T U T O R I A L

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 09 Tuesday, 5 June 2018, Time: $10^{\underline{15}-1145}$, Room: S2 346.

Programming (continued)

Incorporating boundary conditions

Consider the Neumann boundary value problem

$$
\begin{aligned}
-\Delta u(x)+u & =f(x) & & \text { for } x \in \Omega:=(0,1)^{2} \\
\frac{\partial u}{\partial n}(x) & =g(x) & & \text { for } x \in \Gamma_{N}:=\partial \Omega
\end{aligned}
$$

The associated variational formulation is to find $u \in V_{0}:=H^{1}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \cdot \nabla v(x)+u(x) v(x) d x=\int_{\Omega} f(x) v(x) d x+\int_{\Gamma_{N}} g(x) v(x) d s \quad \forall v \in V_{0} \tag{3.31}
\end{equation*}
$$

44 Let $e \subset \Gamma_{N}$ be an element edge on the Neumann boundary with the two endpoints $x^{(e, 1)}$ and $x^{(e, 2)}$ and set $h_{e}:=\left|x^{(e, 2)}-x^{(e, 1)}\right|$. Let us denote the two functions on the reference edge by $p^{(1)}(\xi)=1-\xi$ and $p^{(2)}(\xi)=\xi$.
Write a function

```
void calcNeumannElVec (const Point2D& p0, const Point2D& p1,
                        ScalarField g, Vec<2>& elVec);
```

to approximate

$$
g_{e}^{(\alpha)}:=\int_{e} g(x) p^{(e, \alpha)}(x) d s \approx \frac{h_{e}}{2}\left(g\left(x^{(e, 1)}\right) p^{(\alpha)}(0)+g\left(x^{(e, 2)}\right) p^{(\alpha)}(1)\right)
$$

as above by the trapezoidal rule; elVec $\approx\left(g_{e}^{(1)}, g_{e}^{(2)}\right), \mathrm{p} 0=x^{(e, 1)}, \mathrm{p} 1=x^{(e, 2)}$, and $\mathrm{g}=g$.
45 Write a function
which adds the contribution corresponding to $\int_{\Gamma_{N}} g(x) v(x) d s$ to an (already existing) load vector b .
Hint: Loop over all segments of the mesh and for those marked as Neumann (use bcSegments[i] == BC_NEUMANN) call calcNeumannElVec.

46 Solve the finite element system corresponding to (3.31) with $f\left(x_{1}, x_{2}\right)=-2.5+x_{1}$ and $g\left(x_{1}, x_{2}\right)=0.5$ for a suitably refined mesh (see exercise 39) and visualize the solution.

Consider the Dirichlet boundary value problem

$$
\begin{aligned}
-\Delta u(x) & =f(x) & & \text { for } x \in \Omega:=(0,1)^{2} \\
u(x) & =g & & \text { for } x \in \Gamma_{D}:=\partial \Omega
\end{aligned}
$$

The associated variational formulation is to find $u \in V_{g}:=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Gamma}=g\right\}$ such that

$$
\begin{equation*}
\int_{\Omega} \nabla u(x) \cdot \nabla v(x) d x=\int_{\Omega} f(x) v(x) d x \quad \forall v \in V_{g} \tag{3.32}
\end{equation*}
$$

47 Write a function

```
void incorporateHomogeneousDirichletBC (const Mesh& mesh,
    SparseMatrix& K, Vector& b);
```

that incorporates the homogeneous Dirichlet boundary conditions $(g=0)$ into the system matrix K and the load vector b.
Hint: Loop over all segments of the mesh and search for those marked as Dirichlet (use bcSegments[i] == BCDIRICHLET). For each such vertex with index i it sets all entries in row i and column i of K to zero and $K_{i, i}=1, b_{i}=0$.

48 Solve the finite element system corresponding to (3.32) with $f\left(x_{1}, x_{2}\right)=$ $20 \pi^{2} \sin \left(2 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)$ for a suitably refined mesh (see exercise 39) and visualize the solution.

49 Write a function

```
void incorporateInhomogeneousDirichletBC (const Mesh& mesh,
    const Vector& ug, SparseMatrix& K, Vector& b);
```

that incorporates the inhomogenenous Dirichlet boundary conditions ug into the system matrix K and the load vector b . Here ug is a vector of the same size as b carrying the prescribed Dirichlet values (other values are ignored).
Hint: Ensure that the entries in ug, that do not correspond to Dirichlet values are set to zero. The modification of the load vector b can be done by

$$
\mathrm{b}[i]= \begin{cases}\mathrm{ug}[i], & i \text { corresponds to Dirichlet node } \\ b[i]-(\mathrm{K} * \mathrm{ug})[i], & \text { else }\end{cases}
$$

After that, in order to modify K, proceed as in Exercise 47 .

50 Solve the finite element system corresponding to (3.32) with $f\left(x_{1}, x_{2}\right)=$ $20 \pi^{2} \sin \left(2 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)$ and $g\left(x_{1}, x_{2}\right)$ given by

$$
g\left(x_{1}, x_{2}\right)= \begin{cases}0, & x_{2}=1 \vee x_{1}=1 \\ \left(1-x_{1}\right), & x_{2}=0 \\ \left(1-x_{2}\right), & x_{1}=0\end{cases}
$$

for a suitably refined mesh (see exercise $\boxed{39}$) and visualize the solution.
Let's consider Robin boundary conditions of the type

$$
\frac{\partial u}{\partial N}:=\lambda \frac{\partial u}{\partial n}=\kappa\left(u_{0}-u\right)=g_{3}-\kappa u .
$$

for given λ, κ and u_{0} and the normal derivative n.
51 Let $e \subset \Gamma_{R}$ be element edges on the Robin boundary with the two endpoints $x^{(e, 1)}$ and $x^{(e, 2)}$. Let the reference edge be $\Delta=(0,1)$ with the corresponding nodal basis functions $p^{(0)}(\xi)=1-\xi$ and $p^{(1)}(\xi)=\xi$. Write a function

```
void calcRobinElMat (const Vec<2>& x0, const Vec<2>& x1,
    ScalarField kappa, Mat<2, 2>& elMat);
```

that computes the element Robin matrix K

$$
K_{\alpha \beta}^{e}=\int_{e} \kappa(x) p^{(e, \alpha)}(x) p^{(e, \beta)}(x) d x=\int_{\Delta} \kappa\left(x_{e}(\xi)\right) p^{(\alpha)}(\xi) p^{(\beta)}(\xi) \operatorname{det}\left(J_{e}\right) d \xi
$$

using the quadrature rule on $\Delta=(0,1)$ given by

$$
\int_{\Delta} g(\xi) d \xi \approx \frac{1}{6}[g(0)+4 g(0.5)+g(1)]
$$

Show that this quadrature rule is exact for $g \in P_{3}$.
Hint: In order to get $x_{e}(\xi)$, implement a class modelling the affine linear transformation for edges, i.e. in 1D (compare 31,32 and NumPDE-Tutorial).

52 Write a function

```
void incorporateRobinBC (const Mesh& mesh, ScalarField kappa,
    ScalarField u0, SparseMatrix& K, Vector& b);
```

that incorporates the Robin boundary conditions into the system matrix K and the load vector b.

Hint: Loop over all segments of the mesh and search for those marked as Robin (use bcSegments[i] == BC_ROBIN) and reuse the function from the previous Exercise 51 to add the local contributions to the stiffness matrix.

Hint: For the contribution corresponding to $\int_{\Gamma_{R}} g_{3}(x) v(x) d s$, proceed as for the Neumann Boundary (see 44).

