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Introduction

Reminder: Roadmap to DPG

@ Given well-posed BVP (Babuska-Aziz)
Find u € U : b(u,v) = I(v) for Vv e V
@ Choose trial subspace Uy, = span{e;j} C U with good approx.
props. (Céa)
(5] Approxmately compute optimal test space: Find
- Uy — V), where V), C V DG (not globall)
computat|ona||y convenient” such that
(Thuh, \7/,)\/ = b(uh, \7;,) for Vv, € \7;,
Ty is injective on Uy,
Q Set Vj, = span{tj}, tj := Tej (t; basis since T} injectivel)
@ Solve symmetric positive definite system (also for asym.
b(,)l) P



Introduction

. approx. issues for wave propagation

@ Ig. numerics on wave propagation (high frequ.) "polluted", ie
for exact/approx. sols. u € U, u, € U, one has

o= uilly — oy o 1e=wnllu 4y = a6y K% (KRY
~—

[l ity Jully Y
e Typically: best. approx. error small if kh small (enough
elements per wavelength)
e Typically: =1
e Typically: num. approx. extremely expensive (high frequ.
problems)
J¥U
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Introduction

Motivation

Standard technology results

© free of pollution, ie. 5 =0 for 1D
@ reduced pollution (8 > 0) for higher dims.
© No general knowledge about ~

Why DPG methodology?

Application on 1D wave propagation gives PG-method that is

© free of pollution, ie. 5 =0
@ AND has vy =10
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Petrov-Galerkin method with optimal test norm

Section 2

Petrov-Galerkin method with optimal test norm
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Petrov-Galerkin method with optimal test norm

Abstract setting

For this presentation assume the real setting
e U, V Hilbert spaces
e (u,v) € Ux V — b(u,v) € R cont. bilinear form
e Cont. linear form | € V*
@ Abstract variational problem
Find u € U: b(u,v) = I(v) for Vv € V (1)
@ Operator notation
B : U — V* such that Bu(v) = b(u,v) for Vu e U,v € V
B* : V — U* such that B*v(u) = b(u,v) for Vu e U,v € V
@ Assume B bijection with cont. inverse

B~':V* = U (Reminder: (B*)"! = (B7!)") JXY

\\\\\\\\\\\\\\

Ludwig Mitter DPG time-harmonic 1D wave



Petrov-Galerkin method with optimal test norm

The optimal test space norm

Definition (Optimal test norm)

b
Ivlly = sup P gy e v
uel HUHU
e B* bijection = ||.||,, equivalent norm on V

o |.||,, generated by inner product
(w,v)y = b(RalB*W, v)
with Ry : U — U* Riesz operator
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Petrov-Galerkin method with optimal test norm

The optimal test functions

o Let Uy =span{ej:j=1,--- ,N} C U fin.-dim.
@ Define T: U — V via

(Tu,v)y = b(u,v) for Vv e V
e Trial basis function ¢;
e Optimal test basis function t; := Tej € V
o Optimal discrete test space

Vy:i=span{tj:j=1,--- , N} CV
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Petrov-Galerkin method with optimal test norm

The optimal test functions

e PG-scheme for (1)
Find uny € Uy : b(un, vy) = I(vy) for Vvy € Vy - (2)

@ From previous presentations:

Lemma ([DemGop, 2011])

u—u = inf |lu—w
Ju=unlle = infflu—wale
|b(u, v)|

vev Ivily

lullg = sup
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Petrov-Galerkin method with optimal test norm

The optimal test functions

e Since optimal test norm ||.||,, in def. of ||.||z one has

lulle =llully forVue U

( = u—unlly = inf v~ wnlly forvue U)
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Petrov-Galerkin method with optimal test norm

The error representation function

(2) is sym. pos. def.

Error ey := u — up can be computed for given uy

Find Tey € V : (Ten, v)y =b(u — up, v)
=I(v) — b(up, v) for Vv € V

hm.
Therefore: [ley|, = llenllg = I Tenlly

Authors call Tey error representation function
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Petrov-Galerkin method with optimal test norm

Equivalent test norms

@ ||.||, inconvenient for practical computations
o IDEA: Replace ||.||,, with equivalent norm |||,
@ Assume ||.||; generated by computable inner prod. (.,.)y
@ New PG-scheme with solution iy
@ Now: iy best approximation wrt.
Julg = sup 122
vev Ivlly

ig. [[ullg # llully BUT
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Petrov-Galerkin method with optimal test norm

Equivalent test norms

Assume Cy, G > 0 with

Glivilg <livily < Glivily for Vv eV

Then one has

G
— inf flu—wnly

u—a < i
|| NHU— Cl U

WANT:C;/C, to be (by designing ||.||/)
@ as small as possible

@ independent of problem parameters (eg. wavenumber k) J¥U
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Petrov-Galerkin method with optimal test norm

Practicalities

@ Application of T globally does not yield practical method
@ — DPG-method: Application of T locally

e V are discont. functs.
o (.,.)v locally computable

© — Approximate local problems "suitably" by Ty

Ludwig Mitter DPG time-harmonic 1D wave



Petrov-Galerkin method with optimal test norm

Practicalities

DPG methodology

@ Assume partitioning of computational domain Q into mesh
elements {K}

@ Test functions in broken test space

V = Vppe = [ VI(K)
K

e Optimal (.,.)y ig. NOT local
o FIND: "localizable" (.,.)y, ||.|[y such that

2 2
vy = ZHVKH\”/ for Vv € V
K

@ (= LOCALIZED error representation fnct. for adaptivity) — s



A model time-harmonic transport problem

Section 3

A model time-harmonic transport problem

XY
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A model time-harmonic transport problem

Model time-harmonic transport problem

Simplified 1D time-harmonic wave propagation problem

ikp + p' =0in (0,1)
P(0) =po

Exact solution

ikx

p(x) = poe™
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A model time-harmonic transport problem

STEP 1: Conforming V-setting (spectral mehtod)

o V:=.710,1)
o U:=2?%0,1)xC
o Variational formulation

Find (p,B) € U: b((p.£),) = poq(0) for Yg e V. (3)

where

b((p, B, q) = — /01 p(ikq + q') + pq(1)

@ Flux unknown p € C J¥U
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A model time-harmonic transport problem

STEP 1: Optimal norm and inner product

o Choose:
AN (12 2 ~
(P, DI == [lpll5, 0.1y + 1B

@ Optimal test norm:

” b((p, 5. 9)]
qlly = sup —r—xi
v (p,p)eU H(PaP)HU

@ One has ,
laliy = llika + ¢'l[o .1y + la(1)

@ Inner prod. generating this norm:

(g, r)v = (ikg + q', ikr + r')o,(0,1) + q(1)r(1) Jxu
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A model time-harmonic transport problem

STEP 1: discretization

@ Trial space discretization: Uy = U, :=Pp(0,1) x C
e Test space discretization: Vy = V, via T:
for Ve € Uy the function g = Te € V'solves

Findg=Tee V:

(ikg+ g, ikr + ') 0,1y + q(1)r(1) = b(e, r) for Vr € V
e PG-scheme for (3)

Find uy € Uy @ b(un, vy) = I(vy) for Vvy € Vy - (4)

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 1: discretization

@ Know by theorem:

lu—unlly= inf |lu—wyl|, for Vue U
wy€E Uy

e — explicit computation

2 a A 12
lp— PNH07(0,1) + 1P — Anl

, ) o
= inf p— wy +p — Wy
(WNv‘//\\/N)GUN || HO,(O,]_) | |

= inf HP—WNH?J 0,1
WNGUN 7( b )

e = py coincides with .£2(0, 1)-orthog. proj. of pin pols. Jywu
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A model time-harmonic transport problem

STEP 2: An intermediate method

Now: Uy discont. functs.

Q=(0,1)
O=xp<x3 < - <x_1<x<--<xp=1
Set elements K; := (xj_1, X;)

Prescribe poly. degr. on Kj:

Ly ={w s w|, € Py (K))}
UN EUhp = L%p x C
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A model time-harmonic transport problem

STEP 2: An intermediate method

@ Change inner product on V to

STEP 1: (q,r)v = (ikq + 4, ikr 4 r')o,0,1) + q(1)r(1)

. . 1
STEP 2: (q,r)y = (ikq + q', ikr + f/)o,(o,l) + E(q’ r)o,(0,1)

|.Ily is equivalent to |.||,, with

G =(2-v2)'2,G=(2+v2)'"?)

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 2: An intermediate method

Definition
Call g global optimal test function:<=- optimal test function
for (p, p) € Uhp, ie. g € #1(0,1) such that

1
()5 = _/ p(kr F7) + pr(L) for Vr € #(0,1)
0

@ Set Vy = \7,,,, to span of all glob. opt. test functs for all
(pu ﬁ) € Uhp-
o Intermediate method Find (3kp, Prp) € Unp :

1
— | Bro(ika + ') + Prpa(1) = poqa(0) for Vg € Vj
| ool )+ D = o0 b avu

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 2: An intermediate method

Theorem (Error estimate)

inf2 llp— Whp”o,(o,l)
PE hp

1/2
2442

p—p < | —=

|| ”0,(0,1) <2—\@> W

indep. of k!
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A model time-harmonic transport problem

STEP 3: The DPG method

@ Method of STEP 2 not practical: Optimal test space Vjy
global problem

o STEP 3: V = Vppg = ]_[J’-’:l V(Kj), V(K)) = j‘fl(KJ)
o DPG variational formulation

Find (p, p) € U := £%(0,1) x C" such that

n
- Z p(ikq; + q;) + bjlql; = Poq1(0) for Vg € Vppg

Jj=1
=1b<(p,ﬁ)7q)
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A model time-harmonic transport problem

STEP 3: The DPG method

@ Jumps:

I qi(xj) — gi+1(x) if j=1,--- ,n—1
lq]; = {an(lj) ifjJ: i J

o Fluxes at element interfaces: p = (p1,- -, Pn)
@ Choose:

n
A2 2 b: |2
(e, B)I1% = llpl5 01y + DA
j=1

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 3: The DPG method

@ Obtain:
n
2 . 2 2
lalVpee = D likaj + a5 + el
j=1
n JE—
(q7 r)VDPG = Z(ikqj + qj'? ikrj + ’]{)0,}9 + [Q]j[r]j
j=1

@ Does not satisfy the localization property!
e — replace with norm that does

n
_ 1
lally =" llike; + afllo.., + 5 lasllg
j=1
n

. . 1
(.1 =Y (kaj + aj. ikt + o + 5 (@) o, JER
=1
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A model time-harmonic transport problem

STEP 3: The DPG method

@ Observe: Same norm as in STEP 2, when applied to
q € #0,1)

o Discrete trial space: Up, = L%p xC"c U

e Optimal test space computed with (.,.)
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A model time-harmonic transport problem

STEP 3: The DPG method

Let L%p = span{p,}, p; with support only on ONE element.
Basis of Up, = span{(p/, ém)}, em = (dim)7_, € C"

Test functions can now be LOCALLY computed —

local optimal test functions

p; supported on K; = ®© local optimal test function g for
trial basis (ps,0) supported on K; only and satisfies

1
2
=— / ' pi(ikr + r") for Vr € V(K;)

G—1

(ikq; + qj, ik + r{)o.k; + 5 (4, 17)o.k;

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 3: The DPG method

e ® Local optimal test function g corresponding to (0, &) is
supported on K; U K11 only and satisfies for Vr € Vppg

. . 1
(ika; + g, ikr + 7)o,k + 5(aj 5ok = ri()

. . 1
(ikGj+1 + Gjyrs ikr41 + 1o ky + E(qj+17 rj+1)0,K;11

= —rj+1(xj+1)
e SET: Vi = Vj, = span{these optimal test functs. ® ®}

e Vi C Vpps

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 3: The DPG method

The DPG method

Find (php, p™) € Upp such that

—Z/ pho(ika; + a75) + ;" [ql; = poqu(0) for ¥q € Vi,
Xji—1

nnnnnnnnnnnnnn
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A model time-harmonic transport problem

STEP 3: The DPG method

\v/hp C Vip (= Pnp = Php)

which immediately implies

Theorem (Error estimate)

inf —w,
Whpeljp Hp thO’(O’l)

1/2
2+V2
1P = Prpllo,0.1) < <2_\@>

indep. of k!
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A model time-harmonic transport problem

NUMERICS

NUMERICS: What the authors did

@ Higher order approximation approximating optimal test
functions spanning the discrete test space Vj,

e IC: pp =1
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A model time-harmonic transport problem

NUMERICS

Example 1: The One-Element-Case

@ As expected: no distinction between conforming/DPG
methods

@ Observation: “Higher enrichment” gives better approx. of
optimal test func. (more comp. effort)

o Cholesky fact. for loc. sys. (effort about (p + Ap)3)
o Comp. cost of loc. sys. negligible compared to glob. sys.
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A model time-harmonic transport problem

kh=2.0m p = 4, test p = 10, energy error = 0,068754

— exact
== L, projection, L, error = 0.06875
DPG, L, error = 0.06875

06 08 1.0
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A model time-harmonic transport problem

kR =16.0m, p = 28, test p = 34, energy error = 0.039817

0o

plx)

—0.5]

— exact
== I, projection, L, error = 0.04015
DPG, L, error = 0.04015

40 0.2 0.4 0.6 0.8 Lo
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DPG solution error

A model time-harmonic transport problem

kh=32m, p = 54

o.
= energy error
N =8 [, error
.. best approximation L, error
0.05] N ~
L
0.04] 7\"‘-_,,__
........ e . B et e i e e e e
0.03
0.02
0.01
° ] 3 i B B
Ap

JXU
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A model time-harmonic transport problem

NUMERICS

Example 2: The 4-Element-per-Wavenumber-Case

e Observation: very good .£?(0,1) stability (as indicated by
thm., regardless of k)

@ Plot: Ratio of DPG error to best approx. error as k is
increased

o Ratio approaches a k-independent val. (close to 1)
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A model time-harmonic transport problem

kh =057, p=1,testp =7, energy error = 0.065227

- g
" \t. .D'
.
> & g
- Ry 7
- "
- K
As v" s,
C a By
A
) 4 e
. Py 3
=4
/e /e
4
- . %
> - -,
S’ )
.,
s ~ -
5 -, s
,’ .\ o'
-1.0 y 7 Y 3
L LRt — exact
- L, projection, L, error = 0.088767
DPG, L, error = 0.088774
135 0.2 0.4 0.6 0.8 1.0
T
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A model time-harmonic transport problem

kh=0.57, p = 1, test p = 7, energy error = 0.065301

AR AN
LU

plz)

. . voojE|— exact
== L, projection, L, error = 0.088767
=« DPG, L, error = 0.088767
T 0.2 0.4 0.6 08
v

10
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A model time-harmonic transport problem

Four linear elements per wavelength

1.00015|

1.00010

1.00005

1.00
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The Helmholtz model problem

Section 4

The Helmholtz model problem
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The Helmholtz model problem

Helmholtz model problem

Coupled 1D Helmholtz problem
k2 4+ =0in Q
cp

ikcpu +p' =0 € Q
u(0) =up
p(1) =cpu(1)

Exact solution

ikx

u(x) = uge™ p(x) = cpu(x)
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The Helmholtz model problem

STEP 3: The DPG method

2 2
|u— uhp”o,(o,1) +|lp— Php”o,(o,1)
<C inf

Whp,shpeth

2
c_ \/5+\/§+\/3+\/§

2 2

2 2
) lu— Whp”o7(o71) =+ | = shP”o7(o,1)

indep. of k!
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Conclusion

Section 5

Conclusion
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Conclusion

This presentation answers:
© How does one design a norm on the test space V to
minimize the discretization error in a given trial norm on U?
(also for multi.dim.)
@ How to localize the resultant test norm without losing uniform
stability? (also for multi.dim.)

JXU
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Conclusion

DPG Method COMPETITIVE?

@ Burden of dealing with small parameter has been moved to the
problem of finding the optimal test functions

e DPG extremely stable compared to trad. techniques

@ DPG introduces add. dofs fluxes: n elements of order p per
wavelenth for domain of m wavelengths
o DPG: 2(p+ 1)mn + 2mn dofs (stat. cond. 2mn dofs)
o Conforming: pmn (stat. cond. mn dofs)

e — DPG competitive for large wavenumbers only!
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Conclusion
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