CISM COURSE COMPUTATIONAL ACOUSTICS

Solvers

Part 1: Direct Solvers

Ulrich Langer and Martin Neumüller Institute of Computational Mathematics Johannes Kepler University Linz Udine, May 23-27, 2016

Outline

1. Algebraic Systems in CA and Properties
2. Gaussian Elimination, LU and Cholesky Factorizations
3. Sparse Direct Methods

Summary

Outline

1. Algebraic Systems in CA and Properties

2. Gaussian Elimination, LU and Cholesky Factorizations

3. Sparse Direct Methods

Summary

Algebraic Systems arising in CA

Given a regular (?) $n_{h} \times n_{h}$ system matrix $\mathbf{A}=\left[A_{i j}\right]_{i, j=1, \ldots, n_{h}}$ and a rhs $\underline{f}=\left[f_{i}\right]_{i=1, \ldots, n_{h}} \in \mathbb{R}^{n_{h}}$, find $\underline{u}=\left[u_{j}\right]_{j=1, \ldots, n_{h}} \in \mathbb{R}^{n_{h}}$:

$$
\begin{equation*}
\mathbf{A} \underline{u}=\underline{f} \tag{1}
\end{equation*}
$$

where $n=n_{h}=n_{e q}=O\left(h^{-d}\right)-\mathrm{nr}$ of dofs $=\mathrm{nr}$ of eqns,
h - discretization parameter, d - space dim. (PDE in $\Omega \subset \mathbb{R}^{d}$).
Possible system matrices in CA:
$\mathbf{A}=\mathbf{D}$ - diagonal matrix (mass lumping)
$\mathbf{A}=\mathbf{M}$ - mass matrix (MK3= Kaltenbacher 3)
$\mathbf{A}=\mathbf{K}$ - stiffness matrix (MK3)
$\mathbf{A}=\mathbf{M}+\gamma_{H} \Delta t \mathbf{C}+\beta_{H}(\Delta t)^{2} \mathbf{K}$ - Newmark matrix (MK3)
$\mathbf{A}=\mathbf{K}-\omega^{2} \mathbf{M}$ - time-harmonic case (SM=Marburg)
$\mathbf{A}=\mathbf{B}$ - fully populated BEM matrices (SM): $n_{h}=O\left(h^{-(d-1)}\right)$

■ Mixed BVP for Poisson equation ($\nu=1$):

$$
\begin{equation*}
-\Delta u=f \text { in } \Omega, \quad u=u_{e}:=0 \text { on } \Gamma_{e}, \quad \frac{\partial u}{\partial \mathbf{n}}=q_{n} \text { on } \Gamma_{n} \tag{2}
\end{equation*}
$$

■ Weak formulation: Find $u \in V_{u_{e}}: a(u, v)=\ell(v) \forall v \in V_{0}$
Find $u \in V_{u_{e}}:=\left\{v \in H^{1}(\Omega): v=u_{e}\right.$ on $\left.\Gamma_{e}\right\}$ such that (:)

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x}=\int_{\Omega} f v d \mathbf{x}+\int_{\Gamma_{n}} q_{n} v d s \tag{3}
\end{equation*}
$$

for all $v \in V_{0}:=\left\{v \in H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{e}\right\}$, where

$$
H^{1}(\Omega)=\left\{v \in L_{2}(\Omega): \exists \text { weak } \nabla v \in L_{2}(\Omega)\right\}
$$

denotes the Sobolev space that is equipped with the norm

$$
\|v\|_{1}^{2}:=\|v\|_{0}^{2}+|v|_{1}^{2}=\int_{\Omega}|v|^{2} d \mathbf{x}+\int_{\Omega}|\nabla v|^{2} d \mathbf{x}
$$

Lax-Milgram Lemma delivers existence and uniqueness provided that the following assumptions are fulfilled:

1. rhs $\ell(\cdot)$ is a continuous (bounded), linear functional:

$$
|\ell(v)| \leq\left(\|f\|_{0}+c\left\|q_{n}\right\|_{L_{2}\left(\Gamma_{n}\right)}\right)\|v\|_{1}, \forall v \in V_{0}
$$

2. bilinear form $a(\cdot, \cdot)$ is continuous (bounded) on V_{0} :

$$
|a(u, v)| \leq 1\|u\|_{1}\|v\|_{1}=\mu_{2}\|u\|_{1}\|v\|_{1}, \forall u, v \in V_{0}
$$

3. bilinear form $a(\cdot, \cdot)$ is V_{0} elliptic (coercive):

$$
a(v, v)=|v|_{1}^{2} \geq \frac{1}{2}\left(1+c_{F}^{-2}\right)\|v\|_{1}^{2}=\mu_{1}\|v\|_{1}^{2}, \forall v \in V_{0}
$$

by Friedrichs' inequality: $\|v\|_{0} \leq c_{F}\left(\Gamma_{e}\right)|v|_{1}, \forall v \in V_{0}$.

Model Problem from MK3: FEM

\square FE-Scheme: Find $u^{h} \in V_{u_{e}}^{h}: a\left(u^{h}, v^{h}\right)=\ell\left(v^{h}\right) \forall v^{h} \in V_{0}^{h}$
Find $u^{h}(\mathbf{x})=\sum_{j=1}^{n_{e q}} u_{j} N_{j}(\mathbf{x})+\sum_{j=n_{e q}+1}^{n_{n}} u_{e}\left(\mathbf{x}_{j}\right) N_{j}(\mathbf{x}) \in V_{u_{e}}^{h}$:

$$
\begin{equation*}
\int_{\Omega} \nabla u^{h} \cdot \nabla v^{h} d \mathbf{x}=\int_{\Omega} f v^{h} d \mathbf{x}+\int_{\Gamma_{n}} q_{n} v^{h} d s \tag{4}
\end{equation*}
$$

for all $v^{h} \in V_{0}:=\operatorname{span}\left\{N_{1}, N_{2}, \ldots, N_{n_{e q}}\right\}$.
\square Since the FE basis is chosen, the FE scheme (4) is equivalent to the solution of a linear system of equations:
Find $\underline{u}=\left[u_{j}\right]_{j=1, \ldots, n_{h}} \in \mathbb{R}^{n_{h}=n_{e q}}$:

$$
\begin{equation*}
\mathbf{K} \underline{u}=\underline{f}, \tag{5}
\end{equation*}
$$

where $\mathbf{K}=\left[K_{i j}\right]_{i, j=1, \ldots, n_{h}}, K_{i j}=\int_{\Omega} \nabla N_{j} \cdot \nabla N_{i} d \mathbf{x}$

$$
\begin{array}{r}
\underline{f}=\left[f_{i}\right]_{i=1, \ldots, n_{h}}, f_{i}=\int_{\Omega} f N_{i} d \mathbf{x}+\int_{\Gamma_{n}} q_{n} N_{i} d s \\
\\
-\sum_{j=n_{e q}+1}^{n_{n}} K_{i j} u_{e}\left(\mathbf{x}_{j}\right)
\end{array}
$$

Structural Properties of K

\square Large scale: $n_{h}=O\left(h^{-d}\right)=10^{6}, \ldots, 10^{9}$ dofs in practice!
\square Sparse: $K_{i j}=0 \forall i, j: \operatorname{supp} N_{i} \cap \operatorname{supp} N_{j}=\varnothing$, i.e. NNE $=$ Number of Non-zero Elements $=O\left(h^{-d}\right)=n_{h}$

- Band resp. profile strucure, i.e.
$K_{i j}=0$ if $|i-j|>b_{w}=$ bandwidth $=O\left(h^{-(d-1)}\right)$, BUT band resp. profile depend on the numbering of the nodes !
\Longrightarrow Heuristic algorithms of band or profile optimization like
\square Cuthill-McKee algorithm
\square Reverse Cuthill-McKee algorithm
\square Minimal degree algorithm

Heredity Properties of K

- Heredity relation:

$$
\begin{equation*}
(\mathbf{K} \underline{u}, \underline{v}):=(\mathbf{K} \underline{u}, \underline{v})_{R^{n}}=a\left(u^{h}, v^{h}\right) \forall \underline{u}, \underline{v} \leftrightarrow u^{h}, v^{h} \in V_{0}^{h} \tag{6}
\end{equation*}
$$

- Consequences:

1. $a\left(u^{h}, v^{h}\right)=a\left(v^{h}, u^{h}\right) \forall u^{h}, v^{h} \in V_{0}^{h} \Rightarrow \mathbf{K}=\mathbf{K}^{T}$
2. $a\left(v^{h}, v^{h}\right)>0 \forall v^{h} \in V_{0}^{h} \backslash\{0\} \Rightarrow \mathbf{K}$ is positive definite !
3. MK3 model problem (3): $\mathbf{K}=\mathbf{K}^{T}>0$ is SPD since $a(.,$.$) is symmetric and even V_{0}$-elliptic.

SPD Stiffness Matrix K: Spectral Properties

Let us assume that $a(.,$.$) is symmetric, V_{0}$-elliptic and V_{0}-bounded as in our MK3 model problem (3):

■ Consequences:

1. K is SPD
2. \mathbf{K} has $n=n_{h}$ positive real eigenvalues (EV) λ_{k} with the corresponding eigenvectors $\underline{\varphi}_{k}: \quad \mathbf{K} \underline{\varphi}_{k}=\lambda_{k} \underline{\varphi}_{k}$

$$
\begin{gathered}
0<\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \\
\underline{\varphi}_{1}, \quad \underline{\varphi}_{2}, \quad \cdots \underline{\varphi}_{n},
\end{gathered}
$$

where the eigenvectors are orthogonal, i.e.

$$
\begin{equation*}
\left(\underline{\varphi}_{i}, \underline{\varphi}_{j}\right):=\left(\underline{\varphi}_{i}, \underline{\varphi}_{j}\right)_{R^{n}}=\delta_{i, j} \tag{7}
\end{equation*}
$$

3. Spectral condition number:

$$
\begin{equation*}
\kappa_{2}(\mathbf{K}):=\|\mathbf{K}\|_{2}\left\|\mathbf{K}^{-1}\right\|_{2}=\frac{\lambda_{n}}{\lambda_{1}}=\frac{\lambda_{\max }(\mathbf{K})}{\lambda_{\min }(\mathbf{K})} \tag{8}
\end{equation*}
$$

SPD K: Eigenvalue Estimates

- Rayleigh quotion representation:

1. Maximal eigenvalue $\lambda_{n}=\lambda_{\max }(\mathbf{K})$ of \mathbf{K} :

$$
\begin{gathered}
\lambda_{\max }(\mathbf{K})=\max _{\underline{v} \in R^{n}} \frac{(\mathbf{K} \underline{v}, \underline{v})}{(\underline{v}, \underline{v})} \leq c_{2} h^{d-2} \\
\mathbf{P}:(\mathbf{K} \underline{v}, \underline{v})=a\left(v^{h}, v^{h}\right)=\sum\left(\mathbf{K}^{e} \underline{v}^{e}, \underline{v}^{e}\right) \leq \sum \lambda_{\max }\left(\mathbf{K}^{e}\right)\left(\underline{v}^{e}, \underline{v}^{e}\right)
\end{gathered}
$$

2. Minimal eigenvalue $\lambda_{1}=\lambda_{\text {min }}(\mathbf{K})$ of \mathbf{K} :

$$
\begin{equation*}
\lambda_{\min }(\mathbf{K})=\min _{\underline{v} \in R^{n}} \frac{(\mathbf{K} \underline{v}, \underline{v})}{(\underline{v}, \underline{v})} \geq c_{1} h^{d} \tag{10}
\end{equation*}
$$

$$
\mathrm{P}:(\mathbf{K} \underline{v}, \underline{v})=a\left(v^{h}, v^{h}\right) \geq \mu_{1}\left\|v^{h}\right\|_{1}^{2} \geq \mu_{1}\left\|v^{h}\right\|_{0}^{2}=\mu_{1}(\mathbf{M} \underline{v}, \underline{v})
$$

- The spectral condition number estimate

$$
\begin{equation*}
\kappa_{2}(\mathbf{K})=\frac{\lambda_{\max }(\mathbf{K})}{\lambda_{\min }(\mathbf{K})} \leq \frac{c_{2}}{c_{1}} h^{-2} \tag{11}
\end{equation*}
$$

is sharp wrt h, i.e. $\kappa_{2}(\mathbf{K})=O\left(h^{-2}\right)$ for $h \rightarrow 0$ (example).

Example: $-u^{\prime \prime}=f$ in $(0,1), u(0)=u(1)=0$

Let us consider the 1d example

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), x \in(0,1), \quad u(0)=u(1)=0 \tag{12}
\end{equation*}
$$

yielding the FE stiffness matrix

$$
\mathbf{K}=\frac{1}{h}\left(\begin{array}{rrrrrr}
2 & -1 & 0 & \cdots & \cdots & 0 \tag{13}\\
-1 & 2 & -1 & \ddots & \ddots & \vdots \\
0 & -1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -1 & 0 \\
\vdots & \ddots & 0 & -1 & 2 & -1 \\
0 & \cdots & \cdots & 0 & -1 & 2
\end{array}\right)
$$

for hat functions $N_{1}, \ldots, N_{n_{h}=n-1}$ on a uniform grid
$0=x_{0}<x_{1}<\ldots<x_{n-1}<x_{n}=1$ with $x_{i+1}-x_{i}=h=1 / n$.

Example: $-u^{\prime \prime}=f$ in $(0,1), u(0)=u(1)=0$

■ Eigenvalues: $\lambda_{k}=\frac{4}{h} \sin ^{2} \frac{k \pi}{2 n}, k=1,2, \ldots, n-1=\overline{1, n-1}$
\square Eigenvectors: $\underline{\varphi}_{k}=[\sqrt{2 n} \sin (k \pi i h)]_{i=1, \ldots, n-1}, k=\overline{1, n-1}$
■ Minimal eigenvalue:

$$
\lambda_{1}=\frac{4}{h} \sin ^{2} \frac{1 \pi}{2 n}=\frac{4}{h} \sin ^{2} \frac{\pi h}{2}=O(h)
$$

- Maximal eigenvalue:

$$
\lambda_{n-1}=\frac{4}{h} \sin ^{2} \frac{(n-1) \pi}{2 n}=\frac{4}{h} \cos ^{2} \frac{\pi h}{2}=O\left(h^{-1}\right)
$$

- Spectral condition number:

$$
\kappa_{2}(\mathbf{K})=\frac{\lambda_{\max }(\mathbf{K})}{\lambda_{\min }(\mathbf{K})}=\frac{\cos ^{2} \frac{\pi h}{2}}{\sin ^{2} \frac{\pi h}{2}}=\cot ^{2} \frac{\pi h}{2}=O\left(h^{-2}\right)
$$

Outline

1. Algebraic Systems in CA and Properties
2. Gaussian Elimination, LU and Cholesky Factorizations

3. Sparse Direct Methods

Summary

Carl Friedrich Gauss (1777-1855)

Gaussian Elimination: Idea

Let us write our system (1) $\mathbf{A} \underline{u}=\underline{b}$ in detail as

$$
\begin{array}{cccccccc}
A_{11}^{(0)} u_{1} & +A_{12}^{(0)} u_{2} & + & \cdots & + & A_{1 n}^{(0)} u_{n} & = & b_{1}^{(0)} \\
A_{21}^{(0)} u_{1} & +A_{22}^{(0)} u_{2} & + & \cdots & + & A_{2 N}^{(0)} u_{n} & = & b_{2}^{(0)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots
\end{array} \vdots \vdots .
$$

Use the first eqn to eliminate u_{1} from the other eqns:

$$
\begin{aligned}
U_{1 j} & =A_{1 j}^{(0)}=A_{1 j}, j=1,2, \ldots, n, \\
L_{i 1} & =A_{i 1}^{(0)} / A_{11}^{(0)}, i=2, \ldots, n \\
A_{i j}^{(1)} & =A_{i j}^{(0)}-L_{i 1} U_{1 j}, i, j=2, \ldots, n \\
c_{1} & =b_{1}^{(0)}=b_{1} \\
b_{i}^{(1)} & =b_{i}^{(0)}-L_{i 1} c_{1}, i, j=2, \ldots, n .
\end{aligned}
$$

Gaussian Elimination: Idea

Let us write our system (1) $\mathbf{A} \underline{u}=\underline{b}$ in detail as

$$
\begin{aligned}
& U_{11} u_{1}+U_{12} u_{2}+\cdots+U_{1 n} u_{n}=c_{1} \\
& A_{22}^{(1)} u_{2}+\cdots+A_{2 N}^{(1)} u_{n}=b_{2}^{(1)} \\
& \vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
& A_{n 2}^{(1)} u_{2}+\cdots+A_{n N}^{(1)} u_{n}=b_{n}^{(1)} .
\end{aligned}
$$

Use the first eqn to eliminate u_{1} from the other eqns:

$$
\begin{aligned}
U_{1 j} & =A_{1 j}^{(0)}=A_{1 j}, j=1,2, \ldots, n, \\
L_{i 1} & =A_{i 1}^{(0)} / A_{11}^{(0)}, i=2, \ldots, n \\
A_{i j}^{(1)} & =A_{i j}^{(0)}-L_{i 1} U_{1 j}, i, j=2, \ldots, n \\
c_{1} & =b_{1}^{(0)}=b_{1} \\
b_{i}^{(1)} & =b_{i}^{(0)}-L_{i 1} c_{1}, i, j=2, \ldots, n .
\end{aligned}
$$

Gaussian Elimination: Algorithm

If we simply replace superscript (0) by $(k-1)$ and (1) by (k), then we arrive at the Gaussian Elimination Algorithm

Algorithm (Gaussian Elimination Algorithm)

Initialization: $\mathbf{A}^{(0)}=A, \underline{b}^{(0)}=\underline{b}$
Forward Elimination:
for $k=1$ step 1 until $n-1$ do
for $i=k+1$ step 1 until n do

$$
\begin{aligned}
L_{i k} & =A_{i k}^{(k-1)} / A_{k k}^{(k-1)} \\
b_{i}^{(k)} & =b_{i}^{(k-1)}-L_{i k} b_{k}^{(k-1)}
\end{aligned}
$$

$$
\text { for } j=k+1 \text { step } 1 \text { until } n \text { do }
$$

$$
A_{i j}^{(k)}=A_{i j}^{(k-1)}-L_{i k} A_{k j}^{(k-1)}
$$

endfor
endfor
endfor

Gaussian Elimination: Storage scheme

The intermediate results after $k-1$ can be stored as follows:

$$
\left(\begin{array}{cccccc}
U_{11} & U_{12} & \cdots & U_{1 k} & \cdots & U_{1 n} \\
L_{21} & U_{22} & \cdots & U_{2 k} & \cdots & U_{2 n} \\
\vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
L_{k 1} & \cdots & L_{k, k-1} & A_{k k}^{(k-1)} & \cdots & A_{k n}^{(k-1)} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
L_{n 1} & \cdots & L_{n, k-1} & A_{n k}^{(k-1)} & \cdots & A_{n n}^{(k-1)}
\end{array}\right)
$$

Backward Substitution

After n -1 steps, we obtain the upper triangular system

$$
\mathbf{U} \underline{u}=\underline{c}
$$

with the upper triangular matrix

$$
\mathbf{U}=\left(\begin{array}{ccccc}
U_{11} & U_{12} & \cdots & U_{1, n-1} & U_{1 n} \\
0 & U_{22} & \cdots & U_{2, n-1} & U_{2 n} \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & U_{n-1, n-1} & U_{n-1, n} \\
0 & 0 & \cdots & 0 & U_{n n}
\end{array}\right) \quad \text { und } \underline{c}=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n-1} \\
c_{n}
\end{array}\right)
$$

which can easily be solved by backward substitution:
$u_{n}=c_{n} / U_{n n} ; \quad u_{i}=\left(c_{i}-\sum_{j=i+1}^{n} U_{i j} u_{j}\right) U_{i i} /, i=n-1, n-2, \ldots, 1$.

Feasibility and operation count

■ Feasibility via pivoting strategies:
To avoid $U_{k k}=A_{k k}^{k-1}=0$, i.e. division by zero, we propose a pivot search in the remainder matrix $\mathbf{A}^{(k-1)}$:

1. Total pivoting: column and row exchange defined by

$$
i^{*}, j^{*} \in\{k, \ldots, n\}:\left|A_{i^{*} j^{*}}^{k-1}\right| \geq\left|A_{i j}^{k-1}\right| \forall i, j=k, \ldots, n .
$$

2. column pivoting: column exchange
3. row pivoting: row exchange
\square Operation count: SAXPY $(a x+y)$ operations:
4. Forward elimination $\mathbf{A}=\mathbf{L U}: \approx O\left(n^{3}\right)=(n-1)^{2}+\ldots+1^{2}$
5. Forward substitution $\underline{c}=\mathbf{L}^{-1} \underline{b}: \approx O\left(n^{2}\right)=(n-1)+\ldots+1$
6. Bachward substitution $\underline{x}=\mathbf{U}^{-1} \underline{c}: \approx O\left(n^{2}\right)$

Gaussian Elimination as LU factorization

Exercise: Show that the $\mathrm{n}-1$ Gaussian elimination steps are equivalent to the LU factorization of \mathbf{A}, i.e. $(n=3)$

$$
\mathbf{A}=\mathbf{L} \mathbf{U}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{array}\right)\left(\begin{array}{ccc}
U_{11} & U_{21} & U_{31} \\
0 & U_{22} & U_{32} \\
0 & 0 & U_{33}
\end{array}\right)
$$

with the entries $L_{i j}$ and $U_{i j}$ generated by the Gaussian elimination algorithm.

- Therefore, the solution of $\mathbf{A} \underline{u}=\underline{b}$ is equivalent to

1. factorization: $\mathbf{A}=\mathbf{L} \mathbf{U}$ by means of $O\left(n^{3}\right)$ ops
2. forward substitution: $\mathbf{L} \underline{c}=\underline{b}$ by means of $O\left(n^{2}\right)$ ops
3. backward substitution: $\mathbf{U} \underline{u}=\underline{c}$ by means of $O\left(n^{2}\right)$ ops

ILU Factorization as Preconditioner

■ If we compute the coefficients $L_{i j}$ and $U_{i j}$ in the Gaussian Elimination Algorithm only for the indicies

$$
(i, j) \in \mathcal{M} \supseteq \mathcal{M}_{N Z E}:=\left\{(i, j): A_{i j} \neq 0\right\}
$$

and set them to zero otherwise, then we obtain an Incomplete LU factorization of the form

$$
\mathbf{A}=\tilde{\mathbf{L}} \tilde{\mathbf{U}}+\mathbf{R}, \text { i.e., in general, } \mathbf{C}=\tilde{\mathbf{L}} \tilde{\mathbf{U}} \neq \mathbf{A} .
$$

In particular, $\mathbf{R}=\mathbf{0}$ if $\mathcal{M}=\{(i, j): i, j=1,2, \ldots, n\}$, and the LU and ILU factorizations coincide.

ILU Factorization as Preconditioner

■ If we compute the coefficients $L_{i j}$ and $U_{i j}$ in the Gaussian Elimination Algorithm only for the indicies

$$
(i, j) \in \mathcal{M} \supseteq \mathcal{M}_{N Z E}:=\left\{(i, j): A_{i j} \neq 0\right\}
$$

and set them to zero otherwise, then we obtain an Incomplete LU factorization of the form

$$
\mathbf{A}=\tilde{\mathbf{L}} \tilde{\mathbf{U}}+\mathbf{R}, \text { i.e., in general, } \mathbf{C}=\tilde{\mathbf{L}} \tilde{\mathbf{U}} \neq \mathbf{A} .
$$

In particular, $\mathbf{R}=\mathbf{0}$ if $\mathcal{M}=\{(i, j): i, j=1,2, \ldots, n\}$, and the LU and ILU factorizations coincide.
■ But who knows what it's good for?

ILU Factorization as Preconditioner

- If we compute the coefficients $L_{i j}$ and $U_{i j}$ in the Gaussian Elimination Algorithm only for the indicies

$$
(i, j) \in \mathcal{M} \supseteq \mathcal{M}_{N Z E}:=\left\{(i, j): A_{i j} \neq 0\right\}
$$

and set them to zero otherwise, then we obtain an Incomplete LU factorization of the form

$$
\mathbf{A}=\tilde{\mathbf{L}} \tilde{\mathbf{U}}+\mathbf{R}, \text { i.e., in general, } \mathbf{C}=\tilde{\mathbf{L}} \tilde{\mathbf{U}} \neq \mathbf{A} .
$$

In particular, $\mathbf{R}=\mathbf{0}$ if $\mathcal{M}=\{(i, j): i, j=1,2, \ldots, n\}$, and the LU and ILU factorizations coincide.

- But who knows what it's good for? We can hope that $\mathbf{C}=\tilde{\mathbf{L}} \tilde{U}$ can be used as a good preconditioner for A in iterative methods \Longrightarrow see NL2 and NL3

Special Matrices: Band and Profile Matrices

■ Exercise: Show that

$$
L_{i j}=0 \quad \text { and } \quad U_{i j}=0 \quad \forall|i-j|>b_{w}
$$

if $A_{i j}=0$ for all $|i-j|>b_{w}=$ bandwidth !

- Results:

1. The bandwidth of \mathbf{A} remains in the LU factors \mathbf{L} and \mathbf{U} of A, but zero coefficients within the band of A can turn to non-zero coefficients of \mathbf{L} and \mathbf{U}. This is call "fill-in"!
2. Factorization needs $O\left(b_{w}^{2} n\right)$ ops, whereas

For- and backward substitutions need $O\left(b_{w} n\right)$ ops only !
3. Storage requirement is of the order $O\left(b_{w} n\right)$.

- Similar results hold for profiles (sky lines): The row / column resp. column / row profils of A remains in the LU resp. UL factorization of \mathbf{A}.

Special Matrices: Symmetric Matrices

The $L D L^{T}$ factorization of a symmetric and regular matrix \mathbf{A} can be found by comparing the coefficients $(n=3)$:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{array}\right)\left(\begin{array}{ccc}
D_{11} & 0 & 0 \\
0 & D_{22} & 0 \\
0 & 0 & D_{33}
\end{array}\right)\left(\begin{array}{ccc}
1 & L_{21} & L_{31} \\
0 & 1 & L_{32} \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
D_{11} & D_{11} L_{21} & D_{11} L_{31} \\
L_{21} D_{11} & L_{21}^{2} D_{11}+D_{22} & L_{21} L_{31} D_{11}+L_{32} D_{22} \\
L_{31} D_{11} & L_{31} L_{21} D_{11}+L_{32} D_{22} & L_{31}^{2} D_{11}+L_{32}^{2} D_{22}+D_{33}
\end{array}\right)
\end{aligned}
$$

Algorithm ($L D L^{T}$ factorization: Algorithm)

$$
\begin{aligned}
& j=1, \ldots, n: D_{j j}=A_{j j}-\sum_{k=1}^{j-1} L_{j k}^{2} D_{k k} \\
& \quad i=j+1, \ldots, n: L_{i j}=D_{j j}^{-1}\left(A_{j j}-\sum_{k=1}^{j-1} L_{i k} L_{j k} D_{k k}\right)
\end{aligned}
$$

Special Matrices: SPD Matrices

The Cholesky factorizations $L L^{T}$ or $U U^{T}$ of a SPD matrix A can also be found by comparing the coefficients $(n=3)$:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{12} & L_{22} & 0 \\
L_{13} & L_{23} & L_{33}
\end{array}\right)\left(\begin{array}{ccc}
L_{11} & L_{12} & L_{13} \\
0 & L_{22} & L_{23} \\
0 & 0 & L_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
L_{11}^{2} & L_{11} L_{12} & L_{11} L_{13} \\
L_{12} L_{11} & L_{12}^{2}+L_{22}^{2} & L_{12} L_{13}+L_{22} L_{23} \\
L_{13} L_{11} & L_{13} L_{12}+L_{23} L_{22} & L_{13}^{2}+L_{23}^{2}+L_{33}^{2}
\end{array}\right)
\end{aligned}
$$

Algorithm (Cholesky factorizations $L L^{T}$: Algorithm)

$L_{11}=\sqrt{A_{11}} ; \quad$ for $j=2$ step 1 until n do $L_{1 j}=A_{1 j} / L_{11}$;
if $j>2$ then $i=2, \ldots, j-1: L_{i j}=L_{j j}^{-1}\left(A_{i j}-\sum_{k=1}^{i-1} L_{k i} L_{k j}\right)$;
$L_{j j}=\sqrt{A_{j j}-\sum_{k=1}^{j-1} L_{k j}^{2}}$ endfor

Outline

1. Algebraic Systems in CA and Properties
2. Gaussian Elimination, LU and Cholesky Factorizations

3. Sparse Direct Methods

Summary

Sparse Direct Methods

- Sparse direct methods like
\square nested disection methods
\square multifrontal methods
use special elimination strategies:

1. ordering step: reorder the rows and columns
2. symbolic facorization: nonzero structure of the facors
3. numerical factorization: \mathbf{L} and \mathbf{U}
4. solution step: forward and backward substitution

- Software:
\square SuperLU (left-looking)
\square UMFPACK (multifrontal)
\square PARDISO (left-right looking)
\square MUMPS (multifrontal)
- References:

1. I. Duff: Direct Methods for Sparse Matrices, 1987.
2. T. Davis: Direct Methods for Sparse Linear Systems, 2006.

Outline

1. Algebraic Systems in CA and Properties
2. Gaussian Elimination, LU and Cholesky Factorizations
3. Sparse Direct Methods

Summary

- Linear systems of algebraic equation arising in CA
- Properties of the system matrices
\square Gaussian elimination as basic idea of direct methods
■ Gaussian elimination and LU factorization
- ILU factorization as preconditioner
- Band and profile matrices
- $L D L^{T}$ factorization for symmetric matrices
- Cholesky factorization for SPD matrices
- Sparse direct methods
[1] M. Jung and U. Langer. Methode der finiten Elemente für Ingenieuer. Springer Vieweg, Wiesbaden, 2013.
[2] G. Meurant.
Computer Solution of Large Linear Systems, volume 28 of Studies in Mathematics and its Applications.
North Holland, 2013.

