underline{w}^{(k)}=\mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { with } \quad \mathbf{D}:=\operatorname{diag}(\mathbf{K}) .
$$

The next iterate is then given by

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \underline{w}^{(k)}=\underline{u}^{(k)}+\alpha \mathbf{D}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right]
$$

\rightarrow prec. Richardson method with "preconditioner" \mathbf{D}^{-1} or damped Jacobi method.
\rightarrow in general not an optimal method (see prevoiuse lecture)

Multiplicative-Schwarz methods

■ Approximation: $\underline{u}^{(k)} \in \mathbb{R}^{n_{h}} \leftrightarrow u^{(k)} \in V_{0}$.

- Subspaces

$$
V_{0}=\sum_{s=1}^{P} W_{0, s}
$$

Algorithm Multiplicative Schwarz
1: $u_{0}^{(k)}:=u^{(k)}$
2: $\mathbf{f o r} s=1, \ldots, P$ do
3: $\quad w_{s}^{(k)} \in W_{0, s}: a\left(w_{s}^{(k)}, v_{s}\right)=\ell\left(v_{s}\right)-a\left(u_{s-1}^{(k)}, v_{s}\right) \forall v_{s} \in W_{0, s}$
4: $\quad u_{s}^{(k)}=u_{s-1}^{(k)}+w_{s}^{(k)}$
5: end for
6: $u^{(k+1)}=u_{P}^{(k)}$
\rightarrow ordering of the subspaces $W_{0, s}$ plays a role!

Multiplicative-Schwarz methods - example

\square Discrete space: $V_{0}=\operatorname{span}\left\{N_{j}\right\}_{j=1}^{n_{h}}$

- Consider the subspaces

$$
W_{0, s}:=\operatorname{span}\left\{N_{s}\right\} \quad \text { for } s=1, \ldots, n_{h}
$$

Then the correction is given by

$$
\underline{w}^{(k)}=\mathbf{L}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right], \quad \mathbf{L}:=\text { lower triangular mat. of } \mathbf{K} .
$$

The next iterate is then given by

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\mathbf{L}^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] .
$$

\rightarrow Gauß-Seidel method
\rightarrow in general not an optimal method (see prevoiuse lecture)
It is possible to combine additive and multiplicative methods, e.g.
\rightarrow Multigrid methods (see later)

Outline

1. Basic idea
2. Preconditioned iterative methods

- Preconditioned Pichardson method
- Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods
- Multiplicative-Schwarz methods

4. Multilevel diagonal scaling

Summary

Multilevel diagonal scaling

Simple additive example \rightarrow not efficient preconditioner Idea: Consider a hierarchy of nested subspaces.
Simplification: 1d-Poisson problem:

- $\Omega=(0,1), V_{0}$ continuous and piecwise linear functions
\square Find $u \in V_{0}: \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \forall v \in V_{0}$

level $\ell=0, \quad V_{0}^{0}$
Nested spaces

$$
V_{0}^{0} \subset V_{0}^{1} \subset \ldots \subset V_{0}^{L}=V_{0} .
$$

Multilevel diagonal scaling

■ Basis functions for each level: $V_{0}^{\ell}=\operatorname{span}\left\{N_{j}^{\ell}\right\}_{j=1}^{n_{\ell}}$.
\square For each level we consider the subspaces

$$
W_{0, i}^{\ell}:=\operatorname{span}\left\{N_{i}^{\ell}\right\} \quad \text { for } i=1, \ldots, n_{\ell}, \quad \ell=0, \ldots, L .
$$

Subspace decomposition:

$$
V_{0}=V_{L}=\sum_{\ell=0}^{L} \sum_{i=1}^{n_{\ell}} W_{0, i}^{\ell}
$$

Additive correction:

$$
w^{(k)}=\sum_{\ell=1}^{L} \sum_{i=1}^{n_{\ell}} w_{i}^{\ell} N_{i}^{\ell}=: \sum_{\ell=1}^{L} w^{\ell}
$$

with the coefficents from the subspace corrections
$w_{i}^{\ell} \in \mathbb{R}: \quad a\left(N_{i}^{\ell}, N_{i}^{\ell}\right) w_{i}^{\ell}=\ell\left(N_{i}^{\ell}\right)-a\left(u^{(k)}, N_{i}^{\ell}\right)=:\left\langle R^{\ell}, N_{i}^{\ell}\right\rangle=:\left[\underline{r}^{\ell}\right]_{i}$.

Multilevel diagonal scaling

Multi diagonal scaling (MDS) procedure:

- Given approximation

$$
\underline{u}^{(k)} \in \mathbb{R}^{n_{h}} \quad \leftrightarrow \quad u^{(k)} \in V_{0} .
$$

■ For each level we apply a diagonal scaling to the residual

$$
\begin{aligned}
& \underline{r}^{\ell}:=\left[\ell\left(N_{i}^{\ell}\right)-a\left(u^{(k)}, N_{i}^{\ell}\right)\right]_{i=1}^{n_{\ell}} \\
& \quad \underline{w}^{\ell}=\mathbf{D}_{\ell}^{-1} \underline{r}^{\ell} \quad \leftrightarrow \quad w^{\ell} \in V_{0}^{\ell} .
\end{aligned}
$$

- Sum up all corrections from each level

$$
w^{(k)}=\sum_{\ell=0}^{L} w^{\ell} \in V_{0} \quad \leftrightarrow \quad \underline{w}^{(k)} \in \mathbb{R}^{n_{h}}
$$

- Compute update

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \underline{w}^{(k)} .
$$

Multilevel diagonal scaling

■ Every computation of one MDS update is linear w.r.t the residual

There exists

$$
\mathrm{C}_{\mathrm{MDS}^{-1}}: \mathbb{R}^{n_{h}} \rightarrow \mathbb{R}^{n_{h}}
$$

with

$$
\underline{w}^{(k)}=\mathbf{C}_{\mathrm{MDS}^{-1}} \underline{\underline{r}}=\mathbf{C}_{\mathrm{MDS}^{-1}}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] .
$$

This scheme gives the preconditioned Richardson method

$$
\underline{u}^{(k+1)}=\underline{u}^{(k)}+\alpha \mathbf{C}_{\mathrm{MDS}}{ }^{-1}\left[\underline{f}-\mathbf{K} \underline{u}^{(k)}\right] \quad \text { for } k=0,1, \ldots
$$

- The preconditioner $\mathrm{C}_{\mathrm{MDS}}{ }^{-1}$ can be also used in other iterative schmes like the CG-method.

Multilevel diagonal scaling

■ MDS scheme has optimal complexity $\mathcal{O}\left(n_{h}\right)$

- The MDS scheme is usually implemented by using transfer operators between the different levels \rightarrow see later

Theorem

For the MDS preconditioner one can show the spectral equivalence estimates

$$
c_{1}\left(\mathbf{C}_{\mathrm{MDS}} \underline{v}, \underline{v}\right) \leq(\mathbf{K} \underline{v}, \underline{v}) \leq c_{2}\left(\mathbf{C}_{\mathrm{MDS}} \underline{v}, \underline{v}\right) \quad \forall \underline{v} \in \mathbb{R}^{n_{h}},
$$

with constants c_{1}, c_{2} independent of h (only $\log (h)$).

Multilevel diagonal scaling - example

$\square \Omega=(0,1)$, deocmposed with constant mesh size $h_{\ell}=2^{-\ell}$
\square Find $u \in V_{0}: \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) \mathrm{d} x=\int_{0}^{1} f(x) v(x) \mathrm{d} x \forall v \in V_{0}$
\square Prec. CG-method, rel. residual error reduction $\varepsilon=10^{-8}$

level	dof n_{h}	iter	time $[\mathrm{s}]$
3	9	5	-
4	17	11	-
5	33	16	-
6	65	20	-
7	129	22	-
8	257	24	-
9	513	26	-
10	1025	26	-
11	2049	27	0.0015
12	4097	29	0.0029
13	8193	29	0.0060
14	16385	30	0.0131
15	32769	32	0.0315
16	65537	33	0.0668
17	131073	33	0.1377
18	262145	34	0.3147
19	524289	34	0.6527
20	1048577	35	1.3391

Outline

1. Basic idea

2. Preconditioned iterative methods

- Preconditioned Pichardson method

■ Preconditioned CG method

3. Subspace correction methods

- Additive-Schwarz methods

■ Multiplicative-Schwarz methods
4. Multilevel diagonal scaling

Summary

- Basic idea of preconditioning
- Preconditioned iterative methods
- Subspace correction methods
\square Additive
\square Multiplicative
- Multileve diagonal scaling (MDS)
[1] A. Toselli and O. Widlund.
Domain decomposition methods-algorithms and theory, volume 34 of Springer Series in Computational Mathematics.

Springer-Verlag, Berlin, 2005.

[2] W. Zulehner.
Numerische Mathematik: eine Einführung anhand von Differentialgleichungsproblemen. Band 1. Stationäre Probleme.
Mathematik Kompakt. [Compact Mathematics]. Birkhäuser Verlag, Basel, 2008.

