A spacetime DPG method for acoustic waves

Rainer Schneckenleitner

JKU Linz

January 30, 2018

(JKU Linz)

Spacetime DPG method

January 30, 2018 1 / 41

- 1 The transient wave problem
- 2 The broken weak formulation
- 3 Verification of the density condition
- The ideal DPG method and a priori & a posteriori error estimates
- 5 Implementation of practical DPG and numerical results

1 The transient wave problem

- 2 The broken weak formulation
- 3 Verification of the density condition
- The ideal DPG method and a priori & a posteriori error estimates
- 5 Implementation of practical DPG and numerical results

The wave equation

Let $\Omega_0 \subset \mathbb{R}^d$ be the spatial domain with boundary $\partial \Omega_0$ and let $\Omega = \Omega_0 \times (0, T)$ be the spacetime cylinder, with T > 0. Furthermore, let $f \in L^2(\Omega)$ and $g \in L^2(\Omega)^d$. Then the considered first order system for the wave equation is given by

$$\partial_t q - grad_x \mu = g,$$

 $\partial_t \mu - div_x q = f.$

Additionally, the wave equation is equipped with homogeneous initial and boundary conditions, i.e.,

$$\mu|_{t=0} = 0, \quad q|_{t=0} = 0, \quad \mu|_{\partial\Omega_0 \times (0,T)} = 0.$$

• Wave operator can be seen as first order distributional derivative operator

$$A: L^{2}(\Omega)^{d+1} \to \mathcal{D}'(\Omega)^{d+1}$$
$$Au = \begin{bmatrix} \partial_{t} u_{q} - \operatorname{grad}_{x} u_{\mu} \\ \partial_{t} u_{\mu} - \operatorname{div}_{x} u_{q} \end{bmatrix},$$

where $u \in L^2(\Omega)^{d+1}$ is split into

$$u = \left[\begin{array}{c} u_q \\ u_\mu \end{array} \right]$$

with $u_q \in L^2(\Omega)^d$ and $u_\mu \in L^2(\Omega)$.

Theorem

Let Ω be open. The space

$$W(\Omega) := \{u \in L^2(\Omega)^{d+1} : Au \in L^2(\Omega)^{d+1}\} = W$$

endowed with the norm

$$||u||_W = (||u||^2 + ||Au||^2)^{1/2}$$

is a Hilbert space.

Proof.

Blackboard.

э

• The formal adjoint of A is the operator -A and satisfies

$$(\mathsf{A} u, \mathsf{v}) = -(u, \mathsf{A} \mathsf{v}) \qquad ext{for all } u, \mathsf{v} \in \mathcal{D}(\Omega)^{d+1}.$$

• Furthermore, we introduce $D: W \to W'$ by

$$\langle Du, v \rangle_W = (Au, v) + (u, Av)$$
 for all $u, v \in W$,

where W' denotes the dual space of W, and $\langle\cdot,\cdot\rangle_W$ denotes the duality pairing in W.

• Assume $u,v\in \mathcal{D}(\overline{\Omega})^{d+1}$, then

$$\langle Du, v \rangle_W = \int_{\partial \Omega} u_q \cdot (n_t v_q - n_x v_\mu) + u_\mu (n_t v_\mu - n_x \cdot v_q) ds,$$

where $n = (n_x, n_t)$ is the outward unit normal to $\Omega \subset \mathbb{R}^{d+1}$

The unbounded wave operator

- Definition of an unbounded operator, again denoted by A
- Domain dom(A) of A takes initial and boundary conditions into account
- \bullet We partition the spacetime boundary $\partial \Omega$ into

$$\begin{split} &\Gamma_0 = \Omega_0 \times \{0\}, \\ &\Gamma_T = \Omega_0 \times \{T\}, \\ &\Gamma_b = \partial \Omega_0 \times [0, T], \end{split}$$

• Moreover, we define

$$\mathcal{V} = \{ \mathbf{v} \in \mathcal{D}(\overline{\Omega})^{d+1} : \mathbf{v}|_{\Gamma_0} = 0, \mathbf{v}_{\mu}|_{\Gamma_b} = 0 \},$$

$$\mathcal{V}^* = \{ \mathbf{v} \in \mathcal{D}(\overline{\Omega})^{d+1} : \mathbf{v}|_{\Gamma_T} = 0, \mathbf{v}_{\mu}|_{\Gamma_b} = 0 \}.$$

The unbounded wave operator

• Now we can define the unbounded operator

$$A: dom(A) \subset L^{2}(\Omega)^{d+1} \to L^{2}(\Omega)^{d+1},$$
$$Au = \begin{bmatrix} \partial_{t}u_{q} - grad_{x}u_{\mu} \\ \partial_{t}u_{\mu} - div_{x}u_{q} \end{bmatrix},$$

with

$$dom(A) = \{ u \in W : \langle Du, v \rangle_W = 0 \text{ for all } v \in \mathcal{V}^* \}.$$

- $\mathcal{D}(\Omega)^{d+1} \subset dom(A) \subset W \Longrightarrow A$ is densly defined and has an adjoint A^*
- A^* equals -A when applied to

$$dom(A^*) = \{ v \in L^2(\Omega)^{d+1} : \exists \ell \in L^2(\Omega)^{d+1} \text{ s. t. } (Au, v) = (u, \ell)$$
for all $u \in dom(A) \}$

- Throughout we denote *dom*(*A*) and *dom*(*A**) endowed with the topology of *W* as *V* and *V**, respectively
- V and V* are closed subsets of $W \Longrightarrow A, A^*$ are closed operators
- We have

$$V^* =^{\perp} D(V) := \{ w \in W : \langle f, w \rangle_W = 0 \text{ for all } f \in D(V) \}$$

as well as the inclusions

$$\mathcal{V} \subset V, \ \mathcal{V}^* \subset V^*.$$

(JKU Linz)

1 The transient wave problem

- 2 The broken weak formulation
 - 3 Verification of the density condition
- The ideal DPG method and a priori & a posteriori error estimates
- **5** Implementation of practical DPG and numerical results

The broken weak formulation

• Partition of Ω into a mesh Ω_h of open elements K with

$$\overline{\Omega} = \bigcup_{K \in \Omega_h} \overline{K}$$

• "Broken" analogue W_h of W given by

$$W_h = \{ v \in L^2(\Omega)^{d+1} : A_h v \in L^2(\Omega)^{d+1} \}.$$

• Let A_h be the wave operator applied element by element, i.e.,

$$(A_h v)|_{\mathcal{K}} = A(v|_{\mathcal{K}}), \qquad v \in W(\mathcal{K}), \mathcal{K} \in \Omega_h$$

• The operator $D_h: W_h o W'_h$ is defined by

$$\langle D_h u, v \rangle_h := \langle D_h u, v \rangle_{W_h} = (A_h u, v) + (u, A_h v)$$

for all $u, v \in W_h$ and $\langle \cdot, \cdot
angle_h$ denotes the duality pairing in W_h

The broken weak formulation

• Let $D_{h,V}$ denote the restriction to V, i.e.,

$$D_{h,V} = D_h|_V$$

and we define

$$Q := \mathcal{R}(D_{h,V})$$

• Q with

$$\|q\|_Q = \inf_{v \in D_{h,V}^{-1}(\{q\})} \|v\|_W$$

is a complete space.

January 30, 2018

The bilinear form

$$b((\mathbf{v},\rho),\mathbf{w}) = -(\mathbf{v},A_h\mathbf{w}) + \langle \rho,\mathbf{w} \rangle_h$$

on $(L^2(\Omega)^{d+1} imes Q) imes W_h$ leads to

Broken weak formulation

Let $F \in W'_h$. Find: $u \in L^2(\Omega)^{d+1}$ and $\lambda \in Q$ such that

 $b((u, \lambda), w) = F(w)$ for all $w \in W_h$.

(JKU Linz)

(1)

The broken weak formulation

• Well-posedness of (1) is guaranteed, if

$$V =^{\perp} D(V^*), \tag{2}$$

$$A: V \to L^2(\Omega)^{d+1}$$
 is a bijection. (3)

Theorem

Suppose

 \mathcal{V} is dense in V and \mathcal{V}^* is dense in V^* .

Then the conditions (2) and (3) are satisfied.

Blackboard.	90
Blackboard.	
	ן נ
Proof.	

- **1** The transient wave problem
- 2 The broken weak formulation
- 3 Verification of the density condition
- The ideal DPG method and a priori & a posteriori error estimates
- 5 Implementation of practical DPG and numerical results

• Application of the density result for a hyperrectangle, i.e.,

$$\Omega = \Omega_0 \times (0, T), \Omega_0 = \prod_{i=1}^d (0, a_i),$$

for some $a_i > 0$.

Theorem

On the previously defined Ω , \mathcal{V}^* is dense in V^* and \mathcal{V} is dense in V.

Proof.

The proof is divided into three steps.

1 Extension:

Here, we extend a function in V using spatial reflections to a domain which has larger spatial extent than Ω . The operations

$$R_{i,-}x = x - 2x_i e_i,$$
 $R_{i,+}x = x + 2(a_i - x_i)e_i$

perform reflections of x about $x_i = 0$ and $x_i = a_i$ for i = 1, ..., d. The extended domains Q_i are obtained recursively by

$$egin{aligned} Q_0 &= \overline{\Omega}, \ Q_{i,-} &= R_{i,-}^{-1} Q_{i-1}, \quad Q_{i,+} &= R_{i,+}^{-1} Q_{i-1}, \ Q_i &= Q_{i,-} \cup Q_{i-1} \cup Q_{i,+}. \end{aligned}$$

The final extended domain is $Q = Q_d$.

Then we need even and odd extensions of functions. Let $G_{i,e}, G_{i,o}: L^2(Q_{i-1}) \to L^2(Q_i)$ be defined by

$$G_{i,e}f(x,t) = \begin{cases} f(R_{i,-}x,t) & \text{if } (x,t) \in Q_{i,-}, \\ f(R_{i,+}x,t) & \text{if } (x,t) \in Q_{i,+}, \\ f(x,t) & \text{if } (x,t) \in Q_{i-1}. \end{cases}$$
$$G_{i,o}f(x,t) = \begin{cases} -f(R_{i,-}x,t) & \text{if } (x,t) \in Q_{i,-}, \\ -f(R_{i,+}x,t) & \text{if } (x,t) \in Q_{i,+}, \\ f(x,t) & \text{if } (x,t) \in Q_{i-1}. \end{cases}$$

For vector valued functions $v \in L^2(\Omega)^{d+1}$, we define

$$G_i v(x,t) = (G_{i,e}v_i)e_i + \sum_{j\neq i} (G_{i,o}v_j)e_j.$$

Verification of the density condition

Next, we define

$$E_k = G_k \circ G_{k-1} \circ \cdots \circ G_1,$$

$$E'_k = G'_k \circ G'_{k+1} \circ \cdots \circ G'_d,$$

where

$$G'_iw(x,t)=(G'_{i,e}w_i)e_i+\sum_{j\neq i}(G'_{i,o}w_j)e_j.$$

with

$$\begin{aligned} G_{i,o}'w(x,t) &= w(x,t) - w(R_{i,-}^{-1}x) - w(R_{i,+}^{-1}x), \\ G_{i,e}'w(x,t) &= w(x,t) + w(R_{i,-}^{-1}x) + w(R_{i,+}^{-1}x). \end{aligned}$$

It holds that

 $(Ev, w)_Q = (v, E'w)$ for all $v \in L^2(\Omega)^{d+1}$, $w \in L^2(Q)^{d+1}$.

It can be proven that for any $v \in V$, $AEv \in L^2(Q)^{d+1}$, AEv coincides with EAv and $Ev \in W(Q)$

2 Translation: In this step we translate up the previously obtained extension in time coordinate. Let $v \in V$ and $\tilde{E}v$ be the extension of Evby 0 to \mathbb{R}^{d+1} . For $\tau_{\delta}, \delta > 0$, the translation operator in time direction, i.e., $(\tau_{\delta}w)(x,t) = w(x,t-\delta)$ it holds that

$$\lim_{\delta \to 0} \|\tau_{\delta}g - g\|_{L^2(\mathbb{R}^{d+1})} = 0 \qquad \text{ for all } g \in L^2(\mathbb{R}^{d+1}).$$

With the restriction H_{δ} from \mathbb{R}^{d+1} to $Q_{\delta} = \prod_{i=1}^{d} (-a_i, 2a_i) \times (-\delta, T + \delta)$ it must be verified that

$$AH_{\delta}\tau_{\delta}\tilde{E}v=H_{\delta}\tau_{\delta}\tilde{E}v.$$

In particular we have $H_{\delta}\tau_{\delta}\tilde{E}v \in W(Q_{\delta})$ whenever $v \in V$.

Verification of the density condition

3 Mollification: In this step we consider a $v \in V$ and mollify the time-translated extension $\tau_{\delta} \tilde{E} v$. The used mollifier is given by

$$\rho_{\varepsilon}(x,t) = \varepsilon^{-(d+1)} \rho_1(\varepsilon^{-1}x,\varepsilon^{-1}t),$$

where

$$ho_1(x,t) = egin{cases} k \; exp(-rac{1}{1-|x|^2-t^2}) & ext{if } |x|^2+t^2 < 1, \ 0 & ext{if } |x|^2+t^2 \geq 1 \end{cases}$$

with k such that $\int_{\mathbb{R}^{d+1}}\rho_1=1.$ To end this proof it suffices to show that

$$\mathbf{v}_{\varepsilon} = \rho_{\varepsilon} * \tau_{\delta} \tilde{\mathbf{E}} \mathbf{v}$$

is in \mathcal{V} and $\|v - v_{\varepsilon}|_{\Omega}\|_{W} \xrightarrow[\varepsilon \to 0]{} 0$.

- **1** The transient wave problem
- 2 The broken weak formulation
- 3 Verification of the density condition
- The ideal DPG method and a priori & a posteriori error estimates
 - 5 Implementation of practical DPG and numerical results

The ideal DPG method and a priori & a posteriori error estimates

Approximation of the broken weak formulation by ideal DPG method
 Find: u_h ∈ U_h ⊂ L²(Ω)^{d+1} and λ_h ∈ Q_h ⊂ Q such that

$$b((u_h, \lambda_h), w_h) = F(w_h)$$
 for all $w_h \in T(U_h \times Q_h)$, (4)

where $\mathcal{T}: L^2(\Omega)^{d+1} imes Q o W_h$ is such that

$$(T(v,\rho),w)_h = b((v,\rho),w)$$

for all $w \in W_h$ and any $(v, \rho) \in L^2(\Omega)^{d+1} \times Q$.

• The mixed formulation Find: $\varepsilon_h \in W_h$ and $(u_h, \lambda_h) \in (U_h \times Q_h)$ such that

$$\begin{aligned} (\varepsilon_h, w)_h + b((u_h, \lambda_h), w) &= F(w) & \text{ for all } w \in W_h, \\ b((v, \rho), \varepsilon_h) &= 0 & \text{ for all } (v, \rho) \in U_h \times Q_h \end{aligned}$$

is equivalent to formulation (4), see Seminar 08.

• The expression

$$\eta = \|\varepsilon_h\|_{W_h} = \left(\sum_{K \in \Omega_h} \|\varepsilon_h\|_{W(K)}^2\right)^{1/2}$$

is an efficient and reliable a posteriori error estimator, see Seminar 08.

The ideal DPG method and a priori error estimates

For a priori estimates we distinguish between
 Case A:: Ω_h is a geometrically conforming mesh of (d+1)-simplices

$$V_h = \{ u \in V \cap C(\overline{\Omega})^{d+1} : u|_{\mathcal{K}} \in P_{p+1}(\mathcal{K})^{d+1} \text{ for all } \mathcal{K} \in \Omega_h \},\$$
$$U_h = \{ u \in L^2(\Omega)^{d+1} : u|_{\mathcal{K}} \in P_p(\mathcal{K})^{d+1} \text{ for all } \mathcal{K} \in \Omega_h \},\$$

Case B:: Ω_h is a geometrically conforming mesh of hyperrectangles

$$\begin{split} V_h &= \{ u \in V \cap C(\overline{\Omega})^{d+1} : u|_{\mathcal{K}} \in Q_{p+1}(\mathcal{K})^{d+1} \text{ for all } \mathcal{K} \in \Omega_h \}, \\ U_h &= \{ u \in L^2(\Omega)^{d+1} : u|_{\mathcal{K}} \in Q_p(\mathcal{K})^{d+1} \text{ for all } \mathcal{K} \in \Omega_h \}, \end{split}$$

where $P_p(K)$ and $Q_p(K)$ denote spaces of polynomials of total degree $\leq p$, and of degree at most p in each variable, respectively.

• $Q_h = D_h V_h$

Theorem

Let $u \in V \cap H^{s+1}(\Omega)^{d+1}$ and $\lambda = D_h u$ solve (1). Let U_h and V_h be as in one of the previously introduced cases depending on the mesh type, and $Q_h = D_h V_h$. Then

$$\|u-u_h\|+\|\lambda-\lambda_h\|_Q\leq ch^s|u|_{H^{s+1}(\Omega)^{d+1}}$$

for $(d-1)/2 < s \le p+1$.

Proof.

Blackboard.

- **1** The transient wave problem
- 2 The broken weak formulation
- 3 Verification of the density condition
- 4 The ideal DPG method and a priori & a posteriori error estimates
- 5 Implementation of practical DPG and numerical results

Implementation of practical DPG and numerical results

- W_h replaced by Y_h^r Case A:: $Y_h^r = \{w \in W_h(\Omega) : w|_K \in P_r(K)^{d+1}\},$ Case B:: $Y_h^r = \{w \in W_h(\Omega) : w|_K \in Q_r(K)^{d+1}\}.$
- Considered the mixed formulation Find: $\varepsilon_h \in Y_h^r$ and $(u_h, \lambda_h) \in (U_h \times Q_h)$ such that

$$\begin{aligned} (\varepsilon_h, w)_h + b((u_h, \lambda_h), w) &= F(w) & \text{for all } w \in Y_h^r, \\ b((v, \rho), \varepsilon_h) &= 0 & \text{for all } (v, \rho) \in U_h \times Q_h \end{aligned}$$
(5)

• r = p + d + 1

• For the implementation of (5), $\lambda_h = D_h z_h$ for some $z_h \in V_h$ and

$$(\varepsilon_h, w)_h + b((u_h, D_h z_h), w) = F(w) \quad \text{for all } w \in Y_h^r, \\ b((v, D_h r), \varepsilon_h) = 0 \quad \text{for all } (v, r) \in U_h \times V_h$$
 (6)

is considered.

• Decomposition of V_h into $V_h^0 = \{z \in V_h : z|_{\partial K} = 0 \text{ for all } K \in \Omega_h\}$ and remainder $V_h^1 = V_h \setminus V_h^0$.

•
$$b((v, D_h V_h^0), w) = 0$$
, thus replace V_h by V_h^1 in (6).

• Yields the matrix equation

$$\begin{bmatrix} A & B \\ B^{\top} & 0 \end{bmatrix} \begin{bmatrix} e \\ x \end{bmatrix} = \begin{bmatrix} f \\ 0 \end{bmatrix},$$
 (7)

where e and x are the vectors of coefficients in the basis expansion of $\varepsilon_h \in Y_h^r$ and $(u_h, z_h) \in U_h \times V_h$, respectively, $[A]_{kl} = (y_l, y_k)_h$, $[B_0]_{ki} = b((u_i, 0), y_k)$, $[B_1] = b((0, D_h z_j), y_k)$ and $B = [B_0, B_1]$.

- r = p + d + 1
- $\mathcal{N}(A) = \mathcal{N}(B_0) = \{0\}$
- B₁ may have a nontrivial kernel

- Technique 1: Remaining orthogonal to null space in conjugate gradients
 - Instead of (7) solve Schur complement system

$$\underbrace{B^{\top}A^{-1}B}_{=:C} x = B^{\top}A^{-1}f$$

by means of CG

- ker $C = ker B = ker B_1$
- Convergence if $K_n(C, r_0)$ remains ℓ^2 orthogonal to ker C for all n
- $x_0 = 0 \Longrightarrow r_0 = B^\top A^{-1} f \in \mathcal{R}(B^\top) = (ker \ C)^\perp$
- $C^n r_0$ is orthogonal to ker C for all $n \ge 1$

• Technique 2: Regularization of the linear system

• Rewriting $B^{\top}A^{-1}Bx = B^{\top}A^{-1}f$ in block form yields

$$\begin{bmatrix} B_0^{\top} A^{-1} B_0 & B_0^{\top} A^{-1} B_1 \\ B_1^{\top} A^{-1} B_0 & B_1^{\top} A^{-1} B_1 \end{bmatrix} x = B^{\top} A^{-1} f$$

• Solving the invertible system

$$\begin{bmatrix} B_0^{\top} A^{-1} B_0 & B_0^{\top} A^{-1} B_1 \\ B_1^{\top} A^{-1} B_0 & B_1^{\top} A^{-1} B_1 + \alpha M \end{bmatrix} x = B^{\top} A^{-1} f$$

with the mass matrix $M_{jl} = (z_l, z_j)$ and $\alpha > 0$, e.g., $\alpha = 10^{-9}$.

(JKU Linz)

• $\Omega = (0,1)^2$, homogeneous boundary and initial conditions, the exact solution of the second order wave equation is given by

$$\phi(x,t) = sin(\pi x)sin^2(\pi t)$$

which results in a solution

$$u = \left[\begin{array}{c} \pi \cos(\pi x)\sin^2(\pi t) \\ \pi \sin(\pi x)\sin(2\pi t) \end{array}\right]$$

of the first order system

•
$$g = 0, f = \pi^2 sin(\pi x)(2cos(2\pi t) + sin^2(\pi t))$$

(JKU Linz)

January 30, 2018

h	p = 0	Order	p = 1	Order	p=2	Order	p = 3	Order
1/4	$1.2849e{+}00$	-	1.5371e-01	-	2.0385e-02	-	1.2619e-03	-
1/8	5.6379e-01	1.19	5.6127e-02	1.45	4.7540e-03	2.10	1.5370e-04	+3.04
1/16	2.2067e-01	1.35	1.2472e-02	2.17	5.4897e-04	3.11	7.8519e-06	+4.29
1/32	1.0214e-01	1.11	3.0308e-03	2.04	6.6955e-05	3.00	4.7863e-07	+4.04

Table 1. Convergence rates for $||u - u_h||$ on triangular meshes using Technique 1.

h	p = 0	Order	p = 1	Order	p=2	Order	p = 3	Order
1/4	9.7226e-01	-	1.6834e-01	-	6.6722e-03	-	2.0910e-03	-
1/8	4.7357e-01	1.04	4.2869e-02	1.97	8.5059e-04	2.97	1.3308e-04	3.97
1/16	2.3291e-01	1.35	1.0763e-02	1.99	1.0707e-04	2.99	8.3773e-06	3.99
1/32	1.1587e-01	1.11	2.6935e-03	2.00	1.3409e-05	3.00	5.2613e-07	3.99

Table 2. Convergence rates for $||u - u_h||$ on rectangular meshes using Technique 1.

Figure: L^2 convergence rates for u_h , taken from [J. Gopalakrishnan and P. Sepúlveda, (2017)]

• $\Omega = (0,1)^2$, f = g = 0, homogeneous boundary conditions, i.e., $\mu = 0$ and non-zero initial conditions

$$\mu|_{t=0} = -\phi_0, q|_{t=0} = \phi_0$$

with

$$\phi_0(x) = \exp(-1000((x-0.5)^2))$$

э

Adaptivity

Figure: Numerical pressure μ , adaptive refinement, setting p = 3, taken from [J. Gopalakrishnan and P. Sepúlveda, (2017)]

< 47 ▶

38 / 41

э

Convergence rates in three-dimensional spacetime

• $\Omega = (0,1)^3$, homogeneous boundary and initial conditions, the exact solution of the second order wave equation is given by

$$\phi(x,t) = \sin(\pi x)\sin(\pi y)t^2$$

which results in a solution

$$u = \begin{bmatrix} \pi \cos(\pi x)\sin(\pi y)t^2 \\ \pi \cos(\pi y)\sin(2\pi x)t^2 \\ 2\sin(\pi x)\sin(\pi y)t \end{bmatrix}$$

of the first order system

•
$$g = 0, f = sin(\pi x)sin(\pi y)(2 + 2\pi^2 t^2)$$

(JKU Linz)

h	p = 0	Order	p = 1	Order	p=2	Order	p = 3	Order
1	9.0604e-01	-	4.7829e-01	-	1.4146e-01	-	4.3952e-02	—
1/2	6.0557e-01	0.58	1.3924e-01	1.78	1.3912e-02	3.35	3.2845e-03	3.74
1/4	3.3896e-01	0.84	3.3508e-02	2.05	1.4769e-03	3.24	1.6490e-04	4.32
1/8	1.5469e-01	1.13	8.9554e-03	1.90	1.7210e-04	3.10	9.9691e-06	4.05

Table 3. Convergence rates for $||u - u_h||$ on tetrahedral meshes obtained using Technique 2.

h	p = 0	Order	p = 1	Order	p=2	Order	p = 3	Order
1	$1.1149e{+}00$	-	6.0068e-01	-	2.8828e-02	-	3.3262e-02	-
1/2	7.5769e-01	0.56	1.5124e-01	1.99	2.8264e-03	3.35	2.0540e-03	4.02
1/4	4.2035e-01	0.85	3.8592e-02	1.97	3.5256e-04	3.00	1.3234e-04	3.96
1/8	2.1338e-01	0.98	9.6918e-03	1.99	3.8023e-05	3.21	9.3766e-06	3.82

Table 4. Convergence rates for $||u - u_h||$ on hexahedral meshes using Technique 1.

Figure: L^2 convergence rates for u_h , taken from [J. Gopalakrishnan and P. Sepúlveda, (2017)]

- L. Demkowicz, J. Gopalakrishnan, S. Nagaraj, and P. Sepúlveda. A spacetime DPG method for the Schrödinger equation. *SIAM Journal on Numerical Analysis*, 55(4):1740–1759, 2017.
- [2] A. Ern, J.-L. Guermond, and G. Caplain. An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems. *Communications in Partial Differential Equations*, 32:317–341, 2007.
- [3] J. Gopalakrishnan and P. Sepúlveda. A spacetime DPG method for acoustic waves. arXiv:1709.08268 [math. NA], Sept. 2017.