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@ The transient wave problem
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Problem formulation

The wave equation

Let Qo C RY be the spatial domain with boundary 99y and let

Q =Qp x (0, T) be the spacetime cylinder, with T > 0.

Furthermore, let f € L?(Q) and g € L?(Q)“.

Then the considered first order system for the wave equation is given by

0rq — gradsj = g,
Oyt — diveqg = f.

Additionally, the wave equation is equipped with homogeneous initial and
boundary conditions, i.e.,

//L|t:0 = 07 q’tIO = 07 M’aQOX(OvT) = 0.
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The formal wave operator

@ Wave operator can be seen as first order distributional derivative
operator

A L2(Q)F — D/(Q)d

Ay — [ Otug —gr.adxuu ] 7
O¢uy, — divyug

where u € [2(Q)9*1 is split into

with ug € L2(Q)9 and u, € [3(Q).

( JKU Linz ) Spacetime DPG method January 30, 2018 5 /41



The formal wave operator

Theorem

Let Q be open. The space
W(Q) = {u e L2(Q)T*: Aue L2(Q)9) = W
endowed with the norm
lullw = (lull® + | Au)l)*/?

is a Hilbert space.

v

Blackboard. ]
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The formal wave operator

@ The formal adjoint of A is the operator —A and satisfies
(Au,v) = —(u, Av) for all u, v € D(Q)7*.
o Furthermore, we introduce D : W — W’ by
(Du,viw = (Au,v) + (u, Av) for all u,v € W,

where W’ denotes the dual space of W, and (-, )\ denotes the
duality pairing in W.
o Assume u,v € D(Q)9*1, then

(Du,v)yw = / ug - (nevg — nevy) + uu(nevy — nx - vg)ds,
o0

where n = (ny, n;) is the outward unit normal to Q C RI+1
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The unbounded wave operator

@ Definition of an unbounded operator, again denoted by A

e Domain dom(A) of A takes initial and boundary conditions into
account

@ We partition the spacetime boundary 9 into

FOZQOX{O},
FT:QQX{T},
Fb:E)Qox[O, T],

@ Moreover, we define

V={veDQ)*"?:vin =0,vr, =0},
V' ={ve D) v|p, =0,v.|r, = 0}.
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The unbounded wave operator

@ Now we can define the unbounded operator
A dom(A) C [2(Q)4FT — [2(Q)9+T,

Ay — [ Orug —gr.adxuu ] 7
Oruy, — divyug

with
dom(A) = {ue W : (Du,v),, =0 forall v € V*}.

o D(Q)9*+! C dom(A) C W = A is densly defined and has an adjoint
A*
@ A* equals —A when applied to
dom(A*) = {v e 2(Q)9T : 3 e [2(Q)¥ " s. t. (Au,v) = (u,0)
for all u € dom(A)}
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The unbounded wave operator

@ Throughout we denote dom(A) and dom(A*) endowed with the
topology of W as V and V*, respectively

@ V and V* are closed subsets of W — A, A* are closed operators

o We have
V¥ =t D(V):={we W:(f,w), =0forall f € D(V)}
as well as the inclusions

yvcv,
V¥ c Vv*.
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Outline

© The broken weak formulation
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The broken weak formulation

@ Partition of Q into a mesh Q, of open elements K with
Q= U K
KeQ,,

o "Broken" analogue W), of W given by

Wy = {v e [2(Q)L: Apv € [2(Q)IH1}.
o Let Ap be the wave operator applied element by element, i.e.,

(Apv)|k = A(v]k), veWK),KeQy,
e The operator Dy, : Wy, — W is defined by

(Dpu, v)p, == (Dpu, v)y, = (Apu, v) + (u, Apv)

for all u,v € W} and (-, ), denotes the duality pairing in W,
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The broken weak formulation

@ Let Dy v denote the restriction to V, i.e.,

Dp,v = Dplv
and we define
Q :=R(Dp,v)
e @ with
lallg = inf |lvily

veD, L ({a})

is a complete space.
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The broken weak formulation

@ The bilinear form
b((V,p), W) = _(V7AhW) + <p7 W>h

on (L2(Q)9*! x @) x W, leads to

Broken weak formulation
Let F € W]. Find: u € L?(Q)9*"! and A € Q such that

b((u,A),w) = F(w) for all w € W, (1)
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The broken weak formulation

o Well-posedness of (1) is guaranteed, if

v =t D(Vv*), (2)
AV —=12(Q)9 1 is a bijection. (3)

Suppose
V is dense in V and V* is dense in V*.

Then the conditions (2) and (3) are satisfied.

Blackboard. O I
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© Verification of the density condition
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Verification of the density condition

@ Application of the density result for a hyperrectangle, i.e.,

d
Q=00 x(0,7),Q = [](0,2),

i=1

for some a; > 0.

On the previously defined Q, V* is dense in V* and V is dense in V. l
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Verification of the density condition

The proof is divided into three steps.
1

Extension:
Here, we extend a function in V using spatial reflections to a domain

which has larger spatial extent than 2. The operations

R,'V_X =X — 2x,-e,-, R,H_X =X+ 2(8,‘ — x,-)e,-
perform reflections of x about x; =0 and x; = a; for i =1,...,d.
The extended domains Q; are obtained recursively by

QO = ﬁv

Q-=R1Qi1, Q+=R Q-1,
Qi=Q_-UQ-1UQ+.

The final extended domain is Q@ = Q.
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Verification of the density condition

Then we need even and odd extensions of functions. Let
Gie, Gio: L2(Qi—1) — L%(@;) be defined by

G,"of(X, t) = —f(R,'7+X, t) i
f(x,t) if (x,t

N S

€ Qi—1.

For vector valued functions v € L?(Q)9+1, we define

Giv(x,t) = (Gjevi)ej + Z(Gi,o‘/j)ej‘
J#i

v
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Verification of the density condition

Next, we define

Ex = Gko Gy_q10---00Gy,
EL = GLo Glyy o0 Gl

where
Gi/W(X7 t) = (Gi/,ve)e/ + Z(Gi,,owj)ej'
JF
with
Gl ow(x,t) = w(x,t) — W(Rij_lx) - W(R,-Tix),
G ew(x, t) = w(x, t) + W(R,-j_lx) + W(R;_ix).
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Verification of the density condition

It holds that
(Ev,w)q = (v, E'w) for all v € L2(Q)9, w e 12(Q)4+1.

It can be proven that for any v € V, AEv € [?(Q)9*+!, AEv coincides with
EAv and Ev € W(Q)

v
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Verification of the density condition

2 Translation: In this step we translate up the previously obtained
extension in time coordinate. Let v € V and Ev be the extension of Ev
by 0 to R¥*1. For 75,8 > 0, the translation operator in time direction,
i.e., (Tsw)(x, t) = w(x, t — d) it holds that

. d
lim 758 — gl 2zaeny =0 for all g € L2(R™).

With the restriction Hy from RY+1 to
Qs = Hfizl(—a,-, 2a;) x (=9, T + 0) it must be verified that

AHs7sEv = HstsEv.

In particular we have HsrsEv € W(Qs) whenever v € V.
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Verification of the density condition

3 Mollification: In this step we consider a v € V and mollify the
time-translated extension 75Ev. The used mollifier is given by

pe(x, t) = e~y (e71x, e 71e),

where

1 . 2 5
ety = 4 EPCTEm) K<L
° f el + 2 2 1
with k such that [ga.; p1 = 1. To end this proof it suffices to show that

Ve = pexTs5EV

. _ 0.
isin V and |lv — vi|ally 0

v
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@ The ideal DPG method and a priori & a posteriori error estimates
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The ideal DPG method and a priori & a posteriori error

estimates

@ Approximation of the broken weak formulation by ideal DPG method
e Find: uj € Uy C L2(Q)9H and A\, € Q4 C Q such that

b((uh,)\h), Wh) = F(Wh) for all wp € T(Uh X Qh), (4)
where T : [2(Q)9+1 x Q — W, is such that
(T(Vap)7 W)h = b((V,p), W)
for all w € W, and any (v, p) € L?(Q)7+! x Q.
@ The mixed formulation
Find: £, € W, and (uh,)\h) S (Uh X Qh) such that
(€p, W)n + b((upn, Ap), w) = F(w) for all w € W,
b((v,p),en) =0 for all (v,p) € Up x Qp
is equivalent to formulation (4), see Seminar 08.
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The ideal DPG method and a posteriori error estimates

@ The expression
1/2

2
n=lenlw, = | D lleallivee
KeQy,

is an efficient and reliable a posteriori error estimator, see Seminar 08.
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The ideal DPG method and a priori error estimates

@ For a priori estimates we distinguish between
Case A:: Qy is a geometrically conforming mesh of (d+1)-simplices

Vi ={ue VN C(Q)!: ulk € Ppypr(K) forall K € Qp},
Up = {u e (I ulk € Pp(K)?H! for all K € Qp},

Case B:: Qy is a geometrically conforming mesh of hyperrectangles

Vi, = {u eVvn C(ﬁ)dJrl Culk € Qp+1(K)d+1 for all K € Qh},
Up = {u e QI ulk € Qu(K)IT! forall K € Qp},

where P,(K) and Qp(K) denote spaces of polynomials of total degree
< p, and of degree at most p in each variable, respectively.

° Qn=DnpVy
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The ideal DPG method and a priori error estimates

Let u€ V N H Q)9 and X\ = Dyu solve (1). Let Uy, and V), be as in
one of the previously introduced cases depending on the mesh type, and
Qh = Dh Vh. Then

[t = unll + 1A = Anllg < ch®|ul i (qyasa

for(d—1)/2<s<p+1.

Blackboard.
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Outline

© Implementation of practical DPG and numerical results
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Implementation of practical DPG and numerical results

o W, replaced by Y}/
Case A Y/ = {w € Wu(Q) : w|k € P(K)I 1},
Case B:: Y/ = {w € W,(Q) : wlk € Q(K)I+1}.
@ Considered the mixed formulation
Find: ¢, € th and (uh,)\;,) S (Uh X Qh) such that

(ep, w)p + b((up, Ap), w) = F(w) for all w € Yy, .
b((v,p),en) =0 for all (v,p) € Up x Q4

—~~
~—

er=p+d+1
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Implementation of practical DPG and numerical results

e For the implementation of (5), Ay = Djz), for some z, € V}, and

(eh, w)h + b((un, Dpzn), w) = F(w) for all w € Y/,
b((v, Dpr),ep) =0 for all (v,r) € Uy x V,

is considered.

@ Decomposition of V}, into V,? ={ze Vy:z|lsgk =0 forall K € Qp}
and remainder V! = V;,\ V.

o b((v,DpVP),w) =0, thus replace V}, by V} in (6).
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Implementation of practical DPG and numerical results

@ Yields the matrix equation

A B e f
EXJINE g
where e and x are the vectors of coefficients in the basis expansion of

en € Y} and (up, z) € Up x V, respectively,

[Alk = (V1Y) [Bolki = b((ui,0),yk), [B1] = b((0, Drz;), yk) and
B = [By, Bi1].

er=p+d+1
o N(A) =N(Bo) = {0}

@ B; may have a nontrivial kernel
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Techniques to solve despite the null space

@ Technique 1: Remaining orthogonal to null space in conjugate
gradients

o Instead of (7) solve Schur complement system

B'A"'Bx=BTA'f
by means of CG

o ker C = ker B = ker B,

o Convergence if K,(C, ro) remains ¢? orthogonal to ker C for all n

e xo=0=nry= BTA f e R(BT) = (ker C)L

e C"ry is orthogonal to ker C for all n>1
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Techniques to solve despite the null space

e Technique 2: Regularization of the linear system
o Rewriting BT A71Bx = BT A=1f in block form yields

BfA'By BJA'By | 1.1
[ BIA-1B, B/ A-lB |¥~B AT
e Solving the invertible system
B A"1B, BJA!B T
[ BIA-1B, BfA-1B,+aM |X~B Af

with the mass matrix Mj = (z,z) and a > 0, e.g., « = 107°.
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Convergence rates in two-dimensional spacetime

e Q = (0,1)?, homogeneous boundary and initial conditions,
the exact solution of the second order wave equation is given by

d(x, t) = sin(mwx)sin®(rt)
which results in a solution

mcos(mx)sin®(mt)
wsin(mx)sin(27t)

of the first order system
o g =0,f = n?sin(nx)(2cos(2nt) + sin?(rt))
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Convergence rates in two-dimensional spacetime

h p=20 Order p=1 Order p=2 Order p=3 Order
1/4 | 1.2849e+00 - 1.5371e-01 - 2.0385e-02 - 1.2619e-03 -
1/8 | 5.6379¢-01 | 1.19 | 5.6127e-02 | 1.45 | 4.7540e-03 | 2.10 || 1.5370e-04 | +3.04
1/16 | 2.2067e-01 | 1.35 || 1.2472e-02 | 2.17 | 5.4897e-04 | 3.11 | 7.8519¢-06 | +4.29
1/32 | 1.0214e-01 | 1.11 | 3.0308e-03 | 2.04 || 6.6955e-05 | 3.00 || 4.7863e-07 | +4.04

Table 1. Convergence rates for ||u — up|| on triangular meshes using Technique 1.

h p=20 Order p=1 Order p=2 Order p=3 Order
1/4 | 9.7226e-01 - 1.6834e-01 - 6.6722¢-03 - 2.0910e-03 -
1/8 | 4.7357e-01 | 1.04 || 4.2869e-02 | 1.97 | 8.505%¢-04 | 2.97 | 1.3308e-04 | 3.97
1/16 | 2.3291e-01 | 1.35 || 1.0763e-02 | 1.99 || 1.0707e-04 | 2.99 || 8.3773e-06 | 3.99
1/32 | 1.1587e-01 | L.11 | 2.6935e-03 | 2.00 || 1.3409¢-05 | 3.00 || 5.2613¢-07 | 3.99
Table 2. Convergence rates for ||u — up| on rectangular meshes using Technique 1.

Figure: L2 convergence rates for uj, taken from [J. Gopalakrishnan and P.
Sepulveda, (2017)]
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Adaptivity

e Q=(0,1)? f = g =0, homogeneous boundary conditions, i.e., 1 = 0
and non-zero initial conditions

=0 = — 0, qli=0 = ¢o
with

do(x) = exp(—~1000((x — 0.5)%))
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Adaptivity

(a) 0 refinements (b) 6 refinements

(c) 14 refinements (d) 22 refinements

Figure: Numerical pressure i, adaptive refinement, setting p = 3, taken from [J.
Gopalakrishnan and P. Sepalveda, (2017)]
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Convergence rates in three-dimensional spacetime

e Q=(0, 1)3, homogeneous boundary and initial conditions, the exact
solution of the second order wave equation is given by

o(x, t) = sin(mx)sin(ry)t?
which results in a solution

mcos(mx)sin(my)t?
u= | mcos(my)sin(2nx)t?
2sin(mx)sin(my)t

of the first order system
o g =0,f = sin(nx)sin(my)(2 + 27°t?)
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Convergence rates in three-dimensional spacetime

h p=20 Order p=1 Order p=2 Order p=3 Order
1 | 9.0604e-01 - 4.7829e-01 - 1.4146e-01 - 4.3952e-02 -
1/2 ] 6.0557e-01 | 0.58 || 1.3924e-01 | 1.78 || 1.3912e-02 | 3.35 || 3.2845e-03 | 3.74
1/4 | 3.3896e-01 | 0.84 || 3.3508e-02 | 2.05 | 1.4769e-03 | 3.24 || 1.6490e-04 | 4.32
1/8 | 1.5469e-01 | 1.13 || 8.9554e-03 | 1.90 || 1.7210e-04 | 3.10 || 9.9691e-06 | 4.05
Table 3. Convergence rates for ||u—up|| on tetrahedral meshes obtained using

Technique 2.

h p=0 Order p=1 Order p=2 Order p=3 Order
1 | 1.1149e+00 - 6.0068e-01 - 2.8828e-02 - 3.3262e-02 -
1/2 | 7.5769e-01 | 0.56 || 1.5124e-01 | 1.99 | 2.8264e-03 | 3.35 || 2.0540e-03 | 4.02
1/4 | 4.2035e-01 | 0.85 || 3.8592e-02 | 1.97 | 3.5256e-04 | 3.00 || 1.3234e-04 | 3.96
1/8 | 2.1338¢-01 | 0.98 | 9.6918e-03 | 1.99 | 3.8023e-05 | 3.21 || 9.3766e-06 | 3.82

Table 4. Convergence rates for ||u — up|| on hexahedral meshes using Technique 1.

Figure: L2 convergence rates for up, taken from [J. Gopalakrishnan and P.
Sepulveda, (2017)]
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