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General Idea and Questions

� Idea:
� Given initial guess u0 ∈ Rn

� Generate (how ?) successively a sequence of vectors

u1, u2, . . . , uk −→ u ∈ Rn : Ku = f for k →∞ !

� Questions
1. Construction principles
2. Convergence analysis
3. Convergence rate and iteration error estimates

q-linear: ∃q ∈ [0, 1): ‖u− uk‖ ≤ q‖u− uk−1‖ ≤ qk‖u− u0‖
r-linear: ∃q ∈ [0, 1) and c = const > 0: ‖u− uk‖ ≤ c qk

4. In practice: Convergence tests, e.g., defect tests

‖dk‖ = ‖dk‖Rn = ‖ek‖KTK = (KTKek, ek)0.5Rn ≤ ε‖d0‖

with the defect dk = f −Kuk = K(u− uk) = Kek

5. Choice of the norm ‖ek‖ in which we control the iteration ?
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Jacobi = Mother of Additive Schwarz
Idea: Solve the i-th eqn Ki1u1 + . . .+Kiiui + . . .+Kinun = fi

for ui yielding the fixed point eqn: ui = K−1ii (fi −
∑

j 6=iKijuj)

Algorithm (Jacobi iteration method)

Given initia guess u0 = (u01, . . . , u
0
n)
T ∈ Rn,

iterate k = 0, 1, . . . , kstop until convergence (defect test):
uk+1 = (uk+1

1 , . . . , uk+1
n )T ∈ Rn:

uk+1
i =

1

Kii

(
fi −

n∑
j=1,j 6=i

Kiju
k
j

)

for i = 1, 2, . . . , n (in parallel).

Slow convergence (see our analysis below), but the damped
version has an excellent smoothing property (see LN4) !
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Gauss and his new iterative method
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Gauss-Seidel = Mother of Multipl. Schwarz
Idea: Use the already computed new components

uk+1
1 , . . . , uk+1

i−1 in the iteration:

Algorithm (Gauss-Seidel iteration method)

Given initial guess u0 = (u01, . . . , u
0
n)
T ∈ Rn,

iterate k = 0, 1, . . . , kstop until convergence (defect test):
uk+1 = (uk+1

1 , . . . , uk+1
n )T ∈ Rn:

uk+1
i =

1

Kii

(
fi −

i−1∑
j=1

Kiju
k+1
j −

n∑
j=i+1

Kiju
k
j

)

for i = 1, 2, . . . , n (sequentially), with
∑0

j=1 =
∑n

j=n+1 = 0.

Slow convergence, but an excellent smoothing property (LN4) !

CISM Course Computational Acoustics 5/28



Richardson and Preconditioned Richardson

� Motivation: Solving ODE system

∂u(t)

∂t
+Ku(t) = f

by explicite Euler gives Richardson method:

uk+1 − uk

τ
+Kuk = f, k = 1, 2, . . . (1)

� Application of Richardson (1) to the preconditioned system

C−1Ku = C−1f ⇐⇒ Ku = f

gives the preconditioned Richardson method:

C
uk+1 − uk

τ
+Kuk = f, k = 1, 2, . . . (2)

where the preconditioner C should reduce the stiffness
and should be easily invertable (see LN3) !
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Preconditioned Richardson: Algorithm

Algorithm (Preconditioned Richardson method)

Given initia guess u0 = (u01, . . . , u
0
n)
T ∈ Rn,

iterate k = 0, 1, . . . , kstop until convergence (defect test):

dk = f −Kuk

Cwk = dk

uk+1 = uk + τwk

Convergence rate heavily depends on the quality of the
preconditioner, see our analysis below !
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Preconditioned Richardson: Preconditioners

Special choices of the preconditioner C in the
preconditioned Richardson method:

C
uk+1 − uk

τ
+Kuk = f, k = 1, 2, . . .

yields well-known classical iteration methods:

1. C = I: Classical Richardson method
2. C = D := diagK: τ -Jacobi method (τ = 1: Jacobi method)
3. C = L+ (1/ω)D: SOR preconditioner (K = L+D+U):

τ = 1: SOR = Successive OverRelaxation (D. Young, 1950)
τ = 1 and ω = 1: Gauss-Seidel

4. C = L̃Ũ: ILU decomposition of K, see LN1
5. Modern preconditioners: see LN3
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Convergence Analysis

From the preconditioned Richardson iteration (1) and Ku = f ,
we can immediately derive the error iteration scheme:

ek+1 = u− uk+1 = u− (uk − τC−1K(u− uk)) = E ek (3)

with the error propagation (iteration) matrix E = I− τC−1K.

The error iteration scheme (3) has the following consequences
wrt convergence:

1. Richardson (1) converges iff the spectral radius
ρ(E) := maxi=1,...,n |λi(E)| of E is less than 1.

2. Error estimate wrt some norm and q-linear convergence:

‖ek+1‖ ≤ ‖I− τC−1K‖ ‖ek‖ = q‖ek‖ ≤ qk+1‖e0‖ → 0 (4)

provided that q = ‖E‖ < 1 in some norm ‖ · ‖ (?)
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Convergence Analysis: SPD case (I)

� Let K and C be SPD. Then

Ku = f ⇐⇒ K̃ũ = f̃ (5)

with f̃ = C−1/2f , ũ = C1/2u, and the preconditioned
stiffness matrix K̃ = C−1/2KC−1/2 that is obviously SPD !

� Thus it is sufficient to derive iteration error estimates for
the classical Richardson method !

� Let us consider expansion of the k-th error ek into a Fourier
series wrt the eigenvectors of K (resp. K̃):

ek =

n∑
j=1

αjϕj (6)

with the Fourier coefficients αj = (ek, ϕ
j
)Rn , j = 1, 2, . . . , n.
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Convergence Analysis: SPD case (II)

� Inserting the Fourier expansion (6) into the error
scheme (3) with C = I, we get

ek+1 = Eek = (I− τK)ek =

n∑
j=1

αj(1− τλj)ϕj (7)

� We choose the following class of norms

‖v‖s := (Ksv, v)
1/2
Rn , s ∈ R (special interest: s = 0, 1, 2)

in which we want to derive sharp iteration error estimates !

� Show that ‖ · ‖s is indeed a norm ?
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Convergence Analysis: SPD case (III)
Richardson method

� Using (7), we get the sharp estimate

‖ek+1‖2s = (Ksek+1, ek+1)Rn = (Ksek+1, ek+1)

= (Ks
n∑
j=1

αj(1− τλj)ϕj ,
n∑
i=1

αi(1− τλi)ϕi)

= (

n∑
j=1

αj(1− τλj)λsjϕj ,
n∑
i=1

αi(1− τλi)ϕi)

=
n∑
j=1

α2
jλ

s
j(1− τλj)2

≤ max
i=1,...,n

(1− τλi)2
n∑
j=1

α2
jλ

s
j = max

i=1,...,n
(1− τλi)2 ‖ek‖2s

= (max{|1− τλ1|, |1− τλn|})2‖ek‖2s = q(τ)2‖ek‖2s
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Convergence Analysis: SPD case (IV)

Lemma (Convergence rate estimate)

The ‖ · ‖s norm of the iteration matrix E = I− τK is given by

‖E‖s := max
v∈Rn

‖Ev‖s
‖v‖s

= q(τ) := max{|1− τλ1|, |1− τλn|} < 1

for fixed τ ∈ (0, 2/λn) and s ∈ R.

Remark: ‖ek+1‖s ≤ q(τ)‖ek‖s ≤ . . . ≤ (q(τ))k+1‖e0‖s
s = 0 : ‖u− uk+1‖Rn ≤ (q(τ))k+1‖u− u0‖Rn (not computable)
s = 1 : ‖u− uk+1‖K ≤ (q(τ))k+1‖u− u0‖K (not computable)
s = 2 : ‖u− uk+1‖K2 = ‖dk+1‖Rn ≤ (q(τ))k+1‖d0‖Rn (comp.)
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Convergence Analysis: SPD case (V)
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Figure: Functions |1− τλk|

� Eqn 1− τλ1 = τλn − 1 yields τopt = 2/(λ1 + λn)

� qopt = q(τopt) = (λn − λ1)/(λn + λ1) = (κ2 − 1)/(κ2 + 1)

with the spectral condition number κ2 = κ2(K) = λn/λ1.
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Convergence Analysis: SPD case (VI)

Theorem (Optimal convergence rates)

In the SPD case, the classical Richardson method (1) con-
verges for all τ ∈ (0, 2/λmax(bfK)) = (0, 2/λn), and, for every
fixed s ∈ (0, 1), the iteration error estimate

‖u− uk+1‖s ≤ q(τ)‖u− uk‖s (8)

holds with q(τ) := max{|1− τλ1|, |1− τλn|} < 1. The optimal
(minimal) rate

qopt = q(τopt) =
λn − λ1
λn + λ1

=
κ2(K)− 1

κ2(K) + 1
(9)

is attained at τopt = 2/(λ1 + λn), where λ1 and λ2 are the
minimal and maximal eigenvalues of the matrix K.
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Convergence Analysis: SPD case (VII)

Since the preconditioned Richardson (2) can be interpreted as
the application of the classical Richardson method (1) to

K̃ũ = f̃ ⇐⇒ Ku = f

with K̃ = C−1/2KC−1/2 f̃ = C−1/2f , ũ = C1/2u, we get the
convergence results as presented in the Theorem, but now with

λ1 = λmin(C
−1/2KC−1/2) = λmin(C

−1K),

λn = λmax(C
−1/2KC−1/2) = λmax(C

−1K).

Remark: s = 2 gives computable norm. Indeed,

‖ũ− ũj‖22 = (K̃2ẽj , ẽj) = (KC−1Kej , ej) = (wj , dj)
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Jacobi = special preconditiond Richardson
� τ -Jacobi = preRichardson with C = D := diagK:
⇒ κ2(C

−1K) = O(h−2)

⇒ qopt = q(τopt) =
κ2(C−1K)−1
κ2(C−1K)+1

= 1−O(h2)
1+O(h2)

= 1−O(h2)

� Example from LN1: K = h−1 tridiag (−1, 2,−1)
⇒ C = diagK = diag

(
2h−1

)
⇒ λmin(C

−1K) = (h/2) 4h−1 sin2 πh2 = 2 sin2 πh2
⇒ λmax(C

−1K) = (h/2) 4h−1 cos2 πh2 = 2 cos2 πh2
⇒ τopt =

2
λmin+λmax

= 2
2(sin2(·)+cos2(·)) = 1

⇒ Classical Jacobi is optimal !

⇒ qopt =
κ2(C−1K)−1
κ2(C−1K)+1

=
1−tan2 πh

2

1+tan2 πh
2

= 1− 2 sin2 πh2 ≈ 1− π2h2

2

⇒ Slow convergence: I(ε) = O(h−2 ln ε−1)

⇒ BUT: Fast reduction of the high frequency modes for
damped Jacobi, e.g., τ = 1/λmax(C

−1K) = 1
2 cos2 πh

2

≈ 1
2 ,

see Figure Functions |1− τλk| and LN4 (MGM) !
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Krylov instead of Richardson

In practice, we use

� preconditioned Krylov subspace iteration methods

instead of preconditioned Richardson iteration methods since

1. they don’t need spectral information to determine iteration
parameters like τ in Richardson,

2. they converge faster !

In the SPD case,

� Preconditioned Conjugate Gradient (PCG) method,

proposed by Magnus Hestenes and Eduard Stiefel in 1952,
is the method of choice (#3 under the top 10 num. alg.)
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SPD Systems and Minimization Problems

� Let us consider the linear system: Find u ∈ Rn:

Ku = f

with given rhs f ∈ Rn and SPD system matrix K, i.e.
K = KT and (Kv, v) > 0 ∀v ∈ Rn : v 6= 0.

� Then the SPD system Ku = f is equivalent to the
energy minimization problem

J(u) = min
v∈Rn

1

2
(Kv, v)−(f, v) = min

v∈Rn
1

2

n∑
i,j=1

Kijvjvi−
n∑
i=1

fivi

Proof: ∇J(v) =
(
∂J(v)
∂vi

)
i=1,...,n

= Kv − f = 0 !,

∇2J(v) =
(
∂2J(v)
∂vi∂vj

)
i,j=1,...,n

= K SPD !
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Gradient (Steepest Descent) Method

� Idea for a Steepest Descent Method (Gradient Method):
� Given initial guess u0 = (u01, . . . , u

0
n)
T ∈ Rn,

� Compute steepest descent d0 at u0:
d0 = −∇J(u0) = f −Ku0

� s0 = d0 (search direction)
� u1 = u0 + α1s

0 (next iterate)
� Compute step size α1: J(u0 + α1s

0) = minα J(u
0 + αs0)

dJ(u0+αs0)
dα = (Ku0, s0)− (f, s0) + α (Ks0, s0) = 0 gives

α1 =
(d0, s0)

(Ks0, s0)

� The new steepest descent d1 at u1 can be computed by
recursion as follows

d1 = f −Ku1 = f −K(u0 + α1s
0)

= f −Ku0 − α1Ks
0 = d0 − α1Ks

0
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Gradient Method: Algorithm

Algorithm (Gradient method = steepest descent method)

Initialization:
u0 ∈ Rn - given initial guess,
d0 = f −Ku0 - initial defect = steepest descent,
s0 = d0 - search direction,

Iteration: k = 0, 1, . . . , kstop;
If ‖dk‖ ≤ ε‖d0‖, then STOP (defect test),
αk = (dk, sk)/(Ksk, sk) - new step size,
uk+1 = uk + αks

k - new iterate,
dk+1 = dk − αkKsk - new defect,
sk+1 = dk+1 - new search direction.
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Gradient Method (GM): Convergence

� Since

J(v) = 0.5(Kv, v)− (f, v)

= 0.5(Kv, v)− (Ku, v) + 0.5(Ku, u)− 0.5(Ku, u)

= 0.5‖u− v‖2K − 0.5‖u‖2K,

we conclude that

min
v∈Rn

J(v) ⇔ min
v∈Rn

‖u− v‖K

� Consequence: Using sk = dk, we get

‖u− uk+1‖K =min
α∈R
‖u− (uk + αks

k‖K

≤‖u− (uk + τoptd
k)‖K ≤ q(τopt)‖u− uk‖K,

i.e. GM converges at least as fast as Richardson !
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Gradient Method (GM): Improvements

� Possible improvements:
1. Preconditioning: Apply GM to the preconditioned system

C−1Ku = C−1f ⇐⇒ C−0.5KC−0.5v = C−0.5f

This means that the search direction in the Preconditioned
Gradient Method is the preconditioned defect

sk+1 = wk+1 := C−1dk+1

2. Use conjugate search directions defined by

sk+1 = dk+1 + βks
k ⊥ sk wrt (·, ·)K := (K·, ·)

i.e., βk ∈ R : (Ksk+1, sk) = 0⇒ βk = − (Kdk+1,sk)
(Ksk,sk)

� Both improvements lead to the
Preconditioned Conjugate Gradient (PCG) Method
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PCG: Algorithm

Algorithm (Preconditioned conjugate gradient method)

Initialization:
u0 ∈ Rn - given initial guess,
d0 = f −Ku0 - initial defect = steepest descent,
s0 = w0 := C−1d0 - search direction = preconditioned defect,

Iteration: k = 0, 1, . . . , kstop;
If ‖ek‖KC−1K ≤ ε‖e0‖KC−1K, then STOP (KC−1K norm test),
αk = (dk, sk)/(Ksk, sk) = (dk, wk)/(Ksk, sk) - new step size,
uk+1 = uk + αks

k - new iterate,
dk+1 = dk − αkKsk - new defect,
wk+1 := C−1dk+1 - preconditioning,
βk = −(Kwk+1, sk)/(Ksk, sk) = (wk+1, dk+1)/(wk, dk),
sk+1 = wk+1 + βks

k - new search direction.
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PCG: Algorithm

Algorithm (Preconditioned conjugate gradient method)

Initialization:
u0 ∈ Rn - given initial guess,
d0 = f −Ku0 - initial defect = steepest descent,
s0 = w0 := C−1d0 - search direction = preconditioned defect,

Iteration: k = 0, 1, . . . , kstop;
If (wk, dk) ≤ ε(wk, dk), then STOP (KC−1K norm test),
αk = (dk, sk)/(Ksk, sk) = (dk, wk)/(Ksk, sk) - new step size,
uk+1 = uk + αks

k - new iterate,
dk+1 = dk − αkKsk - new defect,
wk+1 := C−1dk+1 - preconditioning,
βk = −(Kwk+1, sk)/(Ksk, sk) = (wk+1, dk+1)/(wk, dk),
sk+1 = wk+1 + βks

k - new search direction.
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PCG: Convergence

Theorem (PCG: convergence rate estimate)

Let K and C be SPD matrices. Then not more than

I(ε) = [| ln(ε−1 + (ε−2 + 1)0.5)/ ln(q̃−1)|]

iteration are necessary to reduce the inital error ‖u− u0‖K by
the factor ε ∈ (0, 1). Moreover, the iteration error estimate

‖u− uk+1‖K ≤ η(k+1)‖u− u0‖K

holds, where

η(k) =
2qk

1 + q2k
, with q =

√
κ2(C−0.5KC−0.5)− 1√
κ2(C−0.5KC−0.5) + 1

< 1.
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Summary

� Classical iteration methods: Jacobi & Gauss-Seidel

� Preconditioned Richardson method

� SPD systems and energy minimization

� Gradient or steepest descent method

� CG and PCG

� Non SPD systems: Krylov subspace like GMRES
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