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Reminder: Roadmap to DPG

1 Given well-posed BVP (Babuška-Aziz)

Find u ∈ U : b(u, v) = l(v) for ∀v ∈ V

2 Choose trial subspace Uh = span{ej} ⊂ U with good approx.
props. (Céa)

3 Approximately compute optimal test space: Find
Th : Uh 7→ Ṽh, where Ṽh ⊂ V DG (not global!)
“computationally convenient” such that

(Thuh, ṽh)V = b(uh, ṽh) for ∀ṽh ∈ Ṽh

Th is injective on Uh

4 Set Vh = span{tj}, tj := Tej (tj basis since Th injective!)
5 Solve symmetric positive definite system (also for asym.

b(.,.)!)
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Num. approx. issues for wave propagation

Ig. numerics on wave propagation (high frequ.) "polluted", ie.
for exact/approx. sols. u ∈ U, uh ∈ Uh one has

‖u − uh‖U
‖u‖U

≤ C (k) inf
wh∈Uh

‖u − wh‖U
‖u‖U

,C (k) = C1+C2 kβ︸︷︷︸
!!!

(Kh)γ︸ ︷︷ ︸
OK

Typically: best. approx. error small if kh small (enough
elements per wavelength)
Typically: β = 1
Typically: num. approx. extremely expensive (high frequ.
problems)
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Motivation

Standard technology results
1 free of pollution, ie. β = 0 for 1D
2 reduced pollution (β > 0) for higher dims.
3 No general knowledge about γ

Why DPG methodology?
Application on 1D wave propagation gives PG-method that is

1 free of pollution, ie. β = 0
2 AND has γ = 0
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Petrov-Galerkin method with optimal test norm
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Abstract setting

For this presentation assume the real setting
U,V Hilbert spaces
(u, v) ∈ U × V 7→ b(u, v) ∈ R cont. bilinear form
Cont. linear form l ∈ V ∗

Abstract variational problem

Find u ∈ U : b(u, v) = l(v) for ∀v ∈ V (1)

Operator notation

B : U → V ∗ such that Bu(v) = b(u, v) for ∀u ∈ U, v ∈ V

B∗ : V → U∗ such that B∗v(u) = b(u, v) for ∀u ∈ U, v ∈ V

Assume B bijection with cont. inverse

B−1 : V ∗ → U (Reminder: (B∗)−1 = (B−1)∗)
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The optimal test space norm

Definition (Optimal test norm)

‖v‖V := sup
u∈U

|b(u, v)|
‖u‖U

for ∀v ∈ V

B∗ bijection =⇒ ‖.‖V equivalent norm on V

‖.‖V generated by inner product

(w , v)V := b(R−1
U B∗w , v)

with RU : U → U∗ Riesz operator
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The optimal test functions

Let UN = span{ej : j = 1, · · · ,N} ⊂ U fin.-dim.
Define T : U → V via

(Tu, v)V = b(u, v) for ∀v ∈ V

Trial basis function ej

Optimal test basis function tj := Tej ∈ V

Optimal discrete test space
VN := span{tj : j = 1, · · · ,N} ⊂ V
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The optimal test functions

PG-scheme for (1)

Find uN ∈ UN : b(uN , vN) = l(vN) for ∀vN ∈ VN (2)

From previous presentations:

Lemma ([DemGop, 2011])

‖u − uN‖E = inf
wN∈UN

‖u − wN‖E

‖u‖E := sup
v∈V

|b(u, v)|
‖v‖V
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The optimal test functions

Since optimal test norm ‖.‖V in def. of ‖.‖E one has

Theorem

‖u‖E = ‖u‖U for ∀u ∈ U(
=⇒ ‖u − uN‖U = inf

wN∈UN

‖u − wN‖U for ∀u ∈ U
)
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The error representation function

(2) is sym. pos. def.
Error eN := u − uN can be computed for given uN

Find TeN ∈ V : (TeN , v)V =b(u − uN , v)

=l(v)− b(uN , v) for ∀v ∈ V

Therefore: ‖eN‖U
thm.
= ‖eN‖E = ‖TeN‖V

Authors call TeN error representation function
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Equivalent test norms

‖.‖V inconvenient for practical computations
IDEA: Replace ‖.‖V with equivalent norm ‖.‖Ṽ
Assume ‖.‖Ṽ generated by computable inner prod. (., .)Ṽ
New PG-scheme with solution ũN

Now: ũN best approximation wrt.

‖u‖Ẽ := sup
v∈V

|b(u, v)|
‖v‖Ṽ

ig. ‖u‖Ẽ 6= ‖u‖U BUT
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Equivalent test norms

Theorem
Assume C1,C2 > 0 with

C1 ‖v‖Ṽ ≤ ‖v‖V ≤ C2 ‖v‖Ṽ for ∀v ∈ V

Then one has

‖u − ũN‖U ≤
C2

C1
inf

wN∈UN

‖u − wN‖U

WANT:C1/C2 to be (by designing ‖.‖Ṽ )
1 as small as possible
2 independent of problem parameters (eg. wavenumber k)
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Practicalities

Roadmap
1 Application of T globally does not yield practical method
2 =⇒ DPG-method: Application of T locally

V are discont. functs.
(., .)V locally computable

3 =⇒ Approximate local problems "suitably" by TN
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Practicalities

DPG methodology
Assume partitioning of computational domain Ω into mesh
elements {K}
Test functions in broken test space

V = VDPG =
∏
K

V (K )

Optimal (., .)V ig. NOT local
FIND: "localizable" (., .)Ṽ , ‖.‖Ṽ such that

‖v‖2
Ṽ

=
∑
K

‖vK‖2Ṽ for ∀v ∈ V

( =⇒ LOCALIZED error representation fnct. for adaptivity)
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A model time-harmonic transport problem
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Model time-harmonic transport problem

Simplified 1D time-harmonic wave propagation problem

ikp + p′ =0 in (0, 1)

p(0) =p0

Exact solution

p(x) = p0e
−ikx
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STEP 1: Conforming V -setting (spectral mehtod)

V := H 1(0, 1)

U := L 2(0, 1)× C
Variational formulation

Find (p, p̂) ∈ U : b
(

(p, p̂), q
)

= p0q(0) for ∀q ∈ V (3)

where

b
(

(p, p̂), q
)

:= −
∫ 1

0
p(ikq + q′) + p̂q(1)

Flux unknown p̂ ∈ C
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STEP 1: Optimal norm and inner product

Choose:
‖(p, p̂)‖2U := ‖p‖20,(0,1) + |p̂|2

Optimal test norm:

‖q‖V = sup
(p,p̂)∈U

|b
(

(p, p̂), q
)
|

‖(p, p̂)‖U

One has
‖q‖2V =

∥∥ikq + q′
∥∥2

0,(0,1) + |q(1)|2

Inner prod. generating this norm:

(q, r)V = (ikq + q′, ikr + r ′)0,(0,1) + q(1)r(1)
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STEP 1: discretization

Trial space discretization: UN ≡ Up := Pp(0, 1)× C
Test space discretization: VN ≡ Vp via T :
for ∀e ∈ UN the function q = Te ∈ V solves

Find q ≡ Te ∈ V :

(ikq + q′, ikr + r ′)0,(0,1) + q(1)r(1) = b(e, r) for ∀r ∈ V

PG-scheme for (3)

Find uN ∈ UN : b(uN , vN) = l(vN) for ∀vN ∈ VN (4)

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 1: discretization

Know by theorem:

‖u − uN‖U = inf
wN∈UN

‖u − wN‖U for ∀u ∈ U

=⇒ explicit computation

‖p − pN‖20,(0,1) + |p̂ − p̂N |2

= inf
(wN ,ŵN)∈UN

‖p − wN‖20,(0,1) + |p̂ − ŵN |2

= inf
wN∈UN

‖p − wN‖20,(0,1)

=⇒ pN coincides with L 2(0, 1)-orthog. proj. of p in pols.
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STEP 2: An intermediate method

Now:UN discont. functs.
Ω = (0, 1)

0 = x0 < x1 < · · · < xj−1 < xj < · · · < xn = 1
Set elements Kj := (xj−1, xj)

Prescribe poly. degr. on Kj :

L2
hp :={w : w

∣∣
Kj
∈ Ppj (Kj)}

UN ≡Ǔhp := L2
hp × C
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STEP 2: An intermediate method

Change inner product on V to

STEP 1: (q, r)V = (ikq + q′, ikr + r ′)0,(0,1) + q(1)r(1)

STEP 2: (q, r)Ṽ = (ikq + q′, ikr + r ′)0,(0,1) +
1
2

(q, r)0,(0,1)

Lemma
‖.‖Ṽ is equivalent to ‖.‖V with
C1 = (2−

√
2)1/2,C2 = (2 +

√
2)1/2)
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STEP 2: An intermediate method

Definition
Call q global optimal test function:⇐⇒ optimal test function
for (p, p̂) ∈ Ǔhp, ie. q ∈H 1(0, 1) such that

(q, r)Ṽ = −
∫ 1

0
p(ikr + r ′) + p̂r(1) for ∀r ∈H 1(0, 1)

Set VN ≡ V̌hp to span of all glob. opt. test functs for all
(p, p̂) ∈ Ǔhp.
Intermediate method Find (p̌hp, p̂hp) ∈ Ǔhp :

−
∫ 1

0
p̌hp(ikq + q′) + p̂hpq(1) = p0q1(0) for ∀q ∈ V̌hp

Ludwig Mitter DPG time-harmonic 1D wave



Introduction
Petrov-Galerkin method with optimal test norm

A model time-harmonic transport problem
The Helmholtz model problem

Conclusion

STEP 2: An intermediate method

Theorem (Error estimate)

‖p − p̌‖0,(0,1) ≤

(
2 +
√
2

2−
√
2

)1/2

︸ ︷︷ ︸
indep. of k!

inf
whp∈L2

hp

‖p − whp‖0,(0,1)
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STEP 3: The DPG method

Method of STEP 2 not practical: Optimal test space VN

global problem
STEP 3: V = VDPG =

∏n
j=1 V (Kj),V (Kj) := H 1(Kj)

DPG variational formulation

Find (p, p̂) ∈ U := L 2(0, 1)× Cn such that

−
n∑

j=1

p(ikqj + q′j) + p̂j [q]j︸ ︷︷ ︸
=:b

(
(p,p̂),q

)
= p0q1(0) for ∀q ∈ VDPG

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 3: The DPG method

Jumps:

[q]j =

{
qj(xj)− qj+1(xj) if j = 1, · · · , n − 1
qn(1) if j = n

Fluxes at element interfaces: p̂ = (p̂1, · · · , p̂n)

Choose:

‖(p, p̂)‖2U := ‖p‖20,(0,1) +
n∑

j=1

|p̂j |2

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 3: The DPG method

Obtain:

‖q‖2VDPG
=

n∑
j=1

∥∥ikqj + q′j
∥∥2

0,Kj
+ |[q]j |2

(q, r)VDPG
=

n∑
j=1

(ikqj + q′j , ikrj + r ′j )0,Kj
+ [q]j [r ]j

Does not satisfy the localization property!
=⇒ replace with norm that does

‖q‖2
Ṽ

=
n∑

j=1

∥∥ikqj + q′j
∥∥2

0,Kj
+

1
2
‖qj‖20,Kj

(q, r)Ṽ =
n∑

j=1

(ikqj + q′j , ikrj + r ′j )0,Kj
+

1
2

(qj , rj)0,Kj

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 3: The DPG method

Observe: Same norm as in STEP 2, when applied to
q ∈H 1(0, 1)

Discrete trial space: Uhp = L2
hp × Cn ⊂ U

Optimal test space computed with (., .)Ṽ
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STEP 3: The DPG method

Let L2
hp = span{pl}, pl with support only on ONE element.

Basis of Uhp = span{(pl , êm)}, em = (δim)ni=1 ∈ Cn

Test functions can now be LOCALLY computed →
local optimal test functions
pl supported on Kj =⇒ } local optimal test function q for
trial basis (pl , 0) supported on Kj only and satisfies

(ikqj + q′j , ikrj + r ′j )0,Kj
+

1
2

(qj , rj)0,Kj

= −
∫ xj

xj−1

pl(ikr + r ′) for ∀r ∈ V (Kj)

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 3: The DPG method

~ Local optimal test function q corresponding to (0, êj) is
supported on Kj ∪ Kj+1 only and satisfies for ∀r ∈ VDPG

(ikqj + q′j , ikrj + r ′j )0,Kj
+

1
2

(qj , rj)0,Kj
= rj(xj)

(ikqj+1 + q′j+1, ikrj+1 + r ′j+1)0,Kj+1 +
1
2

(qj+1, rj+1)0,Kj+1

= −rj+1(xj+1)

SET: VN = Vhp = span{these optimal test functs. ~}}
Vhp ⊂ VDPG
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STEP 3: The DPG method

The DPG method

Find (php, p̂
hp) ∈ Uhp such that

−
n∑

j=1

∫ xj

xj−1

php(ikqj + q′j) + p̂hpj [q]j = p0q1(0) for ∀q ∈ Vhp

Ludwig Mitter DPG time-harmonic 1D wave
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STEP 3: The DPG method

Lemma

V̌hp ⊂ Vhp ( =⇒ p̌hp = php)

which immediately implies

Theorem (Error estimate)

‖p − php‖0,(0,1) ≤

(
2 +
√
2

2−
√
2

)1/2

︸ ︷︷ ︸
indep. of k!

inf
whp∈L2

hp

‖p − whp‖0,(0,1)
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NUMERICS

NUMERICS: What the authors did
Higher order approximation approximating optimal test
functions spanning the discrete test space Vhp

IC: p0 = 1
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NUMERICS

Example 1: The One-Element-Case
As expected: no distinction between conforming/DPG
methods
Observation: “Higher enrichment” gives better approx. of
optimal test func. (more comp. effort)

Cholesky fact. for loc. sys. (effort about (p + ∆p)3)
Comp. cost of loc. sys. negligible compared to glob. sys.
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NUMERICS

Example 2: The 4-Element-per-Wavenumber-Case
Observation: very good L 2(0, 1) stability (as indicated by
thm., regardless of k)
Plot: Ratio of DPG error to best approx. error as k is
increased
Ratio approaches a k-independent val. (close to 1)
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Section 4

The Helmholtz model problem
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Helmholtz model problem

Coupled 1D Helmholtz problem

ik
p

cρ
+ u′ =0 in Ω

ikcρu + p′ =0 ∈ Ω

u(0) =u0

p(1) =cρu(1)

Exact solution

u(x) = u0e
−ikx p(x) = cρu(x)
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STEP 3: The DPG method

Theorem

‖u − uhp‖20,(0,1) + ‖p − php‖20,(0,1)
≤ C inf

whp ,shp∈L2
hp

‖u − whp‖20,(0,1) + ‖p − shp‖20,(0,1)

C =

√5 +
√
5

2
+

√
3 +
√
5

2

2

indep. of k!
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Conclusion
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This presentation answers:
1 How does one design a norm on the test space V to

minimize the discretization error in a given trial norm on U?
(also for multi.dim.)

2 How to localize the resultant test norm without losing uniform
stability? (also for multi.dim.)
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DPG Method COMPETITIVE?
Burden of dealing with small parameter has been moved to the
problem of finding the optimal test functions
DPG extremely stable compared to trad. techniques
DPG introduces add. dofs fluxes: n elements of order p per
wavelenth for domain of m wavelengths

DPG: 2(p + 1)mn + 2mn dofs (stat. cond. 2mn dofs)
Conforming: pmn (stat. cond. mn dofs)

=⇒ DPG competitive for large wavenumbers only!
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