TUTORIAL

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture

"Numerics of Elliptic Problems"

Tutorial 07

Tuesday, 15 May 2018, Time: $10^{15} - 11^{45}$, Room: S2 346.

Programming

Reference element

In this and the next tutorials we consider Courant's finite element. The reference triangle is given by

$$\Delta = \{ \xi \in \mathbb{R}^2 : \xi_1 \ge 0, \ \xi_2 \ge 0, \ \xi_1 + \xi_2 \le 1 \},$$

with vertices $\xi^{(0)} = (0,0)$, $\xi^{(1)} = (1,0)$, and $\xi^{(2)} = (0,1)$, the space of shape functions is P_1 , and the nodal variables are the evaluations at the three vertices. Recall that the nodal shape functions are given by

$$p^{(0)}(\xi) = 1 - \xi_1 - \xi_2,$$

$$p^{(1)}(\xi) = \xi_1,$$

$$p^{(2)}(\xi) = \xi_2.$$

To model small vectors from \mathbb{R}^n and $n \times m$ matrices, where $m, n \in \{2, 3\}$, I recommend to use vec.hh and mat.hh (see also the demo matvecdemo.cc). There 0-based indices are used throughout, for example:

$$\xi \in \mathbb{R}^2 \ \leftrightarrow \ ext{Vec<2> xi} \qquad \qquad \xi_1 \ \leftrightarrow \ ext{xi[0]} \ \xi_2 \ \leftrightarrow \ ext{xi[1]}$$

30 Write two functions

double calcShape (int i, const Vec<2>& xi); Vec<2> calcDShape (int i, const Vec<2>& xi);

that compute the value $p^{(\alpha)}(\xi)$ and the gradient $\nabla_{\xi} p^{(\alpha)}(\xi)$ of a nodal shape function, respectively, where $xi = \xi$ and $i = \alpha$.

Complete and implement the following class modelling the affine linear transformation x_{δ} from Δ to an arbitrary non-degenerate triangle δ :

$$x = x_{\delta}(\xi) = x_0 + J\xi,$$

where x_0 is the image of (0,0).

```
class ElTrans {
public:
   ElTrans(const Vec<2>& x0, const Vec<2>& x1, const Vec<2>& x2);
   void transform (const Vec<2>& xi, Vec<2>& x);
   void getJacobian (Mat<2, 2>& J);
   ...
};
```

Above, x0, x1, x2 are the three vertices of δ . The method transform should transform reference coordinates $\mathbf{x} = \boldsymbol{\xi}$ to real coordinates $\mathbf{x} = x_{\delta}(\boldsymbol{\xi})$. The method getJacobian should return the Jacobi matrix J of the transformation.

|32| Add two more methods to class ElTrans:

```
double jacobiDet ();
void getInvJacobian (Mat<2, 2>& invJ);
```

The first should return the Jacobi determinant det J (check if the determinant is positive, why?), the second one should return $invJ=J^{-1}$.

33 Write a function

that computes the element stiffness matrix $elMat=K_r$ associated to an element δ_r (given by the three vertices x0, x1, and x2), i.e.

$$(K_r)_{\alpha\beta} = \int_{\delta_r} \nabla_x p^{(r,\alpha)}(x) \cdot \nabla_x p^{(r,\beta)}(x) dx = \int_{\Delta} \left(J_r^{-T} \nabla_\xi p^{(\alpha)}(\xi) \right) \cdot \left(J_r^{-T} \nabla_\xi p^{(\beta)}(\xi) \right) \det(J_r) d\xi.$$

Hint: Consider only the above formula on the reference element. Use calcDShape to get $\nabla_{\xi} p^{(\alpha)}(\xi)$, and ElTrans to get det J and J_r^{-1} . Note finally that J_r^{-T} and $\nabla_{\xi} p^{(\alpha)}$ are constant on Δ .

34 Write a function

that approximates the element load vector f_r given by

$$(f_r)_{\alpha} = \int_{\delta_r} f(x) \, p^{(r,\alpha)}(x) \, dx = \int_{\Delta} f(x_{\delta_r}(\xi)) \, p^{(\alpha)}(\xi) \, \det(J_r) \, d\xi,$$

using the following quadrature rule on Δ :

$$\int_{\Delta} g(\xi) \, d\xi \approx \frac{1}{6} \left[g(\frac{1}{6}, \frac{1}{6}) + g(\frac{4}{6}, \frac{1}{6}) + g(\frac{1}{6}, \frac{4}{6}) \right].$$

Show that this quadrature rule is exact for $g \in P_2$.

Hint: Use ElTrans to get $x_{\delta_r}(\xi)$. Note that ξ must loop over the three integration points.

Hint: To model the *type* of a scalar function depending on a vector in \mathbb{R}^2 use

typedef double (*ScalarField)(const Vec<2>& x);

|35| Write a function

that computes the element mass matrix M_r given by

$$(M_r)_{\alpha\beta} = \int_{\delta_r} p^{(r,\alpha)}(x) p^{(r,\beta)}(x) dx$$

Hint: Transform to the reference element as done in the previous two exercises.

Test all your functions, i.e. apply them to concrete parameters and output the results! At minimum use f(x,y) = 1 and test $\delta_r = \Delta$ as well as the triangle with the vertices (1,1), (1.5,1), and (1.25,1.5).

Assembling

Download the files

- vector.hh a vector class (for vectors of dynamic length)
- sparsematrix.hh, sparsematrix.cc a sparse matrix class
- mesh.hh, and mesh.cc a 2D triangular mesh

from the tutorial website.

There are also two demos:

- smdemo.cc showing how to work with the sparse matrix and
- meshdemo.cc showing how to work with the mesh.

Go through these demos and understand what is happening there.

36 Write a function

void assembleStiffnessMatrix (const Mesh& mesh, SparseMatrix& K);

that assembles the stiffness matrix K according to the bilinear form

$$a(u, v) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) + u(x) v(x) dx$$

for mesh being the triangulation of Ω .

Hint: Reuse the functions from the previous section, in particular exercises $\boxed{33}$ and $\boxed{35}$.

37 Write a function

void assembleLoadVector (const Mesh& mesh, ScalarField f, Vector& b);

that assembles the load vector **b** according to the functional

$$\langle F, v \rangle = \int_{\Omega} f(x) v(x) dx$$

for mesh being the triangulation of Ω .

Hint: Reuse the function from exercise 34.

All routines should be tested for the two meshes created in meshdemo.cc

Solving

As a concrete example we consider the problem to find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) + u(x) v(x) dx = \int_{\Omega} f(x) v(x) dx \quad \forall v \in H^{1}(\Omega), \quad (3.17)$$

with $f(x_1, x_2) = (5\pi^2 + \frac{1}{4}) \cos(2\pi x_1) \cos(4\pi x_2)$.

[38] Implement a Jacobi preconditioner:

```
class JacobiPreconditioner
{
public:
   JacobiPreconditioner (const SparseMatrix& K);
   void solve (const Vector& r, Vector& z);
};
```

Assemble the finite element system Ku = b for (??) for the initial mesh from meshdemo.cc and solve it using conjugate gradients cg.hh with your Jacobi preconditioner. Solve the same system for the uniformly refined meshes with $h/h_0 = 2, 4, 8, 16$ where h_0 is the mesh size of the initial mesh.

You can visualize solutions calling mesh.matlabOutput ("output.m", u); from your program, and then loading the file into matlab (provided you have the PDE Toolbox).