A spacetime DPG method for acoustic waves

Rainer Schneckenleitner

JKU Linz

January 30, 2018

Overview

(1) The transient wave problem
(2) The broken weak formulation
(3) Verification of the density condition
(4) The ideal DPG method and a priori \& a posteriori error estimates
(5) Implementation of practical DPG and numerical results

Outline

(1) The transient wave problem

(2) The broken weak formulation

(3) Verification of the density condition

4 The ideal DPG method and a priori \& a posteriori error estimates
(5) Implementation of practical DPG and numerical results

Problem formulation

The wave equation

Let $\Omega_{0} \subset \mathbb{R}^{d}$ be the spatial domain with boundary $\partial \Omega_{0}$ and let $\Omega=\Omega_{0} \times(0, T)$ be the spacetime cylinder, with $T>0$.
Furthermore, let $f \in L^{2}(\Omega)$ and $g \in L^{2}(\Omega)^{d}$.
Then the considered first order system for the wave equation is given by

$$
\begin{aligned}
\partial_{t} q-\operatorname{grad}_{x} \mu & =g \\
\partial_{t} \mu-\operatorname{div}_{x} q & =f
\end{aligned}
$$

Additionally, the wave equation is equipped with homogeneous initial and boundary conditions, i.e.,

$$
\left.\mu\right|_{t=0}=0,\left.\quad q\right|_{t=0}=0,\left.\quad \mu\right|_{\partial \Omega_{0} \times(0, T)}=0
$$

The formal wave operator

- Wave operator can be seen as first order distributional derivative operator

$$
\begin{aligned}
& A: L^{2}(\Omega)^{d+1} \rightarrow \mathcal{D}^{\prime}(\Omega)^{d+1} \\
& A u=\left[\begin{array}{c}
\partial_{t} u_{q}-\operatorname{grad}_{x} u_{\mu} \\
\partial_{t} u_{\mu}-\operatorname{div}_{x} u_{q}
\end{array}\right],
\end{aligned}
$$

where $u \in L^{2}(\Omega)^{d+1}$ is split into

$$
u=\left[\begin{array}{l}
u_{q} \\
u_{\mu}
\end{array}\right]
$$

with $u_{q} \in L^{2}(\Omega)^{d}$ and $u_{\mu} \in L^{2}(\Omega)$.

The formal wave operator

Theorem

Let Ω be open. The space

$$
W(\Omega):=\left\{u \in L^{2}(\Omega)^{d+1}: A u \in L^{2}(\Omega)^{d+1}\right\}=W
$$

endowed with the norm

$$
\|u\| w=\left(\|u\|^{2}+\|A u\|^{2}\right)^{1 / 2}
$$

is a Hilbert space.

Proof.

Blackboard.

The formal wave operator

- The formal adjoint of A is the operator $-A$ and satisfies

$$
(A u, v)=-(u, A v) \quad \text { for all } u, v \in \mathcal{D}(\Omega)^{d+1}
$$

- Furthermore, we introduce $D: W \rightarrow W^{\prime}$ by

$$
\langle D u, v\rangle_{W}=(A u, v)+(u, A v) \quad \text { for all } u, v \in W
$$

where W^{\prime} denotes the dual space of W, and $\langle\cdot, \cdot\rangle_{W}$ denotes the duality pairing in W.

- Assume $u, v \in \mathcal{D}(\bar{\Omega})^{d+1}$, then

$$
\langle D u, v\rangle w=\int_{\partial \Omega} u_{q} \cdot\left(n_{t} v_{q}-n_{x} v_{\mu}\right)+u_{\mu}\left(n_{t} v_{\mu}-n_{x} \cdot v_{q}\right) d s,
$$

where $n=\left(n_{x}, n_{t}\right)$ is the outward unit normal to $\Omega \subset \mathbb{R}^{d+1}$

The unbounded wave operator

- Definition of an unbounded operator, again denoted by A
- Domain $\operatorname{dom}(\mathrm{A})$ of A takes initial and boundary conditions into account
- We partition the spacetime boundary $\partial \Omega$ into

$$
\begin{aligned}
\Gamma_{0} & =\Omega_{0} \times\{0\}, \\
\Gamma_{T} & =\Omega_{0} \times\{T\}, \\
\Gamma_{b} & =\partial \Omega_{0} \times[0, T],
\end{aligned}
$$

- Moreover, we define

$$
\begin{aligned}
\mathcal{V} & =\left\{v \in \mathcal{D}(\bar{\Omega})^{d+1}:\left.v\right|_{\Gamma_{0}}=0,\left.v_{\mu}\right|_{\Gamma_{b}}=0\right\} \\
\mathcal{V}^{*} & =\left\{v \in \mathcal{D}(\bar{\Omega})^{d+1}:\left.v\right|_{\Gamma_{T}}=0,\left.v_{\mu}\right|_{\Gamma_{b}}=0\right\}
\end{aligned}
$$

The unbounded wave operator

- Now we can define the unbounded operator

$$
\begin{gathered}
A: \operatorname{dom}(A) \subset L^{2}(\Omega)^{d+1} \rightarrow L^{2}(\Omega)^{d+1} \\
A u=\left[\begin{array}{c}
\partial_{t} u_{q}-\operatorname{grad}_{x} u_{\mu} \\
\partial_{t} u_{\mu}-\operatorname{div}_{x} u_{q}
\end{array}\right],
\end{gathered}
$$

with

$$
\operatorname{dom}(A)=\left\{u \in W:\langle D u, v\rangle_{W}=0 \text { for all } v \in \mathcal{V}^{*}\right\}
$$

- $\mathcal{D}(\Omega)^{d+1} \subset \operatorname{dom}(A) \subset W \Longrightarrow A$ is densly defined and has an adjoint A^{*}
- A^{*} equals $-A$ when applied to

$$
\begin{array}{r}
\operatorname{dom}\left(A^{*}\right)=\left\{v \in L^{2}(\Omega)^{d+1}: \exists \ell \in L^{2}(\Omega)^{d+1} \text { s. t. }(A u, v)=(u, \ell)\right. \\
\text { for all } u \in \operatorname{dom}(A)\}
\end{array}
$$

The unbounded wave operator

- Throughout we denote $\operatorname{dom}(A)$ and $\operatorname{dom}\left(A^{*}\right)$ endowed with the topology of W as V and V^{*}, respectively
- V and V^{*} are closed subsets of $W \Longrightarrow A, A^{*}$ are closed operators
- We have

$$
V^{*}=^{\perp} D(V):=\left\{w \in W:\langle f, w\rangle_{w}=0 \text { for all } f \in D(V)\right\}
$$

as well as the inclusions

$$
\begin{aligned}
\mathcal{V} & \subset V \\
\mathcal{V}^{*} & \subset V^{*}
\end{aligned}
$$

Outline

(1) The transient wave problem

(2) The broken weak formulation

(3) Verification of the density condition

4 The ideal DPG method and a priori \& a posteriori error estimates
(5) Implementation of practical DPG and numerical results

The broken weak formulation

- Partition of Ω into a mesh Ω_{h} of open elements K with

$$
\bar{\Omega}=\bigcup_{K \in \Omega_{h}} \bar{K}
$$

- "Broken" analogue W_{h} of W given by

$$
W_{h}=\left\{v \in L^{2}(\Omega)^{d+1}: A_{h} v \in L^{2}(\Omega)^{d+1}\right\}
$$

- Let A_{h} be the wave operator applied element by element, i.e.,

$$
\left.\left(A_{h} v\right)\right|_{K}=A\left(\left.v\right|_{K}\right), \quad v \in W(K), K \in \Omega_{h}
$$

- The operator $D_{h}: W_{h} \rightarrow W_{h}^{\prime}$ is defined by

$$
\left\langle D_{h} u, v\right\rangle_{h}:=\left\langle D_{h} u, v\right\rangle_{W_{h}}=\left(A_{h} u, v\right)+\left(u, A_{h} v\right)
$$

for all $u, v \in W_{h}$ and $\langle\cdot, \cdot\rangle_{h}$ denotes the duality pairing in W_{h}

The broken weak formulation

- Let $D_{h, V}$ denote the restriction to V, i.e.,

$$
D_{h, v}=D_{h} \mid v
$$

and we define

$$
Q:=\mathcal{R}\left(D_{h, v}\right)
$$

- Q with

$$
\|q\|_{Q}=\inf _{v \in D_{h, V}^{-1}(\{q\})}\|v\|_{W}
$$

is a complete space.

The broken weak formulation

- The bilinear form

$$
b((v, \rho), w)=-\left(v, A_{h} w\right)+\langle\rho, w\rangle_{h}
$$

$$
\text { on }\left(L^{2}(\Omega)^{d+1} \times Q\right) \times W_{h} \text { leads to }
$$

Broken weak formulation

Let $F \in W_{h}^{\prime}$. Find: $u \in L^{2}(\Omega)^{d+1}$ and $\lambda \in Q$ such that

$$
\begin{equation*}
b((u, \lambda), w)=F(w) \text { for all } w \in W_{h} \tag{1}
\end{equation*}
$$

The broken weak formulation

- Well-posedness of (1) is guaranteed, if

$$
\begin{gathered}
V==^{\perp} D\left(V^{*}\right) \\
A: V \rightarrow L^{2}(\Omega)^{d+1} \text { is a bijection. }
\end{gathered}
$$

Theorem

Suppose

$$
\mathcal{V} \text { is dense in } V \text { and } \mathcal{V}^{*} \text { is dense in } V^{*} .
$$

Then the conditions (2) and (3) are satisfied.

Proof.

Blackboard.

Outline

(1) The transient wave problem

(2) The broken weak formulation

(3) Verification of the density condition

4 The ideal DPG method and a priori \& a posteriori error estimates
(5) Implementation of practical DPG and numerical results

Verification of the density condition

- Application of the density result for a hyperrectangle, i.e.,

$$
\Omega=\Omega_{0} \times(0, T), \Omega_{0}=\prod_{i=1}^{d}\left(0, a_{i}\right)
$$

for some $a_{i}>0$.

Theorem

On the previously defined Ω, \mathcal{V}^{*} is dense in V^{*} and \mathcal{V} is dense in V.

Verification of the density condition

Proof.

The proof is divided into three steps.
1 Extension:
Here, we extend a function in V using spatial reflections to a domain which has larger spatial extent than Ω. The operations

$$
R_{i,-} x=x-2 x_{i} e_{i}, \quad R_{i,+} x=x+2\left(a_{i}-x_{i}\right) e_{i}
$$

perform reflections of x about $x_{i}=0$ and $x_{i}=a_{i}$ for $i=1, \ldots, d$.
The extended domains Q_{i} are obtained recursively by

$$
\begin{array}{r}
Q_{0}=\bar{\Omega} \\
Q_{i,-}=R_{i,-}^{-1} Q_{i-1}, \quad Q_{i,+}=R_{i,+}^{-1} Q_{i-1} \\
Q_{i}=Q_{i,-} \cup Q_{i-1} \cup Q_{i,+} .
\end{array}
$$

The final extended domain is $Q=Q_{d}$.

Verification of the density condition

Then we need even and odd extensions of functions. Let $G_{i, e}, G_{i, o}: L^{2}\left(Q_{i-1}\right) \rightarrow L^{2}\left(Q_{i}\right)$ be defined by

$$
\begin{gathered}
G_{i, e} f(x, t)= \begin{cases}f\left(R_{i,-} x, t\right) & \text { if }(x, t) \in Q_{i,-}, \\
f\left(R_{i,+} x, t\right) & \text { if }(x, t) \in Q_{i,+}, \\
f(x, t) & \text { if }(x, t) \in Q_{i-1}\end{cases} \\
G_{i, o} f(x, t)= \begin{cases}-f\left(R_{i,-} x, t\right) & \text { if }(x, t) \in Q_{i,-}, \\
-f\left(R_{i,+} x, t\right) & \text { if }(x, t) \in Q_{i,+}, \\
f(x, t) & \text { if }(x, t) \in Q_{i-1}\end{cases}
\end{gathered}
$$

For vector valued functions $v \in L^{2}(\Omega)^{d+1}$, we define

$$
G_{i} v(x, t)=\left(G_{i, e} v_{i}\right) e_{i}+\sum_{j \neq i}\left(G_{i, o} v_{j}\right) e_{j}
$$

Verification of the density condition

Next, we define

$$
\begin{aligned}
& E_{k}=G_{k} \circ G_{k-1} \circ \cdots \circ G_{1}, \\
& E_{k}^{\prime}=G_{k}^{\prime} \circ G_{k+1}^{\prime} \circ \cdots \circ G_{d}^{\prime}
\end{aligned}
$$

where

$$
G_{i}^{\prime} w(x, t)=\left(G_{i, e}^{\prime} w_{i}\right) e_{i}+\sum_{j \neq i}\left(G_{i, o}^{\prime} w_{j}\right) e_{j}
$$

with

$$
\begin{aligned}
& G_{i, o}^{\prime} w(x, t)=w(x, t)-w\left(R_{i,-}^{-1} x\right)-w\left(R_{i,+}^{-1} x\right), \\
& G_{i, e}^{\prime} w(x, t)=w(x, t)+w\left(R_{i,-}^{-1} x\right)+w\left(R_{i,+}^{-1} x\right) .
\end{aligned}
$$

Verification of the density condition

It holds that

$$
(E v, w)_{Q}=\left(v, E^{\prime} w\right) \quad \text { for all } v \in L^{2}(\Omega)^{d+1}, w \in L^{2}(Q)^{d+1} .
$$

It can be proven that for any $v \in V, A E v \in L^{2}(Q)^{d+1}, A E v$ coincides with $E A v$ and $E v \in W(Q)$

Verification of the density condition

2 Translation: In this step we translate up the previously obtained extension in time coordinate. Let $v \in V$ and $\tilde{E} v$ be the extension of $E v$ by 0 to \mathbb{R}^{d+1}. For $\tau_{\delta}, \delta>0$, the translation operator in time direction, i.e., $\left(\tau_{\delta} w\right)(x, t)=w(x, t-\delta)$ it holds that

$$
\lim _{\delta \rightarrow 0}\left\|\tau_{\delta} g-g\right\|_{L^{2}\left(\mathbb{R}^{d+1}\right)}=0 \quad \text { for all } g \in L^{2}\left(\mathbb{R}^{d+1}\right)
$$

With the restriction H_{δ} from \mathbb{R}^{d+1} to
$Q_{\delta}=\prod_{i=1}^{d}\left(-a_{i}, 2 a_{i}\right) \times(-\delta, T+\delta)$ it must be verified that

$$
A H_{\delta} \tau_{\delta} \tilde{E} v=H_{\delta} \tau_{\delta} \tilde{E} v
$$

In particular we have $H_{\delta} \tau_{\delta} \tilde{E} v \in W\left(Q_{\delta}\right)$ whenever $v \in V$.

Verification of the density condition

3 Mollification: In this step we consider a $v \in V$ and mollify the time-translated extension $\tau_{\delta} \tilde{E} v$. The used mollifier is given by

$$
\rho_{\varepsilon}(x, t)=\varepsilon^{-(d+1)} \rho_{1}\left(\varepsilon^{-1} x, \varepsilon^{-1} t\right)
$$

where

$$
\rho_{1}(x, t)= \begin{cases}k \exp \left(-\frac{1}{1-|x|^{2}-t^{2}}\right) & \text { if }|x|^{2}+t^{2}<1 \\ 0 & \text { if }|x|^{2}+t^{2} \geq 1\end{cases}
$$

with k such that $\int_{\mathbb{R}^{d+1}} \rho_{1}=1$. To end this proof it suffices to show that

$$
v_{\varepsilon}=\rho_{\varepsilon} * \tau_{\delta} \tilde{E} v
$$

is in \mathcal{V} and $\left\|v-\left.v_{\varepsilon}\right|_{\Omega}\right\|_{W} \underset{\varepsilon \rightarrow 0}{ } 0$.

Outline

(1) The transient wave problem

(2) The broken weak formulation

(3) Verification of the density condition

4 The ideal DPG method and a priori \& a posteriori error estimates

(5) Implementation of practical DPG and numerical results

The ideal DPG method and a prior \& a posterior error estimates

- Approximation of the broken weak formulation by ideal DPG method
- Find: $u_{h} \in U_{h} \subset L^{2}(\Omega)^{d+1}$ and $\lambda_{h} \in Q_{h} \subset Q$ such that

$$
\begin{equation*}
b\left(\left(u_{h}, \lambda_{h}\right), w_{h}\right)=F\left(w_{h}\right) \text { for all } w_{h} \in T\left(U_{h} \times Q_{h}\right) \tag{4}
\end{equation*}
$$

where $T: L^{2}(\Omega)^{d+1} \times Q \rightarrow W_{h}$ is such that

$$
(T(v, \rho), w)_{h}=b((v, \rho), w)
$$

for all $w \in W_{h}$ and any $(v, \rho) \in L^{2}(\Omega)^{d+1} \times Q$.

- The mixed formulation

Find: $\varepsilon_{h} \in W_{h}$ and $\left(u_{h}, \lambda_{h}\right) \in\left(U_{h} \times Q_{h}\right)$ such that

$$
\begin{aligned}
\left(\varepsilon_{h}, w\right)_{h}+b\left(\left(u_{h}, \lambda_{h}\right), w\right) & =F(w) & \text { for all } w \in W_{h}, \\
b\left((v, \rho), \varepsilon_{h}\right) & =0 & \text { for all }(v, \rho) \in U_{h} \times Q_{h}
\end{aligned}
$$

is equivalent to formulation (4), see Seminar 08.

The ideal DPG method and a posteriori error estimates

- The expression

$$
\eta=\left\|\varepsilon_{h}\right\|_{W_{h}}=\left(\sum_{K \in \Omega_{h}}\left\|\varepsilon_{h}\right\|_{W(K)}^{2}\right)^{1 / 2}
$$

is an efficient and reliable a posteriori error estimator, see Seminar 08.

The ideal DPG method and a priori error estimates

- For a priori estimates we distinguish between

Case A :: Ω_{h} is a geometrically conforming mesh of $(d+1)$-simplices

$$
\begin{aligned}
& V_{h}=\left\{u \in V \cap C(\bar{\Omega})^{d+1}:\left.u\right|_{K} \in P_{p+1}(K)^{d+1} \text { for all } K \in \Omega_{h}\right\}, \\
& U_{h}=\left\{u \in L^{2}(\Omega)^{d+1}:\left.u\right|_{K} \in P_{p}(K)^{d+1} \text { for all } K \in \Omega_{h}\right\}
\end{aligned}
$$

Case $B:$: Ω_{h} is a geometrically conforming mesh of hyperrectangles

$$
\begin{aligned}
& V_{h}=\left\{u \in V \cap C(\bar{\Omega})^{d+1}:\left.u\right|_{K} \in Q_{p+1}(K)^{d+1} \text { for all } K \in \Omega_{h}\right\}, \\
& U_{h}=\left\{u \in L^{2}(\Omega)^{d+1}:\left.u\right|_{K} \in Q_{p}(K)^{d+1} \text { for all } K \in \Omega_{h}\right\},
\end{aligned}
$$

where $P_{p}(K)$ and $Q_{p}(K)$ denote spaces of polynomials of total degree $\leq p$, and of degree at most p in each variable, respectively.

- $Q_{h}=D_{h} V_{h}$

The ideal DPG method and a priori error estimates

Theorem

Let $u \in V \cap H^{s+1}(\Omega)^{d+1}$ and $\lambda=D_{h} u$ solve (1). Let U_{h} and V_{h} be as in one of the previously introduced cases depending on the mesh type, and $Q_{h}=D_{h} V_{h}$. Then

$$
\left\|u-u_{h}\right\|+\left\|\lambda-\lambda_{h}\right\|_{Q} \leq c h^{s}|u|_{H^{s+1}(\Omega)^{d+1}}
$$

for $(d-1) / 2<s \leq p+1$.

Proof.

Blackboard.

Outline

(1) The transient wave problem

(2) The broken weak formulation

(3) Verification of the density condition

4 The ideal DPG method and a priori \& a posteriori error estimates
(5) Implementation of practical DPG and numerical results

Implementation of practical DPG and numerical results

- W_{h} replaced by Y_{h}^{r}

Case $\mathrm{A}:: Y_{h}^{r}=\left\{w \in W_{h}(\Omega):\left.w\right|_{K} \in P_{r}(K)^{d+1}\right\}$,
Case $\mathrm{B}:: Y_{h}^{r}=\left\{w \in W_{h}(\Omega):\left.w\right|_{K} \in Q_{r}(K)^{d+1}\right\}$.

- Considered the mixed formulation

Find: $\varepsilon_{h} \in Y_{h}^{r}$ and $\left(u_{h}, \lambda_{h}\right) \in\left(U_{h} \times Q_{h}\right)$ such that

$$
\begin{align*}
\left(\varepsilon_{h}, w\right)_{h}+b\left(\left(u_{h}, \lambda_{h}\right), w\right) & =F(w) & \text { for all } w \in Y_{h}^{r}, \tag{5}\\
b\left((v, \rho), \varepsilon_{h}\right) & =0 & \text { for all }(v, \rho) \in U_{h} \times Q_{h}
\end{align*}
$$

- $r=p+d+1$

Implementation of practical DPG and numerical results

- For the implementation of (5), $\lambda_{h}=D_{h} z_{h}$ for some $z_{h} \in V_{h}$ and

$$
\begin{align*}
\left(\varepsilon_{h}, w\right)_{h}+b\left(\left(u_{h}, D_{h} z_{h}\right), w\right) & =F(w) & \text { for all } w \in Y_{h}^{r} \tag{6}\\
b\left(\left(v, D_{h} r\right), \varepsilon_{h}\right) & =0 & \text { for all }(v, r) \in U_{h} \times V_{h}
\end{align*}
$$

is considered.

- Decomposition of V_{h} into $V_{h}^{0}=\left\{z \in V_{h}:\left.z\right|_{\partial K}=0\right.$ for all $\left.K \in \Omega_{h}\right\}$ and remainder $V_{h}^{1}=V_{h} \backslash V_{h}^{0}$.
- $b\left(\left(v, D_{h} V_{h}^{0}\right), w\right)=0$, thus replace V_{h} by V_{h}^{1} in (6).

Implementation of practical DPG and numerical results

- Yields the matrix equation

$$
\left[\begin{array}{ll}
A & B \tag{7}\\
B^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
e \\
x
\end{array}\right]=\left[\begin{array}{l}
f \\
0
\end{array}\right]
$$

where e and x are the vectors of coefficients in the basis expansion of $\varepsilon_{h} \in Y_{h}^{r}$ and $\left(u_{h}, z_{h}\right) \in U_{h} \times V_{h}$, respectively,
$[A]_{k l}=\left(y_{l}, y_{k}\right)_{h},\left[B_{0}\right]_{k i}=b\left(\left(u_{i}, 0\right), y_{k}\right),\left[B_{1}\right]=b\left(\left(0, D_{h} z_{j}\right), y_{k}\right)$ and $B=\left[B_{0}, B_{1}\right]$.

- $r=p+d+1$
- $\mathcal{N}(A)=\mathcal{N}\left(B_{0}\right)=\{0\}$
- B_{1} may have a nontrivial kernel

Techniques to solve despite the null space

- Technique 1: Remaining orthogonal to null space in conjugate gradients
- Instead of (7) solve Schur complement system

$$
\underbrace{B^{\top} A^{-1} B}_{=: C} x=B^{\top} A^{-1} f
$$

by means of CG

- $\operatorname{ker} C=\operatorname{ker} B=\operatorname{ker} B_{1}$
- Convergence if $K_{n}\left(C, r_{0}\right)$ remains ℓ^{2} orthogonal to $\operatorname{ker} C$ for all n
- $x_{0}=0 \Longrightarrow r_{0}=B^{\top} A^{-1} f \in \mathcal{R}\left(B^{\top}\right)=(\operatorname{ker} C)^{\perp}$
- $C^{n} r_{0}$ is orthogonal to $\operatorname{ker} C$ for all $n \geq 1$

Techniques to solve despite the null space

- Technique 2: Regularization of the linear system
- Rewriting $B^{\top} A^{-1} B x=B^{\top} A^{-1} f$ in block form yields

$$
\left[\begin{array}{cc}
B_{0}^{\top} A^{-1} B_{0} & B_{0}^{\top} A^{-1} B_{1} \\
B_{1}^{\top} A^{-1} B_{0} & B_{1}^{\top} A^{-1} B_{1}
\end{array}\right] x=B^{\top} A^{-1} f
$$

- Solving the invertible system

$$
\left[\begin{array}{ll}
B_{0}^{\top} A^{-1} B_{0} & B_{0}^{\top} A^{-1} B_{1} \\
B_{1}^{\top} A^{-1} B_{0} & B_{1}^{\top} A^{-1} B_{1}+\alpha M
\end{array}\right] x=B^{\top} A^{-1} f
$$

with the mass matrix $M_{j l}=\left(z_{l}, z_{j}\right)$ and $\alpha>0$, e.g., $\alpha=10^{-9}$.

Convergence rates in two-dimensional spacetime

- $\Omega=(0,1)^{2}$, homogeneous boundary and initial conditions, the exact solution of the second order wave equation is given by

$$
\phi(x, t)=\sin (\pi x) \sin ^{2}(\pi t)
$$

which results in a solution

$$
u=\left[\begin{array}{l}
\pi \cos (\pi x) \sin ^{2}(\pi t) \\
\pi \sin (\pi x) \sin (2 \pi t)
\end{array}\right]
$$

of the first order system

- $g=0, f=\pi^{2} \sin (\pi x)\left(2 \cos (2 \pi t)+\sin ^{2}(\pi t)\right)$

Convergence rates in two-dimensional spacetime

h	$p=0$	Order	$p=1$	Order	$p=2$	Order	$p=3$	Order
$1 / 4$	$1.2849 \mathrm{e}+00$	-	$1.5371 \mathrm{e}-01$	-	$2.0385 \mathrm{e}-02$	-	$1.2619 \mathrm{e}-03$	-
$1 / 8$	$5.6379 \mathrm{e}-01$	1.19	$5.6127 \mathrm{e}-02$	1.45	$4.7540 \mathrm{e}-03$	2.10	$1.5370 \mathrm{e}-04$	+3.04
$1 / 16$	$2.2067 \mathrm{e}-01$	1.35	$1.2472 \mathrm{e}-02$	2.17	$5.4897 \mathrm{e}-04$	3.11	$7.8519 \mathrm{e}-06$	+4.29
$1 / 32$	$1.0214 \mathrm{e}-01$	1.11	$3.0308 \mathrm{e}-03$	2.04	$6.6955 \mathrm{e}-05$	3.00	$4.7863 \mathrm{e}-07$	+4.04

Table 1. Convergence rates for $\left\|u-u_{h}\right\|$ on triangular meshes using Technique 1.

h	$p=0$	Order	$p=1$	Order	$p=2$	Order	$p=3$	Order
$1 / 4$	$9.7226 \mathrm{e}-01$	-	$1.6834 \mathrm{e}-01$	-	$6.6722 \mathrm{e}-03$	-	$2.0910 \mathrm{e}-03$	-
$1 / 8$	$4.7357 \mathrm{e}-01$	1.04	$4.2869 \mathrm{e}-02$	1.97	$8.5059 \mathrm{e}-04$	2.97	$1.3308 \mathrm{e}-04$	3.97
$1 / 16$	$2.3291 \mathrm{e}-01$	1.35	$1.0763 \mathrm{e}-02$	1.99	$1.0707 \mathrm{e}-04$	2.99	$8.3773 \mathrm{e}-06$	3.99
$1 / 32$	$1.1587 \mathrm{e}-01$	1.11	$2.6935 \mathrm{e}-03$	2.00	$1.3409 \mathrm{e}-05$	3.00	$5.2613 \mathrm{e}-07$	3.99

Table 2. Convergence rates for $\left\|u-u_{h}\right\|$ on rectangular meshes using Technique 1.
Figure: L^{2} convergence rates for u_{h}, taken from [J. Gopalakrishnan and P. Sepúlveda, (2017)]

Adaptivity

- $\Omega=(0,1)^{2}, f=g=0$, homogeneous boundary conditions, i.e., $\mu=0$ and non-zero initial conditions

$$
\left.\mu\right|_{t=0}=-\phi_{0},\left.q\right|_{t=0}=\phi_{0}
$$

with

$$
\phi_{0}(x)=\exp \left(-1000\left((x-0.5)^{2}\right)\right)
$$

Adaptivity

Figure: Numerical pressure μ, adaptive refinement, setting $\mathrm{p}=3$, taken from [J. Gopalakrishnan and P. Sepúlveda, (2017)]

Convergence rates in three-dimensional spacetime

- $\Omega=(0,1)^{3}$, homogeneous boundary and initial conditions, the exact solution of the second order wave equation is given by

$$
\phi(x, t)=\sin (\pi x) \sin (\pi y) t^{2}
$$

which results in a solution

$$
u=\left[\begin{array}{l}
\pi \cos (\pi x) \sin (\pi y) t^{2} \\
\pi \cos (\pi y) \sin (2 \pi x) t^{2} \\
2 \sin (\pi x) \sin (\pi y) t
\end{array}\right]
$$

of the first order system

- $g=0, f=\sin (\pi x) \sin (\pi y)\left(2+2 \pi^{2} t^{2}\right)$

Convergence rates in three-dimensional spacetime

h	$p=0$	Order	$p=1$	Order	$p=2$	Order	$p=3$	Order
1	$9.0604 \mathrm{e}-01$	-	$4.7829 \mathrm{e}-01$	-	$1.4146 \mathrm{e}-01$	-	$4.3952 \mathrm{e}-02$	-
$1 / 2$	$6.0557 \mathrm{e}-01$	0.58	$1.3924 \mathrm{e}-01$	1.78	$1.3912 \mathrm{e}-02$	3.35	$3.2845 \mathrm{e}-03$	3.74
$1 / 4$	$3.3896 \mathrm{e}-01$	0.84	$3.3508 \mathrm{e}-02$	2.05	$1.4769 \mathrm{e}-03$	3.24	$1.6490 \mathrm{e}-04$	4.32
$1 / 8$	$1.5469 \mathrm{e}-01$	1.13	$8.9554 \mathrm{e}-03$	1.90	$1.7210 \mathrm{e}-04$	3.10	$9.9691 \mathrm{e}-06$	4.05

Table 3. Convergence rates for $\left\|u-u_{h}\right\|$ on tetrahedral meshes obtained using Technique 2.

h	$p=0$	Order	$p=1$	Order	$p=2$	Order	$p=3$	Order
1	$1.1149 \mathrm{e}+00$	-	$6.0068 \mathrm{e}-01$	-	$2.8828 \mathrm{e}-02$	-	$3.3262 \mathrm{e}-02$	-
$1 / 2$	$7.5769 \mathrm{e}-01$	0.56	$1.5124 \mathrm{e}-01$	1.99	$2.8264 \mathrm{e}-03$	3.35	$2.0540 \mathrm{e}-03$	4.02
$1 / 4$	$4.2035 \mathrm{e}-01$	0.85	$3.8592 \mathrm{e}-02$	1.97	$3.5256 \mathrm{e}-04$	3.00	$1.3234 \mathrm{e}-04$	3.96
$1 / 8$	$2.1338 \mathrm{e}-01$	0.98	$9.6918 \mathrm{e}-03$	1.99	$3.8023 \mathrm{e}-05$	3.21	$9.3766 \mathrm{e}-06$	3.82

Table 4. Convergence rates for $\left\|u-u_{h}\right\|$ on hexahedral meshes using Technique 1.
Figure: L^{2} convergence rates for u_{h}, taken from [J. Gopalakrishnan and P.
Sepúlveda, (2017)]

References

[1] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj, and P. Sepúlveda. A spacetime DPG method for the Schrödinger equation. SIAM Journal on Numerical Analysis, 55(4):1740-1759, 2017.
[2] A. Ern, J.-L. Guermond, and G. Caplain. An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems. Communications in Partial Differential Equations, 32:317-341, 2007.
[3] J. Gopalakrishnan and P. Sepúlveda. A spacetime DPG method for acoustic waves. arXiv:1709.08268 [math. NA], Sept. 2017.

