Numerical Methods for Elliptic Partial Differential Equations

last update:

[
Lecture ]  [ Tutorial ]  [ Tutorials ]   [ Practical exercises ]   [ Transparencies ]  [ Lecture Notes ]   [ Additional literature ]   [ Software ]  [ Links ]  [ General ]   [ Home ]

Lecture      up

Numerical Methods for Elliptic Partial Differential Equations - Lectures

(CourseId 327.003, 4 hours per week, Semester 6)

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer

- Examination questions: up
as   pdf-file  

- The super question: up
as   pdf-file  

- Examination dates: up
Link to examination dates


Time and room:

Wed, March 7, 201808:30 - 10:00 Room: HS 13Lecture 01
Thu, March 8, 201808:30 - 10:00 Room: HS 13Lecture 02
Tue, March 14, 201808:30 - 10:00 Room: HS 13Lecture 03
Wed, March 15, 201808:30 - 10:00 Room: HS 13Lecture 04
Thu, March 21, 201808:30 - 10:00 Room: HS 13Lecture 05
Thu, March 22, 201808:30 - 10:00 Room: HS 13Lecture 06
Easter Break
Wed, April 11, 201808:30 - 10:00 Room: HS 13Lecture 07
Thu, April 12, 201808:30 - 10:00 Room: HS 13Lecture 08
Wed, April 18, 201808:30 - 10:00 Room: HS 13Lecture 09
Thu, April 19, 201808:30 - 10:00 Room: HS 13Lecture 10
Wed, April 25, 201808:30 - 10:00 Room: HS 13Lecture 11
Thu, April 26, 201808:30 - 10:00 Room: HS 13Lecture 12
Wed, May 2, 201808:30 - 10:00 Room: HS 13Lecture 13
Thu, May 3, 201808:30 - 10:00 Room: HS 13Lecture 14
Wed, May 9, 201808:30 - 10:00 Room: HS 13Lecture 15
Thu, May 10, 2018Christi HimmelfahrtLecture is canceled
Wed, May 16, 201808:30 - 10:00 Room: HS 13Lecture 16
Thu, May 17, 201808:30 - 10:00 Room: HS 13Lecture 17
Wed, May 23, 201808:30 - 10:00 Room: HS 13Lecture 18
Thu, May 24, 201808:30 - 10:00 Room: HS 13Lecture 19
Wed, May 30, 201808:30 - 10:00 Room: HS 13Lecture 20
Thu, May 31, 2018FronleichnamLecture is canceled
Wed, June 06, 201808:30 - 10:00 Room: HS 13Lecture 21
Thu, June 07, 201808:30 - 10:00 Room: HS 13Lecture 22
Wed, June 13, 201808:30 - 10:00 Room: HS 13Lecture 23
Thu, June 14, 201808:30 - 10:00 Room: HS 13Lecture 24
Wed, June 20, 201808:30 - 10:00 Room: HS 13Lecture 25
Thu, June 21, 201808:30 - 10:00 Room: HS 13Lecture 26
Wed, June 27, 201808:30 - 10:00 Room: HS 13Lecture 27
Thu, June 28, 201808:30 - 10:00 Room: HS 13Lecture 28

Lecturer: O.Univ.-Prof. Dr. Ulrich Langer



Tutorial      up

Numerical Methods for Elliptic Partial Differential Equations - Tutorials

(CourseId 327.004, 2 hours per week, Semester 6)

Tutorials held by: DI Christoph Hofer

Time and room:

Tue, March 13, 201810:15 - 11:45 Room: S2 120Tutorial 01
Tue, March 20, 201810:15 - 11:45 Room: S2 120Tutorial 02
Easter Break
Tue, April 10, 201810:15 - 11:45 Room: S2 048Tutorial 03
Tue, April 17, 201810:15 - 11:45 Room: S2 346Tutorial 04
Tue, April 24, 201810:15 - 11:45 Room: S2 346Tutorial 05
Tue, May 1, 2018StaatsfeiertagTutorial is canceled
Tue, May 8, 201810:15 - 11:45 Room: S2 346Tutorial 06
Tue, May 15, 201810:15 - 11:45 Room: S2 346Tutorial 07
Tue, May 22, 2018lehrveranstaltungsfrei
Tue, May 29, 201810:15 - 11:45 Room: S2 346Tutorial 08
Tue, June 5, 201810:15 - 11:45 Room: S2 346Tutorial 09
Tue, June 12, 201810:15 - 11:45 Room: S2 346Tutorial 10
Tue, June 19, 201810:15 - 11:45 Room: S2 346Tutorial 11
Tue, June 26, 201810:15 - 11:45 Room: S2 346Tutorial 12

Tutorials      up
Tutorial 01March 13, 2018pdf
Tutorial 02March 20, 2018pdf
Easter Break
Tutorial 03April 10, 2018pdf
Tutorial 04April 17, 2018pdf
Tutorial 05April 24, 2018pdf
Tutorial 06May 8, 2018pdf
Tutorial 07May 15, 2018pdf zip
Tutorial 08May 29, 2018pdf
Tutorial 09June 5, 2018pdf
Tutorial 10June 12, 2018pdf
Tutorial 11June 19, 2018pdf
Tutorial 12June 26, 2018pdf

Transparencies      up
Transparency 00a: colourMath. Models
Transparency 00b: colourRemark 1.2
Transparency 01: colourEx 1.1 - 1.2
Transparency 02: colourEx 1.3 - 1.4
Transparency 03: colourEx 1.5 - 1.6
Transparency 04a: colourEx 1.7 - 1.9
Transparency 04b: colourRemark 1.5
Transparency 05: colourEx 1.10 - 1.11
Transparency 05a: b/w1.3.1. Mixed VF I: General
Transparency 05b: b/w1.3.1. Mixed VF II: Navier-Stokes
Transparency 05c: b/w1.3.1. Mixed VF III: Oseen/Stokes
Transparency 05d: b/w1.3.1. Mixed VF IV: Poisson equ.
Transparency 05e: b/w1.3.1. Mixed VF V: 1st bih. BVP
Transparency 05f: b/w1.3.2. Dual VF I: General
Transparency 05g: b/w1.3.2. Dual VF II: Cont.
Transparency 05h: b/w1.3.2. Dual VF III: Example
Transparency 2-01: colourD(/Omega)
Transparency 2-02: colourWeek derivatives
Transparency 2-03: colourDistributions
Transparency 2-04: colourDistributive derivatives
Transparency 2-05: colourLebesgue spaces Lp
Transparency 2-06: colourSobolev spaces W_p^k
Transparency 2-07: colourTraces
Transparency 2-08: colourNegative-order Sobolev spaces
Transparency 2-09: colourH(div), H(curl), H^s
Transparency 2-10: colourH^{1/2}(\Gamma) ~ \gamma_oH^1(\Omega)
Transparency 2-11: colourTh. 2.13 Norm equivalence theorem
Transparency 2-12: colourExercise 2.14
Transparency 2-13: colourFriedrichs' inequalities I
Transparency 2-14: colourFriedrichs' inequalities II
Transparency 2-15: colour2.4. Poincaré
Transparency 2-16: colour2.5. Main Formula of DIC
Transparency 2-17: colour2.5. Gauss' Theorem
Transparency 2-18: colour2.5. Further Integration Formulas
Transparency 2-19: colour2.5. H(div) - Trace Theorem
Transparency 2-20: colour2.5. H(div) Inverse Trace Theorem
Transparency 2-21: colour2.6. Extension Problem
Transparency 2-22: colour2.6. Extension Problem (cont)
Transparency 2-23: colour2.7. Embedding
Transparency 2-24: colour2.7. Embedding (cont)
Transparency 06a: b/wCourant's idea
Transparency 06b: colourIllustration
Transparency 07a: colourRemark 2.1.1-2
Transparency 07b: b/wRemark 2.1.3-4
Transparency 08a: colourModel Problem
Transparency 08b: colourCHIP
Transparency 09: colourMesh for CHIP
Transparency 10a: b/wCHIP.NET
Transparency 10b: colourMeshing
Transparency 10c: colourTables
Transparency 10d: b/wFiner Mesh
Transparency 11: b/wMesh Generation 1.-2.
Transparency 12a: b/wMesh Generation 3.
Transparency 12b: colourMesh Generation 4.
Transparency 12c: colourMapping principle
Transparency 13a: colourstiffness matrix (1)
Transparency 13b: b/wstiffness matrix (2)
Transparency 13c: b/wstiffness matrix (3)
Transparency 14a: b/w2nd kind BC
Transparency 14b: b/w3rd kind BC
Transparency 14c: b/w1st kind BC
Transparency 15: colourIllustration
Transparency 16: b/wExercises 2.5 - 2.8
Transparency 17a: colourRoad Map I
Transparency 17b: b/wRoad Map II
Transparency 17c: colourTheorem 2.6 = Approximation Theorem
Transparency 17d: colourSketch of the Proof
Transparency 18a: colourRemark 2.7.1
Transparency 18b: b/wRemark 2.7.2-5, E 2.9, E 2.10
Transparency 19: b/wTheorem 2.8 (H1-Convergence)
Transparency 20: b/wRemark 2.9.1-4
Transparency 21: b/wRemark 2.9.5
Transparency 22: b/wRemark 2.14
Transparency 23: colourVar.Crimes I
Transparency 24: colourVar.Crimes II
Transparency 25: colourVar.Crimes III
Transparency 26: colourRemark 3.21
Transparency 27a: b/wDWR I
Transparency 27b: b/wDWR II
Transparency 27c: colourAFEM
Transparency T4-04: colourConsistency + DG-Scheme
Transparency T4-05: colourRemark 4.3.: Pros & Cons
Transparency T4-06a: colourLemma 4.4.
Transparency T4-06b: colourAlternative Proof
Transparency T4-07: colourLemma 4.5.: ellipticity
Transparency T4-08: colourProof
Transparency T4-09: colourLemma 4.7.: boundedness
Transparency T4-10: colourLemma 4.9.: Trace inequality
Transparency T4-11: colourTheoerem 4.10.: Error estimate
Transparency T4-12: colourProof (cont.)
Transparency T4-13: colourProof (cont.)
Transparency T4-14: colourProof (cont.) + Remark 4.11
Transparency T4-15: colour4.2.: FDM
Transparency T4-16: colour4.2.: FVM
Transparency T4-17: colour4.2.: Stability+Appr.=>discrete Conv.
Transparency T4-18: colourSummary

Additional Transparencies      up
Transparency 28: colourRemark 3.1
Transparency 29: colourExample, Remark 3.2
Transparency 30: b/wSecondary Grids I
Transparency 31: b/wSecondary Grids II
Transparency 32: colourRemark 3.3 + E 3.1
Transparency 33: b/wRemark 3.4
Transparency 34: colourBoundary boxes
Transparency 35: colourRemark 3.5 + E 3.2
Transparency 36a: b/wGalerkin-Petrov I
Transparency 36b: b/wGalerkin-Petrov II
Transparency 36c: colourGalerkin-Petrov Approach
Transparency 36d: colourTwo Galerkin-Petrov Schemes
Transparency 36e: colourSystem of FV-Equations
Transparency 37a: b/wRemark 3.6.1-3.6.4
Transparency 37b: b/wRemark 3.6.5-3.6.6
Transparency 38: colourRef + Remark 3.7
Transparency 39: colourDiscrete Convergence I
Transparency 40: b/wDiscrete Convergence II
Transparency 41: b/wDiscrete Convergence III
Transparency 42: b/wDiscrete Convergence IV (E 3.3)
Transparency 43: b/wDiscrete Convergence V
Transparency 44: colourDiscrete Convergence VI
Transparency 39-44: b/wSummary
Transparency 45: b/w4. BEM 4.1 Introduction I
Transparency 46: b/w4.1 Introduction II
Transparency 47: b/w4.1 Introduction III
Transparency 48: b/w4.1 Introduction IV
Transparency 49a: b/wSubsection 4.2.1
Transparency 50a: colourSection 4.3: CM I
Transparency 50b: b/wSection 4.3: CM II
Transparency 51a: colourSection 4.3: CM III
Transparency 51b: b/wSection 4.3: CM IV
Transparency 52a: b/wSection 4.3: CM V
Transparency 52b: colourSection 4.3: CM VI
Transparency 53: b/wSection 4.3: CM VII
Transparency 54: b/wSection 4.3: CM VIII
Transparency 55: b/wSection 4.3: CM IV
Transparency 56: b/wSection 4.3: CM X
Transparency 57: b/wSection 4.3: CM XI
Transparency 58a: b/wBIO: Def.
Transparency 58b: b/wBIO: Calderon
Transparency 58c: b/wBIO: D2N
Transparency 59a: b/w4.4.2 Properties I
Transparency 59b: b/w4.4.2 Properties II
Transparency 60: b/wGalerkin I
Transparency 61: b/wGalerkin II
Transparency 62: b/wGalerkin III
Transparency 63: b/wGalerkin IV
Transparency 64: b/wGalerkin V


Basic Lecture Notes:      up
[1]   Langer U.: Numerik I (Operatorgleichungen), JKU, Linz 1996 (Sobolev-Spaces and Tools).
Postscript-File
[2]   Langer U.: Numerik II (Numerische Verfahren für Randwertaufgaben), JKU, Linz 1996 (FEM and FVM).
Postscript-File
[3]   Jung M., Langer U.: Methode der finiten Elemente für Ingenieure: Eine Einführung in die numerischen Grundlagen und Computersimulation. Springer Fachmedien, Wiesbaden 2013, 2., überarb. u. erw. Aufl. 2013, XVI, 639 S. 172 Abb. (practical aspects of the FEM).
http://www.springer.com/springer+vieweg/maschinenbau/book/978-3-658-01100-0
[4]   Steinbach O.: Numerische Näherungsverfahren für elliptische Randwertprobleme. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2003 (FEM and BEM).
English version:
Steinbach O.: Numerical Approximation Methods for Elliptic Boundary Value Problem: Finite and Boundary Elements. Springer, New York 2008 (FEM and BEM):
FEBEBook
[5]   Steinbach O.: Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen. Teubner-Verlag, Stuttgart, Leipzig, Wiesbaden 2005 (solvers for systems of algebraic equations).
[6]   Zulehner W.: Numerische Mathematik: Eine Einführung anhand von Differentialgleichungsproblemen. Band 1: Stationäre Probleme. Mathematik Kompakt. Birkhäuser Verlag, Basel-Bosten-Berlin 2008.
[7]   Rivière B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia 2008.
[8]   Di Pietro D.A., Ern A.: Mathematical Aspects of Discontinuous Galerkin Method. Springer-Verlag, Berlin, Heidelberg, 2012.

Additional Literature:      up
[1]   Braess D.: Finite Elemente. Springer Lehrbuch, Berlin, Heidelberg 1997.
English version: Braess D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 1997, 2001, 2007. - ISBN: 0 521 70518-9 Homepage: http://homepage.ruhr-uni-bochum.de/Dietrich.Braess/ftp.html#books
[2]   Brenner S.C., Scott L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York 1994.
[3]   Ciarlet P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics (40), SIAM, Philadelphia PA, 2002. [4]   Großmann C., Roos H.-G.: Numerik partieller Differentialgleichungen. Teubner-Verlag, Stuttgart 1992. (3. völlig überarbeitete und erweiterte Auflage, November 2005)
[5]   Deuflhard P., Weiser M.: Numerische Mathematik: Band 3 "Adaptive Lösung partieller Differentialgleichungen. de Gruyter Verlag, Berlin 2011 (englische Version ist 2012 ebenfalls bei de Gruyter erschienen).
[6]   Heinrich B.: Finite Difference Methods on Irregular Networks. Akademie-Verlag, Berlin 1987.
[7]   Knaber P., Angermann L.: Numerik partieller Differentialgleichungen. Eine anwendungsorientierte Einführung. Springer-Verlag, Berlin-Heidelberg 2000.
[8]   Monk P.: Finite Element Methods for Maxwell's Equations. Oxford Science Publications, Oxford 2003.
[9]   Schwarz H.R.: FORTRAN-Programme zur Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[10]   Schwarz H.R.: Methode der finiten Elemente. B.G. Teubner, Stuttgart, 1991.
[11]   Verfürth R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley - Teubner, 1996.


History:      up

      Historical Papers
      Gander's presentation
      M.J. Gander and G. Wanner: From Euler, Ritz and Galerkin to Modern Computing , SIAM Review, 54(4)


Software:      up
FEM1D FEM2D NETREFINER FEM EP Mesh Generation


Links:      up

      NETGEN
      NGSolve
      SPIDER

General Information      up
Previous Knowledge:
These lectures are required for:
Objectives of the Lectures:
Get familiar with advanced numerical methods for the solution of multidimensional elliptic Boundary Value Problems (BVP) for Partial Differential Equations (PDE) and with tools for their analysis.

Contents:
Additional Information:
Examinations:
Lecture:
The lecture contains an oral examination.

Tutorial:
The mark of the tutorial consists of the assessment of the individual exercises, the presentations on the blackboard and a practical exercise on a LLTP (Long-Term Training Problem).