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Dimensional Reduction in Continuum Mechanics

Why dimensional reduction for thin bodies?

1. Avoid geometry locking with standard discretization

2. Avoid very complex three-dimensional discretization
that is stable wrt. thickness

3. Replace three-dimensional problem with two- or
one-dimensional problem
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Dimensional Reduction in Continuum Mechanics

How does it work?

1. Claim that three-dimensional displacement has specific
form (lower-dimensional parameter functions)

2. Insert ansatz into three-dimensional model and perform
calculations analytically as much as possible

What do we get?

BEAMS Straight 1D bodies

ARCHES Curved 1D bodies

PLATES Planar 2D bodies

SHELLS Curved 2D bodies
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The Timoshenko beam model

Displacement

[
u1, u2, u3

]
(x1, x2, x3) =[

− x3θ(x1), 0,w(x1)
]>

w ...transverse deflection
θ...rotation

Perpendicular loading

[
f1, f2, f3

]
(x1, x2, x3) =[

0, 0, p(x1)
]>
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Derivation of the Timoschenko system

E =

 −x3θ
′(x1) 0 1

2 (w ′(x1)− θ(x1))
0 0 0

1
2 (w ′(x1)− θ(x1)) 0 0


Modified constitutive law for consistency.

Σ =

 −Ex3θ
′(x1) 0 κµ(w ′(x1)− θ(x1))

0 −Eνx3θ
′(x1) 0

κµ(w ′(x1)− θ(x1)) 0 0


Assume Ω = (0, L)× ω. Set I :=

∫
ω x

2
3dx3,A := |ω|.

(
Σ,E

)
0,Ω

= EI

∫ b

a
θ′(x1)2dx1

+ κµA

∫ b

a

(
w ′(x1)− θ(x1)

)2
dx1



DPG thin-body

Ludwig Mitter

The Timoschenko
Beam model

Model problem

Variational
formulation

DPG formulation

Numerics

Basic edge effect in
shell deformation

Model problem

Variational
formulation

DPG formulation

Numerics

Conclusions and
discussion

The Timoschenko system

Find w , θ such that

− ∂

∂x1

[
EI

∂θ

∂x1

]
+ κµA

(
∂w

∂x1
− θ
)

= m in (0, L)

− ∂

∂x1

[
κµA

(
∂w

∂x1
− θ
)]

= p in (0, L)
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Introducing auxiliary variables and rescaling

1. Auxiliary variables:

V = κµA(w ′ − θ) M = EIθ′

leads to

− V ′ = p −M ′ − V = m

2. Rescaling:

x1 ↪→ Lx1 w ↪→ Lw θ ↪→ θ

V ↪→ µAV M ↪→ EIL−1M p ↪→ µAL−1p m ↪→ EIL−2m

leads to dimensionless system

V = κ(w ′ − θ) M = θ′ in (0, L)

− V ′ = p −M ′ − kV = m in (0, L)

where k = µAL2

EI
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Assumptions

1. Crossection of beam is rectangle (width b, thickness d)

=⇒ A = bd , I = bd3

12 , k = 12µε2

E

where ε = d
L dimensionless thickness

2. Assume thin beam ε� 1
=⇒ rescaling V ↪→ ε−2V , p ↪→ ε−2p which leads to

ε−2V = κ(w ′ − θ) M = θ′ in (0, 1)

− V ′ = p −M ′ − kV = m in (0, 1)

where k = 12µ
E
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The Model Problem

1. Volume loads: p ≡ 0,m ≡ 0

2. Surface load at {L} × ω of magnitude (0, 0,F )>

3. Clamped at {0} × ω

This leads to the

MODEL PROBLEM
Find V ,M,w , θ such that

ε−2V = κ(w ′ − θ) M = θ′ in (0, 1)

− V ′ = p −M ′ − kV = m in (0, 1)

V (1) = F M(1) = 0 w(0) = 0 θ(0) = 0

where k = 12µ
E



DPG thin-body

Ludwig Mitter

The Timoschenko
Beam model

Model problem

Variational
formulation

DPG formulation

Numerics

Basic edge effect in
shell deformation

Model problem

Variational
formulation

DPG formulation

Numerics

Conclusions and
discussion

Classical solution

This problem can be solved explicitly:

V = F M = −kF (x1 − 1)

θ = kF

(
x1 −

1

2
x2

1

)
w =

kF

2

(
x2

1 −
x3

1

3

)
+

F

ε2κ
x1
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The weak ONE-ELEMENT formulation

Find u = (V ,M,w , θ)× (V̂ (0), M̂(0), ŵ(1), θ̂(1)) ∈ U such
that

ε2(V , q) + κ(w , q′)− κŵ(1)q(1) + κ(θ, q) =0

(M, τ) + (θ, τ ′)− θ̂(1)τ(1) =0

(V , z ′) + V̂ (0)z(0) =Fz(1)

k(V , φ)− (M, φ′)− M̂(0)φ(0) =0

for all v = (q, τ, z , φ) ∈ V, where (a, b) :=
∫ 1

0 abdx1 and
U := [L2(0, 1)]4 × R4,V = [H1(0, 1)]4.
Short form:

Find u ∈ U : B(u, v) = L(v), ∀v ∈ V



DPG thin-body

Ludwig Mitter

The Timoschenko
Beam model

Model problem

Variational
formulation

DPG formulation

Numerics

Basic edge effect in
shell deformation

Model problem

Variational
formulation

DPG formulation

Numerics

Conclusions and
discussion

Well-posedness

1. Equip Hilbert space U with energy norm

|||u||| := sup
v∈V

B(u, v)

‖v‖V

2. Regular Hilbert space norm ‖.‖V corresponding to (., .)V

‖v‖V
2 = ‖q‖2

V +‖τ‖2
V +‖z‖2

V +‖φ‖2
V ‖v‖2

V = ‖v‖2+
∥∥v ′∥∥2

3. Reminder: Then one has |||u||| = ‖Tu‖V with Tu as

(Tu, v)V = B(u, v),∀v ∈ V

4. Equip Hilbert space U with “more” standard norm

‖u‖U := max{‖V ‖, ‖M‖, ‖w‖, ‖θ‖,
∣∣∣V̂ (0)

∣∣∣, ∣∣∣M̂(0)
∣∣∣, |ŵ(1)|,

∣∣∣ ˆθ(1)
∣∣∣}
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Well-posedness

Theorem
Let u ∈ U . Then there eist two consts. c1, c2 > 0
independent of ε such that

c1‖u‖U ≤ |||u||| ≤ c2‖u‖U .

Hence, B(., .) is bounded and satisfies inf-sup.

Proof.
Construction of an explicit expression for the energy norm
AND replacement of ‖.‖V = ‖.‖H1 above with

‖v‖2
V :=

∥∥v ′∥∥2
+ |v(1)|2

Blackboard.
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PG with optimal test functions

1. Let Un = span{e1, · · · , en} ⊂ U
2. Optimal test space Vopt

n = span{Te1, · · · ,Ten}
3. Symmetrized PG method (energy projection)

Find un ∈ Un : B(un, vn) = L(vn), ∀vn ∈ Vopt
n .

Reminder:
vn = Twn,wn ∈ Un =⇒ (Tun,Twn) = L(Twn)

4. Cea:
‖u − un‖U ≤

c1

c2
min

wn∈Un
‖u −wn‖U
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DPG with optimal test functions
Now the ULTRA-weak formulation

1. Additionally to
un = (V ,M,w , θ)× (V̂ (0), M̂(0), ŵ(1), θ̂(1)) ∈ Un
include interface variables
λn = (V̂ , M̂ , ŵ , θ̂) ∈ Λn = R4N−4 corresponding to

Tn : 0 = x0 < x1 < · · · < xN = 1

2. DPG bilinear form where
v
∣∣
K

= (qj , τj , zjφj) ∈ V(K ) = [H1(K )]4:

Bh(un,λn; v) =
N∑
j=1

[
ε2

∫ xj

xj−1

Vqjdx + κ

∫ xj

xj−1

wq′jdx

− κŵ(x)qj(x)
∣∣xj
xj−1

+ κ

∫ xj

xj−1

θqjdx +

∫ xj

xj−1

Mτjdx +

∫ xj

xj−1

θτ ′j dx

− θ̂(x)τj(x)
∣∣xj
xj−1

+

∫ xj

xj−1

Vz ′j dx − V̂ (x)zj(x)
∣∣xj
xj−1

+ k

∫ xj

xj−1

Vφjdx

−
∫ xj

xj−1

Mφ′jdx + M̂(x)φj(x)
∣∣xj
xj−1

]
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DPG with optimal test functions

1. Discont. test space: ‖v‖Vn :=
∑

K ‖v‖V(K)

Vn := {v ∈ [L2(0, 1)]4, v
∣∣
K
∈ V(K ),K ∈ Tn}

2. New optimal test space:
Wopt

n = span{Tne1, · · · ,Tnen,Tnλn} where
Tn : Un × Λn → Vn such that

(Tn(un,λn), v)Vn = Bn(un,λn; v),∀v ∈ Vn

DPG problem
Find un ∈ Un,λn ∈ Λn such that

Bn(un,λn; v) = Ln(v),∀v ∈ Wopt
n
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The LOCALIZATION PRINCIPLE

Reminder

1. Element-wise computation of Wopt
n

2. Bn(un,λn; v) = B(un, v) and ‖v‖Vn = ‖v‖V for v ∈ V

Lemma (Localization principle)

One has
Voptn ⊂ Wopt

n ,

consequently ONE-ELEMENT and DPG coincide.

Theorem (Best-approx. property)

1. u = (V ,M,w , θ) one-element weak solution

2. un = (Vn,Mn,wn, θn) DPG solution

Then un is the best-approx. of u wrt. ‖.‖L2 up to ε-indep.
constant.
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Numerics

Remarks:

1. Optimal test fncts. corresponding to polynomial trial
fncts. are NOT polynomials. Hence, resolve opt. test
fncts. in enriched FE space (pol. degree +1)

2. Theoretical analysis of the use of approx. opt. test
fncts. is open at the moment.

3. Numerics only for Euler-Bernoulli beam at ε = 0 and
ε = 0.1, κ = 5/6 with pw. const and pw. linear
elements.
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Figure: Transverse deflection w at ε = 0.
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Figure: Transverse deflection w at ε = 0.
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Figure: Transverse deflection w at ε = 0.
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Figure: Transverse deflection w at ε = 0.
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Figure: Convergence history for pw. constant and linear elements.
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Basic edge effect in shell deformation:
ASSUMPTIONS

NOW: Shells (RN shell model). Assume

1. Axially symmetric deformations of a shallow spherical
shell with radius R and thickness d , d � R.

2. If x1, x2 mid-surface coords, NO deformation along x2.
3. Homogeneous isotropic material.

THEN kinematics of shell given via
single tangential displacement u(x1), transverse deflection
w(x1) and single rotation of normal θ(x1).
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Governing equations

If one takes R as length unit, EdR as force unit, dimless.
thickness ε = d/R one ends up with
Static equilibrium for Stresses T , Shear reaction Vx ,
Bending reaction Mx :

Tx =u′ + w Ty = w

Vx =κ(w ′ − θ) Mx =
ε2

12
θ′

−T ′x =0 Tx + Ty − V ′x = 0 −M ′x − Vx = 0
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The model problem

1. Assume: Tx = 0

2. Rescaling: Vx ↪→ ε2V ,Mx ↪→ ε2k−1M, k = 12

MODEL PROBLEM
Find V ,M,w , θ such that

ε2V = κ(w ′ − θ) M = θ′

w − ε2V ′ = 0 −M ′ − kV = 0

M(0) = 1 V (0),w(1), θ(1) = · · ·

where k = 12
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Classical solution

Cannot be resolved by direct elimination of the unknowns,
however one can show

u(x1) = eλx1U

=⇒ u(x1) = eax1

(
A(ε) cos(bx1) + B(ε) sin(bx1)

)
where a ≈ b ≈ ±31/4/

√
ε
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The weak ONE-ELEMENT formulation
Similar setting as for Timoschenko-beam model:

u =(V ,M, θ,w)× (ŵ(0), θ̂(0), ε2V̂ (1), M̂(1)) ∈ U
v =(q, τ, z , φ) ∈ V
U =[L2(0, 1)]4 × R4 V = [H1(0, 1)]4

PG formulation

Find u ∈ U : B(u, v) = L(v),∀v ∈ V,

where

B(u, v) = ε2(V , q) + κ(w , q′) + κŵ(0)q(0) + κ(θ, q)

+ (M, τ) + (θ, τ ′) + θ̂(0)τ(0) + (w , z)

+ ε2(V , z ′)− ε2V̂ (1)z(1)

+ k(V , φ)− (M, φ′) + M̂(1)φ(1)
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Choosing proper norms for ε-robustness

1. Timoschenko-‖.‖V DOES NOT lead to equivalence of
|||.||| to ‖.‖L2 uniformly in ε.

2. INSTEAD: Arrive at |||.||| = ‖.‖U by setting

‖v‖V := sup
v∈V

B(u, v)

‖u‖U
3. For our computations observe that

B(u, v) =
(
V , ε2q + ε2z ′ + kφ

)
+
(
M, τ − φ′

)
+
(
w , κq′ + z

)
+
(
θ, κq + τ ′

)
+ κŵ(0)q(0)

θ̂(0)τ(0)− ε2V̂ (1)z(1) + M̂(1)φ(1)

hence by using ‖.‖U = max{· · · } one has (1-elem. case)

‖v‖V
2 =

∥∥ε2(q + z ′) + kφ
∥∥2

+
∥∥τ − φ′∥∥2

+
∥∥κq′ + z

∥∥2

+
∥∥κq + τ ′

∥∥2
+ |κq(0)|2 + |τ(0)|2 + |z(1)|2 + |φ(1)|2
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Choosing proper norms for ε-robustness

1. Replace with localizable norm

‖v‖V
2 =

∥∥ε2(q + z ′) + kφ
∥∥2

+
∥∥τ − φ′∥∥2

+
∥∥κq′ + z

∥∥2

+
∥∥κq + τ ′

∥∥2
+ ‖κq‖2 + ‖τ‖2 + ‖z‖2 + ‖φ‖2

2. Question remains open: Are these two norms
uniformly equivalent wrt. ε for DPG setting?
(Numerics indicate robustness)

3. OBSERVE: Using above optimal test space norm
instead of standard test space norm (as for
Timoschenko), boundary layer effects have to be
resolved by test fncts.! Hence, higher enrichment
degree for FEM approx. of test fncts.
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Numerics

Remarks:

1. Trial fncts. are pw. pols. of equal order.

2. Optimal test space degree enrichment (+3).

3. Use both: Optimal/Standard test space norms.

4. Adaptive refinement (Endtmayer)
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Figure: Bending moment M at ε = 1.e − 3. OPTIMAL test space
norm.
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Figure: Bending moment M at ε = 1.e − 3. STANDARD test
space norm.
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Figure: Bending moment M at ε = 1.e − 3. OPTIMAL test space
norm.
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Figure: Bending moment M at ε = 1.e − 3. STANDARD test
space norm.
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Figure: Bending moment M at ε = 1.e − 3. OPTIMAL test space
norm.
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Figure: Bending moment M at ε = 1.e − 3. OPTIMAL test space
norm.



DPG thin-body

Ludwig Mitter

The Timoschenko
Beam model

Model problem

Variational
formulation

DPG formulation

Numerics

Basic edge effect in
shell deformation

Model problem

Variational
formulation

DPG formulation

Numerics

Conclusions and
discussion

Why could DPG methods be interesting for shell
simulations?

1. Various locking effects disturb FEM modelling of
shells.

2. Beams, Arches, Plates have a relatively simple
asymptotic behaviour for ε→ 0

3. SHELL-asymptotics difficult: Breaks into several
subproblems (each with its own asymptotics and
characteristic locking phenomena)

4. Example: Classical MITC4-S element attempts to
cover these subproblems simultaneously.

5. Can DPG better adapt to these subproblems
simultaneously?
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Figure: Comparison of MITC4-S to reference solution.
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