T U T O R I A L

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 04 Tuesday, 17 April 17 Let us consider the quadrature rule

$$
\int_{\Delta} u(\xi) d \xi \approx u\left(\xi^{*}\right)|\Delta|
$$

with the unit triangle $\Delta=\left\{\xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbf{R}^{2}: 0<\xi_{2}<1-\xi_{1}, 0<\xi_{1}<1\right\}$ and the integration point $\xi^{*}=(1 / 3,1 / 3)$. Show that there exists a positive constant $c=$ const. >0 such that

$$
\left|\int_{\Delta} u(\xi) d \xi-u\left(\xi^{*}\right)\right| \Delta||\leq c| u|_{H^{2}(\Delta)} \forall u \in H^{2}(\Delta)
$$

Hint: In $2 \mathrm{D}(d=2), H^{2}(\Delta)$ is continuously (even compactly) embedded in $C(\bar{\Delta})$, i.e. there exists $c_{E}=$ const. $>0:\|u\|_{C(\bar{\Delta})}:=\max _{\xi \in \Delta}|u(\xi)| \leq c_{E}\|u\|_{H^{2}(\Delta)}$.

18 Let $f \in L_{2}(\Omega)$ be a given source, and let $g \in H^{-1 / 2}(\Gamma):=\left(H^{1 / 2}(\Gamma)\right)^{*}$ be a given flux. Show that there exist a unique weak (generalized) solution of the Neumann problem

$$
\begin{equation*}
-\Delta u+u=f \text { in } \Omega \quad \text { and } \quad \frac{\partial u}{\partial n}=g \text { on } \Gamma=\partial \Omega \tag{2.7}
\end{equation*}
$$

satisfying the apriori estimate

$$
\|u\|_{H^{1}(\Omega)}=\left(\|u\|_{L_{2}(\Omega)}^{2}+\|\nabla u\|_{L_{2}(\Omega)}^{2}\right)^{1 / 2} \leq c_{1}\|f\|_{L_{2}(\Omega)}+c_{2}\|g\|_{H^{-1 / 2}(\Gamma)} .
$$

with some positive constant $c_{1}=?$ and $c_{2}=?$.

19 Show that the gradient $q=\nabla u$ of the weak solution u of the Neumann problem (2.7) from Exercise 18 belongs to $H($ div $)$ and the weak divergence of q is equal to $u-f$, i.e. $\operatorname{div}(q)=u-f$!

20 Let $\Omega_{1}, \ldots, \Omega_{m}$ be a non-overlapping domain decomposition of Ω, i.e. $\bar{\Omega}=\cup \bar{\Omega}_{i}$, $\Omega_{i} \cap \Omega_{j}=\emptyset, \quad i \neq j$, and let $q_{i} \in H\left(\operatorname{div}, \Omega_{i}\right) \cap C^{1}\left(\bar{\Omega}_{i}\right), i=1,2, \ldots, m$, be given functions. Which trace conditions you have to impose on interfaces $\Gamma_{i j}=\partial \Omega_{i} \cap$ $\partial \Omega_{j}$, with meas $_{d-1} \Gamma_{i j}>0$, in order to ensure that the piecewise defined function

$$
q:=\left\{\left.q\right|_{\Omega_{i}}=q_{i}, i=1,2, \ldots, m\right\} \in H(\operatorname{div}, \Omega) \text { and }\left.(\operatorname{div} q)\right|_{\Omega_{i}}=\operatorname{div} q_{i}
$$

for all $i=1,2, \ldots, m$.
21 Show that, for sufficiently smooth functions, e.g. for $u, v \in H($ curl $) \cap\left[C^{1}(\bar{\Omega})\right]^{3}$, the curl-IbyP-formula

$$
\begin{equation*}
\int_{\Omega} \operatorname{curl}(u) \cdot v d x=\int_{\Omega} u \cdot \operatorname{curl}(v) d x+\int_{\Gamma}(u \times n) \cdot v d s \tag{2.8}
\end{equation*}
$$

is valid. Hint: Use the classical IbyP-formula for the proof of (2.8)!
22^{*} Let $\Omega_{1}, \ldots, \Omega_{m}$ be a non-overlapping domain decomposition of Ω, i.e. $\bar{\Omega}=\cup \bar{\Omega}_{i}$, $\Omega_{i} \cap \Omega_{j}=\emptyset, \quad i \neq j$, and let $q_{i} \in H\left(\operatorname{curl}, \Omega_{i}\right) \cap C^{1}\left(\bar{\Omega}_{i}\right), i=1,2, \ldots, m$, be given functions. Which trace conditions you have to impose on interfaces $\Gamma_{i j}=\partial \Omega_{i} \cap$ $\partial \Omega_{j}$, with $\operatorname{meas}_{d-1} \Gamma_{i j}>0$, in order to ensure that the piecewise defined function

$$
q:=\left\{\left.q\right|_{\Omega_{i}}=q_{i}, i=1,2, \ldots, m\right\} \in H(\operatorname{curl}, \Omega) \text { and }\left.(\operatorname{curl} q)\right|_{\Omega_{i}}=\operatorname{curl} q_{i},
$$

for all $i=1,2, \ldots, m$.

