T U T O R I A L

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 06

Tuesday, 08 May 2018, Time: $10^{15}-11^{45}$, Room: S2 346.

27 In the lectures, we used the input file *. net (see Slide 10) for the input of the mesh data. Design and implement a new Algorithm, which inputs the file coarse.net containing a coarse triangulation and outputs the file fine.net containing the refinement of the coarse triangulation by dividing every triangle of the coarse mesh into 4 triangles (red refinement) !
28^{\star} How would you modify the algorithm from Exercise 27 in order to refine selected elements only ? Note that you have to ensure conformity of the triangulation by using the green refinement dividing a triangle into two triangles by bisection.

29 Generate the system of finite element equations for the mixed boundary value problem

$$
\begin{align*}
-\Delta u\left(x_{1}, x_{2}\right) & =0 \quad \forall\left(x_{1}, x_{2}\right) \in \Omega:=(0,1) \times(0,1), \tag{3.18}\\
u\left(x_{1}, 1\right) & =0 \quad \forall x_{1} \in[0,1] \tag{3.19}\\
u\left(1, x_{2}\right) & =0 \quad \forall x_{2} \in[0,1] \tag{3.20}\\
u_{x_{1}}\left(0, x_{2}\right) & =1-x_{2} \quad \forall x_{2} \in(0,1), \tag{3.21}\\
u_{x_{2}}\left(x_{1}, 0\right) & =1-x_{1} \quad \forall x_{1} \in(0,1), \tag{3.22}
\end{align*}
$$

and for the triangulation shown in the attached figure. Solve this linear system of algebraic equations! Note that $u_{x_{1}}$ and $u_{x_{2}}$ denote the partial derivatives with respect to x_{1} and x_{2}.

