"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

1.2 The linear elasticity problem

07 Show that, for the BVP of the first type $\left(\Gamma_{1}=\Gamma\right)$ and for the mixed BVP $\left(\operatorname{meas}_{2}\left(\Gamma_{1}\right)>0\right.$ and $\left.\operatorname{meas}_{2}\left(\Gamma_{2}\right)>0\right)$ of the linear elasticity, the following statements are true:

1. $a(.,$.$) is symmetric, i.e., a(u, v)=a(v, u) \quad \forall u, v \in V$,
2. $a(.,$.$) is nonnegative, i.e., a(v, v) \geq 0 \quad \forall v \in V$,
3. $a(.,$.$) is positive on V_{0}:=\left\{v \in V=\left[H^{1}(\Omega)\right]^{3}: v=0\right.$ on $\left.\Gamma_{1}\right\}$ provided that $\operatorname{meas}_{2}\left(\Gamma_{1}\right)>0$, i.e., $a(v, v)>0 \quad \forall v \in V_{0}: v \not \equiv 0$.

The equivalence of VF $(9)_{V F}$ and MP $(9)_{M P}$ then follows from the statements 1 and 2 above according to Section 1.1 of the lecture.

08 Show that, for the first BVP $\left(\Gamma_{1}=\Gamma\right)$ of 3D linear elasticity in the case of isotrop and homogeneous material, the assumptions of Lax-Milgram's Theorem are fulfiled, i.e.

1) $F \in V_{0}^{*}$,

2a) $\exists \mu_{1}=\mathrm{const}>0: a(v, v) \geq \mu_{1}\|v\|_{H^{1}(\Omega)}^{2} \forall v \in V_{0}$,
2b) $\exists \mu_{2}=\mathrm{const}>0:|a(u, v)| \leq \mu_{2}\|u\|_{H^{1}(\Omega)}^{2}\|v\|_{H^{1}(\Omega)}^{2} \forall u, v \in V_{0}$.
Provide the constants μ_{1} and μ_{2} !
\bigcirc Hint: to the proof of the V_{0}-ellipticity:
$-a(v, v) \geq 2 \mu \int_{\Omega} \sum_{i, j=1}^{3}\left(\varepsilon_{i j}(v)\right)^{2} d x$,

- Korn's inequality for $V_{0}=\left[H_{0}^{1}(\Omega)\right]^{3}$, where $H_{0}^{1}(\Omega):=\left\{v \in H^{1}(\Omega): v=\right.$ 0 auf Γ \},
- Friedrichs' inequality.

09 Formulate the iterative method (3) from Section 1.1 of the lecture for the first BVP of the linear elasticity in case of 3D homogeneous and isotrop material, i.e.,

$$
\begin{equation*}
u_{n+1}=u_{n}-\rho\left(J A u_{n}-J F\right) \text { in } V_{0}=\left(H_{0}^{1}(\Omega)\right)^{3}, \tag{1.6}
\end{equation*}
$$

for $n=0,1,2, \ldots$, and given $u_{0} \in V_{0}$. Derive the weak form, i.e., the variational formulation, for the calculation of $u_{n+1} \in V_{0}$. Discuss two cases in which the scalar product in V_{0} is defined as follows:

$$
\begin{equation*}
(u, v)_{V_{0}}^{2}:=\int_{\Omega} \nabla u \cdot \nabla v d x \quad \forall u, v \in V_{0} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(u, v)_{V_{0}}^{2}:=\int_{\Omega}(\nabla u \cdot \nabla v+u v) d x \quad \forall u, v \in V_{0} \tag{1.8}
\end{equation*}
$$

Derive the corresponding classical formulation of the iteration process (1.6)!
10^{*} Let us consider the variational formulation,

$$
\begin{equation*}
\text { find } u \in V_{g}=V_{0} \text { such that } a(u, v)=\langle F, v\rangle \text { for all } v \in V_{0} \tag{1.9}
\end{equation*}
$$

of a plane linear elasticity problem in $\Omega=(0,1) \times(0,1)$, where

$$
\begin{aligned}
V_{0}=\{ & u=\left(u_{1}, u_{2}\right) \in V=\left[H^{1}(\Omega)\right]^{2}: \\
& u_{1}=0 \text { on } \Gamma_{1}=\{0\} \times[0,1] \cup\{1\} \times[0,1] \\
& \left.u_{2}=0 \text { on } \Gamma_{2}=[0,1] \times\{0\} \cup[0,1] \times\{1\}\right\} \\
a(u, v)= & \int_{\Omega} D_{i j k l} \varepsilon_{i j}(u) \varepsilon_{k l}(v) d x=\int_{\Omega} \sigma_{k l}(u) \varepsilon_{k l}(v) d x \\
\langle F, v\rangle= & \int_{\Omega} f_{i} v_{i} d x+\int_{\Gamma_{1}} ? d s+\int_{\Gamma_{2}} ? d s
\end{aligned}
$$

Impose the right natural boundary conditions! Give the classical formulation of (1.9) !

1.3 Scalar elliptic problems of the fourth order

11 Show that the first biharmonic BVP

$$
\begin{equation*}
u \in V_{0}:=H_{0}^{2}(\Omega): \int_{\Omega} \Delta u(x) \Delta v(x) d x=\int_{\Omega} f(x) v(x) d x \forall v \in V_{0} \tag{1.10}
\end{equation*}
$$

allows the application of the Lax-Milgram-Theorem to show existence and uniqueness. Then formulate a minimization problem that is equivalent to the variational formulation (1.10) above !

