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Basic idea

� Weak formulation: Find u ∈ V0 : a(u, v) = `(v) ∀v ∈ V0
� Equivalent linear system:

Ku = f

with K ∈ Rnh×nh symmetric and positive definite
� Condition number: κ(K)→∞ as h→ 0

� Iteration numbers: O(κ(K)α)→∞ as h→ 0

Idea: Multiply with regular matrix C−1 ∈ Rnh×nh

C−1Ku = C−1f,

such that
κ(C−1K) ≤ c 6= c(h).
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Basic idea

Preconditioned linear system:

C−1Ku = C−1f,

Requirements:

� Reduce condition number: κ(C−1K) ≤ c 6= c(h)

� Cheap realization of C−1, i.e. with complexity

O(nh) or O(nh log(nh)).

CISM Course Computational Acoustics 3/24



Basic idea

Lemma

For K,C ∈ Rnh×nh symmetric and positive definite let the
spectral equivalence inequalities be fulfilled, i.e.

c1(Cv, v) ≤ (Kv, v) ≤ c2(Cv, v) ∀v ∈ Rnh .

Then there holds the estimate

κ(C−1K) ≤ c2
c1
.
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Preconditioner overview

� Algebraic preconditioners:
� Incomplete LU-factorization (ILU)
� Incomplete Cholesky-factorization (IC)
� Algebraic multigrid method (AMG)
� ...

� Preconditioners using variational backround:
� Schwarz methods
� Multilevel methods (BPX, MDS, AMLI,...)
� Multigrid methods (GMG, AMG)
� ...
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Preconditioned Richardson method

Applying the Richardson method to the preconditioned linear
system:

C−1Ku = C−1f,

gives

u(k+1) = u(k) + α
[
C−1f −C−1Ku(k)

]
= u(k) + αC−1

[
f −Ku(k)

]
the preconditioned Richardson method

u(k+1) = u(k) + αC−1
[
f −Ku(k)

]
for k = 0, 1, 2, . . .
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Preconditioned CG method
Applying the CG-method to the preconditioned linear system:

C−1Ku = C−1f,

gives the

Algorithm Preconditioned CG-method
1: r(0) := f −Ku(0), v(0) := C−1r(0), p(0) := v(0)

2: for k = 0, 1 . . . do
3: w(k) = Kp(k)

4: αk = (r(k),v(k))

(w(k),p(k))

5: u(k+1) = u(k) + αkp
(k)

6: r(k+1) = r(k) − αkw(k)

7: v(k+1) = C−1r(k)

8: βk = (r(k+1),v(k+1))

(r(k),v(k))
, p(k+1) = v(k+1) + βkp

(k)

9: end for
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Preconditioned CG method

Theorem (prec. CG-method convergence)

For the preconditioned CG-method there holds the estimate

||u− u(k)||A ≤
2qk

1 + q2k
||u− u(0)||A ≤ 2qk||u− u(0)||A,

with

q =

√
κ(C−1K)− 1√
κ(C−1K) + 1
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Subspace correction methods
Use variational backround:

Ku = f ⇔ u ∈ V0 : a(u, v) = `(v) ∀v ∈ V0.

First idea: Use coercivity and boundedness of a(·, ·):

c1(Bv, v) := c1(v, v)V

= c1||v||2V ≤ a(v, v) = (Kv, v) ≤ c2||v||2V = c2(Bv, v)

for all v ∈ Rnh .

� Spectral equivalence estimate fulfilled for B X

� Efficient realization of B−1 not directly possible for spaces
like V = H1(Ω) ×

� BEM: the Preconditioner B−1 can often be realized by a
boundary integral operator→ operators of inverse order
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Subspace correction methods
Let u(k) ∈ Rnh ↔ u(k) ∈ V0 be an approximation of

Ku = f ↔ u ∈ V0 : a(u, v) = `(v) ∀v ∈ V0.

Second idea: Use a subspace W0 ⊂ V0 and the variational
problem:

w(k) ∈ Rnh ↔ w(k) ∈W0 : a(w(k), v) = `(v)−a(u(k), v) ∀v ∈W0.

� If W0 = V0, then

u = u(k) + w(k) ∈ Rnh ↔ u = u(k) + w(k) ∈ V0.

� This motivates to define for W0 ⊂ V0 and α > 0 the
correction

u(k+1) = u(k)+αw(k) ∈ Rnh ↔ u(k+1) = u(k)+αw(k) ∈ V0.

If W0 ⊂ V0, then not all components of V0 can be corrected ×
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Subspace correction methods

Third idea: Use a subspace decomposition. Consider the
subspaces W0,s ⊂ V0 for s = 1, . . . , P with

V0 =

P∑
s=1

W0,s :=

{
P∑
s=1

ws : ws ∈W0,s for s = 1, . . . , P

}
.

For every subspace W0,s we obtain a subspace correction

w(k)
s ∈ Rnh ↔ w(k)

s ∈W0,s :

a(w(k)
s , vs) = `(vs)− a(u(k), vs) ∀vs ∈W0,s.

How to combine all the corrections?

� Additive

� Multiplicative

CISM Course Computational Acoustics 11/24



Additive-Schwarz methods

� Approximation: u(k) ∈ Rnh ↔ u(k) ∈ V0.
� Subspaces

V0 =

P∑
s=1

W0,s.

� Subspace corrections

w(k)
s ∈W0,s : a(w(k)

s , vs) = `(vs)− a(u(k), vs) ∀vs ∈W0,s.

Define the correction

w(k) :=

P∑
s=1

w(k)
s ∈ V0 ↔ w(k) :=

P∑
s=1

w(k)
s ∈ Rnh .

Next iterate

u(k+1) = u(k) + αw(k) ∈ V0 ↔ u(k+1) = u(k) + αw(k) ∈ Rnh .
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Additive-Schwarz methods - example

� Discrete space: V0 = span{Nj}nh
j=1

� Consider the subspaces

W0,s := span{Ns} for s = 1, . . . , nh.

Then the additive correction is given by

w(k) =

nh∑
s=1

w(k)
s =

nh∑
s=1

wsNs ↔ w(k) = [ws]
nh
s=1 ∈ Rnh .

We further obtain the subspace corrections

w(k)
s ∈W0,s: a(w(k)

s , vs) = `(vs)− a(u(k), vs) ∀vs ∈W0,s,

⇔ ws ∈ R : a(Ns, Ns)ws = `(Ns)− a(u(k), Ns),

⇔ ws ∈ R : Kssws = fs −
[
Ku(k)

]
s

=
[
f −Ku(k)

]
s
.
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Additive-Schwarz methods - example

Summerizing we have

w(k) = [ws]
nh
s=1 ∈ Rnh with ws = K−1ss

[
f −Ku(k)

]
s
.

Hence the correction is given by

w(k) = D−1
[
f −Ku(k)

]
with D := diag(K).

The next iterate is then given by

u(k+1) = u(k) + αw(k) = u(k) + αD−1
[
f −Ku(k)

]
.

→ prec. Richardson method with “preconditioner” D−1

or damped Jacobi method.
→ in general not an optimal method (see prevoiuse lecture)
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Multiplicative-Schwarz methods

� Approximation: u(k) ∈ Rnh ↔ u(k) ∈ V0.
� Subspaces

V0 =

P∑
s=1

W0,s.

Algorithm Multiplicative Schwarz

1: u
(k)
0 := u(k)

2: for s = 1, . . . , P do
3: w

(k)
s ∈W0,s : a(w

(k)
s , vs) = `(vs)− a(u

(k)
s−1, vs) ∀vs ∈W0,s

4: u
(k)
s = u

(k)
s−1 + w

(k)
s

5: end for
6: u(k+1) = u

(k)
P

→ ordering of the subspaces W0,s plays a role!
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Multiplicative-Schwarz methods - example

� Discrete space: V0 = span{Nj}nh
j=1

� Consider the subspaces

W0,s := span{Ns} for s = 1, . . . , nh.

Then the correction is given by

w(k) = L−1
[
f −Ku(k)

]
, L := lower triangular mat. of K.

The next iterate is then given by

u(k+1) = u(k) + L−1
[
f −Ku(k)

]
.

→ Gauß-Seidel method
→ in general not an optimal method (see prevoiuse lecture)
It is possible to combine additive and multiplicative methods,
e.g.

→ Multigrid methods (see later)
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Multilevel diagonal scaling
Simple additive example→ not efficient preconditioner
Idea: Consider a hierarchy of nested subspaces.
Simplification: 1d-Poisson problem:

� Ω = (0, 1), V0 continuous and piecwise linear functions
� Find u ∈ V0 :

∫ 1
0 u
′(x)v′(x)dx =

∫ 1
0 f(x)v(x)dx ∀v ∈ V0

level ` = 0, V 0
0

level ` = 1, V 1
0

level ` = 2, V 2
0

level ` = 3, V 3
0

Nested spaces

V 0
0 ⊂ V 1

0 ⊂ . . . ⊂ V L
0 = V0.
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Multilevel diagonal scaling

� Basis functions for each level: V `
0 = span{N `

j }
n`
j=1.

� For each level we consider the subspaces

W `
0,i := span{N `

i } for i = 1, . . . , n`, ` = 0, . . . , L.

Subspace decomposition:

V0 = VL =

L∑
`=0

n∑̀
i=1

W `
0,i.

Additive correction:

w(k) =

L∑
`=1

n∑̀
i=1

w`iN
`
i =:

L∑
`=1

w`,

with the coefficents from the subspace corrections

w`i ∈ R : a(N `
i , N

`
i )w

`
i = `(N `

i )−a(u(k), N `
i ) =: 〈R`, N `

i 〉 =:
[
r`
]
i
.
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Multilevel diagonal scaling
Multi diagonal scaling (MDS) procedure:

� Given approximation

u(k) ∈ Rnh ↔ u(k) ∈ V0.

� For each level we apply a diagonal scaling to the residual
r` :=

[
`(N `

i )− a(u(k), N `
i )
]n`

i=1

w` = D−1` r` ↔ w` ∈ V `
0 .

� Sum up all corrections from each level

w(k) =

L∑
`=0

w` ∈ V0 ↔ w(k) ∈ Rnh

� Compute update

u(k+1) = u(k) + αw(k).
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Multilevel diagonal scaling

� Every computation of one MDS update is linear w.r.t the
residual

There exists
CMDS

−1 : Rnh → Rnh ,

with
w(k) = CMDS

−1r = CMDS
−1
[
f −Ku(k)

]
.

This scheme gives the preconditioned Richardson method

u(k+1) = u(k) + αCMDS
−1
[
f −Ku(k)

]
for k = 0, 1, . . .

� The preconditioner CMDS
−1 can be also used in other

iterative schmes like the CG-method.
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Multilevel diagonal scaling

� MDS scheme has optimal complexity O(nh)

� The MDS scheme is usually implemented by using transfer
operators between the different levels→ see later

Theorem

For the MDS preconditioner one can show the spectral equiv-
alence estimates

c1(CMDSv, v) ≤ (Kv, v) ≤ c2(CMDSv, v) ∀v ∈ Rnh ,

with constants c1, c2 independent of h (only log(h)).
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Multilevel diagonal scaling - example

� Ω = (0, 1), deocmposed with constant mesh size h` = 2−`

� Find u ∈ V0 :
∫ 1
0 u
′(x)v′(x)dx =

∫ 1
0 f(x)v(x)dx ∀v ∈ V0

� Prec. CG-method, rel. residual error reduction ε = 10−8

level dof nh iter time [s]
3 9 5 -
4 17 11 -
5 33 16 -
6 65 20 -
7 129 22 -
8 257 24 -
9 513 26 -
10 1 025 26 -
11 2 049 27 0.0015
12 4 097 29 0.0029
13 8 193 29 0.0060
14 16 385 30 0.0131
15 32 769 32 0.0315
16 65 537 33 0.0668
17 131 073 33 0.1377
18 262 145 34 0.3147
19 524 289 34 0.6527
20 1 048 577 35 1.3391
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Summary

� Basic idea of preconditioning

� Preconditioned iterative methods
� Subspace correction methods

� Additive
� Multiplicative

� Multileve diagonal scaling (MDS)
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