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Algebraic Systems arising in CA
Given a regular (?) nh × nh system matrix A = [Aij ]i,j=1,...,nh

and a rhs f = [fi]i=1,...,nh
∈ Rnh , find u = [uj ]j=1,...,nh

∈ Rnh :

Au = f (1)

where n = nh = neq = O(h−d) - nr of dofs = nr of eqns,
h - discretization parameter, d - space dim. (PDE in Ω ⊂ Rd).

Possible system matrices in CA:
A = D - diagonal matrix (mass lumping)
A = M - mass matrix (MK3= Kaltenbacher 3)
A = K - stiffness matrix (MK3)
A = M + γH ∆tC + βH(∆t)2K - Newmark matrix (MK3)
A = K− ω2M - time-harmonic case (SM=Marburg)
A = B - fully populated BEM matrices (SM): nh = O(h−(d−1))
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Model Problem from MK3

� Mixed BVP for Poisson equation (ν = 1):

−∆u = f in Ω, u = ue := 0 on Γe,
∂u

∂n
= qn on Γn (2)

� Weak formulation: Find u ∈ Vue : a(u, v) = `(v) ∀v ∈ V0

Find u ∈ Vue := {v ∈ H1(Ω) : v = ue on Γe} such that (:)∫
Ω
∇u · ∇v dx =

∫
Ω
fvdx +

∫
Γn

qnv ds (3)

for all v ∈ V0 := {v ∈ H1(Ω) : v = 0 on Γe}, where

H1(Ω) = {v ∈ L2(Ω) : ∃ weak ∇v ∈ L2(Ω)}

denotes the Sobolev space that is equipped with the norm

‖v‖21 := ‖v‖20 + |v|21 =

∫
Ω
|v|2dx +

∫
Ω
|∇v|2dx
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Model Problem from MK3: ∃ !

Lax-Milgram Lemma delivers existence and uniqueness
provided that the following assumptions are fulfilled:

1. rhs `(·) is a continuous (bounded), linear functional:

|`(v)| ≤ (‖f‖0 + c ‖qn‖L2(Γn))‖v‖1, ∀v ∈ V0,

2. bilinear form a(·, ·) is continuous (bounded) on V0:

|a(u, v)| ≤ 1 ‖u‖1‖v‖1 = µ2 ‖u‖1‖v‖1, ∀u, v ∈ V0,

3. bilinear form a(·, ·) is V0 elliptic (coercive):

a(v, v) = |v|21 ≥
1

2
(1 + c−2

F )‖v‖21 = µ1 ‖v‖21, ∀v ∈ V0,

by Friedrichs’ inequality: ‖v‖0 ≤ cF (Γe)|v|1, ∀v ∈ V0.
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Model Problem from MK3: FEM

� FE-Scheme: Find uh ∈ V h
ue : a(uh, vh) = `(vh) ∀vh ∈ V h

0

Find uh(x) =
∑neq

j=1 ujNj(x) +
∑nn

j=neq+1 ue(xj)Nj(x) ∈ V h
ue :∫

Ω
∇uh · ∇vh dx =

∫
Ω
fvhdx +

∫
Γn

qnv
h ds (4)

for all vh ∈ V0 := span{N1, N2, . . . , Nneq}.
� Since the FE basis is chosen, the FE scheme (4) is

equivalent to the solution of a linear system of equations:
Find u = [uj ]j=1,...,nh

∈ Rnh=neq :

Ku = f, (5)

where K = [Kij ]i,j=1,...,nh
, Kij =

∫
Ω∇Nj · ∇Ni dx

f = [fi]i=1,...,nh
, fi =

∫
Ω fNidx +

∫
Γn
qnNi ds

−
∑nn

j=neq+1Kijue(xj)
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Structural Properties of K

� Large scale: nh = O(h−d) = 106,...,109 dofs in practice !

� Sparse: Kij = 0 ∀i, j : suppNi ∩ suppNj = ∅, i.e.
NNE = Number of Non-zero Elements = O(h−d) = nh

� Band resp. profile strucure, i.e.
Kij = 0 if |i− j| > bw = bandwidth = O(h−(d−1)), BUT
band resp. profile depend on the numbering of the nodes !
=⇒ Heuristic algorithms of band or profile optimization like

2 Cuthill-McKee algorithm
2 Reverse Cuthill-McKee algorithm
2 Minimal degree algorithm
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Heredity Properties of K

� Heredity relation:

(Ku, v) := (Ku, v)Rn = a(uh, vh) ∀u, v ↔ uh, vh ∈ V h
0 (6)

� Consequences:
1. a(uh, vh) = a(vh, uh) ∀uh, vh ∈ V h

0 ⇒ K = KT

2. a(vh, vh) > 0 ∀vh ∈ V h
0 \ {0} ⇒ K is positive definite !

3. MK3 model problem (3): K = KT > 0 is SPD
since a(., .) is symmetric and even V0-elliptic.
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SPD Stiffness Matrix K: Spectral Properties

Let us assume that a(., .) is symmetric, V0-elliptic and
V0-bounded as in our MK3 model problem (3):

� Consequences:
1. K is SPD
2. K has n = nh positive real eigenvalues (EV) λk with the

corresponding eigenvectors ϕ
k
: Kϕ

k
= λkϕk

0 <λ1 ≤ λ2 ≤ . . . ≤ λn
ϕ
1
, ϕ

2
, . . . ϕ

n
,

where the eigenvectors are orthogonal, i.e.

(ϕ
i
, ϕ

j
) := (ϕ

i
, ϕ

j
)Rn = δi,j (7)

3. Spectral condition number:

κ2(K) := ‖K‖2‖K−1‖2 =
λn
λ1

=
λmax(K)

λmin(K)
(8)
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SPD K: Eigenvalue Estimates

� Rayleigh quotion representation:
1. Maximal eigenvalue λn = λmax(K) of K:

λmax(K) = max
v∈Rn

(Kv, v)

(v, v)
≤ c2hd−2 (9)

P: (Kv, v) = a(vh, vh) =
∑

(Keve, ve) ≤
∑
λmax(K

e)(ve, ve)

2. Minimal eigenvalue λ1 = λmin(K) of K:

λmin(K) = min
v∈Rn

(Kv, v)

(v, v)
≥ c1hd (10)

P: (Kv, v) = a(vh, vh) ≥ µ1‖vh‖21 ≥ µ1‖vh‖20 = µ1(Mv, v)

� The spectral condition number estimate

κ2(K) =
λmax(K)

λmin(K)
≤ c2

c1
h−2 (11)

is sharp wrt h, i.e. κ2(K) = O(h−2) for h→ 0 (example).
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Example: −u′′ = f in (0, 1), u(0) = u(1) = 0

Let us consider the 1d example

−u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0 (12)

yielding the FE stiffness matrix

K =
1

h



2 −1 0 · · · · · · 0

−1 2 −1
. . . . . .

...

0 −1
. . . . . . . . .

...
...

. . . . . . . . . −1 0
...

. . . 0 −1 2 −1

0 · · · · · · 0 −1 2


(13)

for hat functions N1, . . . , Nnh=n−1 on a uniform grid
0 = x0 < x1 < . . . < xn−1 < xn = 1 with xi+1 − xi = h = 1/n.
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Example: −u′′ = f in (0, 1), u(0) = u(1) = 0

� Eigenvalues: λk = 4
h sin2 kπ

2n , k = 1, 2, . . . , n− 1 = 1, n− 1

� Eigenvectors: ϕ
k

= [
√

2n sin(kπih)]i=1,...,n−1, k = 1, n− 1

� Minimal eigenvalue:

λ1 =
4

h
sin2 1π

2n
=

4

h
sin2 πh

2
= O(h)

� Maximal eigenvalue:

λn−1 =
4

h
sin2 (n− 1)π

2n
=

4

h
cos2 πh

2
= O(h−1)

� Spectral condition number:

κ2(K) =
λmax(K)

λmin(K)
=

cos2 πh
2

sin2 πh
2

= cot2 πh

2
= O(h−2)
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Carl Friedrich Gauss (1777- 1855)
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Gaussian Elimination: Idea

Let us write our system (1) Au = b in detail as

A
(0)
11 u1 + A

(0)
12 u2 + · · · + A

(0)
1n un = b

(0)
1

A
(0)
21 u1 + A

(0)
22 u2 + · · · + A

(0)
2Nun = b

(0)
2

...
...

...
...

. . .
...

...
...

...

A
(0)
n1 u1 + A

(0)
n2 u2 + · · · + A

(0)
nNun = b

(0)
n .

Use the first eqn to eliminate u1 from the other eqns:

U1j = A
(0)
1j = A1j , j = 1, 2, . . . , n,

Li1 = A
(0)
i1 /A

(0)
11 , i = 2, . . . , n,

A
(1)
ij = A

(0)
ij − Li1U1j , i, j = 2, . . . , n,

c1 = b
(0)
1 = b1

b
(1)
i = b

(0)
i − Li1c1, i, j = 2, . . . , n.
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Gaussian Elimination: Idea

Let us write our system (1) Au = b in detail as

U11u1 + U12u2 + · · · + U1nun = c1

A
(1)
22 u2 + · · · + A

(1)
2Nun = b

(1)
2

...
...

. . .
...

...
...

...

A
(1)
n2 u2 + · · · + A

(1)
nNun = b

(1)
n .

Use the first eqn to eliminate u1 from the other eqns:

U1j = A
(0)
1j = A1j , j = 1, 2, . . . , n,

Li1 = A
(0)
i1 /A

(0)
11 , i = 2, . . . , n,

A
(1)
ij = A

(0)
ij − Li1U1j , i, j = 2, . . . , n,

c1 = b
(0)
1 = b1

b
(1)
i = b

(0)
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Gaussian Elimination: Algorithm
If we simply replace superscript (0) by (k − 1) and (1) by (k),
then we arrive at the Gaussian Elimination Algorithm

Algorithm (Gaussian Elimination Algorithm)

Initialization: A(0) = A, b(0) = b

Forward Elimination:
for k = 1 step 1 until n− 1 do

for i = k + 1 step 1 until n do
Lik = A

(k−1)
ik /A

(k−1)
kk

b
(k)
i = b

(k−1)
i − Likb

(k−1)
k

for j = k + 1 step 1 until n do
A

(k)
ij = A

(k−1)
ij − LikA

(k−1)
kj

endfor
endfor

endfor
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Gaussian Elimination: Storage scheme

The intermediate results after k − 1 can be stored as follows:



U11 U12 · · · U1k · · · U1n

L21 U22 · · · U2k · · · U2n

...
. . . . . .

...
...

...

Lk1 · · · Lk,k−1 A
(k−1)
kk · · · A

(k−1)
kn

...
. . .

...
...

. . .
...

Ln1 · · · Ln,k−1 A
(k−1)
nk · · · A

(k−1)
nn
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Backward Substitution

After n-1 steps, we obtain the upper triangular system

Uu = c

with the upper triangular matrix

U =



U11 U12 · · · U1,n−1 U1n

0 U22 · · · U2,n−1 U2n

... 0
. . .

...
...

...
...

. . . Un−1,n−1 Un−1,n

0 0 · · · 0 Unn


und c =



c1

c2

...

cn−1

cn


which can easily be solved by backward substitution:

un = cn/Unn; ui = (ci−
n∑

j=i+1

Uijuj)Uii/, i = n−1, n−2, . . . , 1.
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Feasibility and operation count

� Feasibility via pivoting strategies:
To avoid Ukk = Ak−1

kk = 0, i.e. division by zero, we propose
a pivot search in the remainder matrix A(k−1):

1. Total pivoting: column and row exchange defined by
i∗, j∗ ∈ {k, . . . , n} : |Ak−1

i∗j∗ | ≥ |A
k−1
ij | ∀i, j = k, . . . , n.

2. column pivoting: column exchange
3. row pivoting: row exchange

� Operation count: SAXPY (ax+ y) operations:
1. Forward elimination A = LU: ≈ O(n3) = (n− 1)2 + . . .+ 12

2. Forward substitution c = L−1b: ≈ O(n2) = (n− 1) + . . .+ 1

3. Bachward substitution x = U−1c: ≈ O(n2)
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Gaussian Elimination as LU factorization

� Exercise: Show that the n-1 Gaussian elimination steps
are equivalent to the LU factorization of A, i.e. (n = 3)

A = LU =

 1 0 0

L21 1 0

L31 L32 1


 U11 U21 U31

0 U22 U32

0 0 U33

 ,

with the entries Lij and Uij generated by the Gaussian
elimination algorithm.

� Therefore, the solution of Au = b is equivalent to
1. factorization: A = LU by means of O(n3) ops
2. forward substitution: Lc = b by means of O(n2) ops
3. backward substitution:Uu = c by means of O(n2) ops
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ILU Factorization as Preconditioner

� If we compute the coefficients Lij and Uij in the Gaussian
Elimination Algorithm only for the indicies

(i, j) ∈M ⊇MNZE := {(i, j) : Aij 6= 0}

and set them to zero otherwise, then we obtain an
Incomplete LU factorization of the form

A = L̃Ũ + R, i.e., in general, C = L̃Ũ 6= A.

In particular, R = 0 ifM = {(i, j) : i, j = 1, 2, . . . , n}, and
the LU and ILU factorizations coincide.

� But who knows what it’s good for ? We can hope that
C = L̃Ũ can be used as a good preconditioner for A
in iterative methods =⇒ see NL2 and NL3
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Special Matrices: Band and Profile Matrices

� Exercise: Show that

Lij = 0 and Uij = 0 ∀ |i− j| > bw

if Aij = 0 for all |i− j| > bw = bandwidth !
� Results:

1. The bandwidth of A remains in the LU factors L and U of
A, but zero coefficients within the band of A can turn to
non-zero coefficients of L and U. This is call “fill-in” !

2. Factorization needs O(b2wn) ops, whereas
For- and backward substitutions need O(bwn) ops only !

3. Storage requirement is of the order O(bwn).

� Similar results hold for profiles (sky lines): The row /
column resp. column / row profils of A remains in the LU

resp. UL factorization of A.
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Special Matrices: Symmetric Matrices
The LDLT factorization of a symmetric and regular matrix A

can be found by comparing the coefficients (n = 3):

A =

 1 0 0

L21 1 0

L31 L32 1


 D11 0 0

0 D22 0

0 0 D33


 1 L21 L31

0 1 L32

0 0 1



=

 D11 D11L21 D11L31

L21D11 L2
21D11 +D22 L21L31D11 + L32D22

L31D11 L31L21D11 + L32D22 L2
31D11 + L2

32D22 +D33



Algorithm (LDLT factorization: Algorithm)

j = 1, . . . , n: Djj = Ajj −
∑j−1

k=1 L
2
jkDkk

i = j + 1, . . . , n: Lij = D−1
jj (Ajj −

∑j−1
k=1 LikLjkDkk)
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Special Matrices: SPD Matrices
The Cholesky factorizations LLT or UUT of a SPD matrix A

can also be found by comparing the coefficients (n = 3):

A =

 L11 0 0

L12 L22 0

L13 L23 L33


 L11 L12 L13

0 L22 L23

0 0 L33



=

 L2
11 L11L12 L11L13

L12L11 L2
12 + L2

22 L12L13 + L22L23

L13L11 L13L12 + L23L22 L2
13 + L2

23 + L2
33


Algorithm (Cholesky factorizations LLT : Algorithm)

L11 =
√
A11; for j = 2 step 1 until n do L1j = A1j/L11;

if j > 2 then i = 2, . . . , j − 1: Lij = L−1
jj (Aij −

∑i−1
k=1 LkiLkj);

Ljj =
√
Ajj −

∑j−1
k=1 L

2
kj endfor
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Sparse Direct Methods
� Sparse direct methods like

� nested disection methods
� multifrontal methods

use special elimination strategies:
1. ordering step: reorder the rows and columns
2. symbolic facorization: nonzero structure of the facors
3. numerical factorization: L and U

4. solution step: forward and backward substitution
� Software:

� SuperLU (left-looking)
� UMFPACK (multifrontal)
� PARDISO (left-right looking)
� MUMPS (multifrontal)

� References:
1. I. Duff: Direct Methods for Sparse Matrices, 1987.
2. T. Davis: Direct Methods for Sparse Linear Systems, 2006.
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Summary

� Linear systems of algebraic equation arising in CA

� Properties of the system matrices

� Gaussian elimination as basic idea of direct methods

� Gaussian elimination and LU factorization

� ILU factorization as preconditioner

� Band and profile matrices

� LDLT factorization for symmetric matrices

� Cholesky factorization for SPD matrices

� Sparse direct methods
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