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Ideal Testfunctions

For the problem: find u ∈ U satisfying:

b(u, v) = l(v) ∀v ∈ V

the opterator T : U 7→ V is defined as:

(Tw , v)V = b(w , v) ∀v ∈ V

for a chosen finite dimensional subspace Uh of the trial space U the
corresponding ideal test functions are defined as follows:

Vh = T (Uh)
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Ideal/Practical DPG Method

This leads to the ideal DPG method:

find uh ∈ Uh : b(uh, v) = f (v) ∀v ∈ Vh = T (Uh)

computing Vh leads to an infinite dimensional problem. A numerically
cheaper approach is to first approximate V by a finite dimensional
subspace V r . We approximate T by T r :

(T rw , v)V = b(w , v) ∀v ∈ V r

now the corresponding nearly optimal test functions are

V r
h = T r (Uh)

And this leads to the practical DPG method:

find urh ∈ Uh : b(urh, v) = l(v) ∀v ∈ V r
h = T r (Uh)
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Analysis in the abstract setting

Theorem Under the assumptions:

{w ∈ U : b(w , v) = 0 ∀v ∈ V } = {0} (1)

∃C1 : C1||v ||V ≤ supw∈U
b (w , v)

||w ||U
, ∀v ∈ V (2)

∃C2 : b(w , v) ≤ C2||w ||U ||v ||V (3)

and the existence of a linear operator Π : V 7→ V r such that:

b(w , v − Πv) = 0 ∀w ∈ Uh (4)

||Πv ||V ≤ CΠ||v ||V (5)

the problem is well posed and

||u − urh||U ≤
C2CΠ

C1
infw∈Uh

||u − w ||U

M. Mandlmayr (JKU) DPG January 9, 2018 8 / 25



Proof:logical structure

C1||v ||V ≤ supw∈U
b (w , v)

||w ||U
=⇒ C1||w ||U ≤ supv∈V

b (w , v)

||v ||V

C1||w ||U ≤ supv∈V
b (w , v)

||v ||V
and Π =⇒ C1

CΠ
||w ||U ≤ supv∈V r

b (w , v)

||v ||V
C1

CΠ
||w ||U ≤ supv∈V r

b (w , v)

||v ||V
and T r =⇒ C1

CΠ
||w ||U ≤ supv∈V r

h

b (w , v)

||v ||V
With (1), (3) and the last line the conditions of Babuska Aziz are fullfilled
and the result follows.
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Some remarks

Under the assumptions of the previous theorem the operator
T r : Uh 7→ V r is injective. That means:

dim(V r
h ) = dim(Uh).

One can also think about the condition number of the stiffness
matrix. Let Bi be a basis for Uh. Moereover let x̄ =

∑
i xiBi the basis

expansion of any x̄ . If now λ0, λ1 are positive number such that:

λ0||x ||2l2 ≤ ||x̄ ||U ≤ λ1||x ||2l2 ∀x̄ ∈ Uh

The spectral condition number κ(S) can be estimated:

κ(s) ≤ λ1

λ0

C 2
2C

2
Π

C 2
1
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Infinite dimensional spaces

For V = Rn, we denote L2(Ω,V) the vector valued function whose
components are in L2(Ω). We set the trial and test spaces as:

U = L2(Ω,V)× L2(Ω)× H
1
2

0 (∂Ωh)× H−
1
2 (∂Ωh)

V = H(div ,Ωh)× H1(Ωh)

where

H
1
2

0 (∂Ω) := {η ∈ ΠKH
1
2 (∂K ) : ∃w ∈ H1

0 (Ω) : η|∂K = w |∂K ∀K ∈ Ωh}

H−
1
2 (∂Ω) := {η ∈ ΠKH

− 1
2 (∂K ) : ∃q ∈ H(div ,Ω) : η|∂K = q·n|∂K ∀K ∈ Ωh}
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Norms

||(σ, u, û, σ̂n)||2U = ||σ||2Ω + ||u||2Ω + ||û||2
H

1
2 (∂Ω)

+ ||σ̂||2
H− 1

2 (∂Ω)

Here the traces must come from a global H1(Ω) and the fluxes from a
global H(div ,Ω) function.

||(τ, v)||2V = ||τ ||2H(div ,Ωh) + ||v ||2H1(Ωh)
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Ultraweak formulation

Find ū := (σ, u, û, σ̂n) ∈ U such that:

b(ū, v̄) = l(v̄) ∀v̄ = (τ, v) ∈ V

,with

b(ū, v̄) = (σ, τ)Ω− (u, div τ)Ωh
+ 〈û, τ · n〉∂Ωh

− (σ, grad v)Ωh
+ 〈v , σ̂n〉∂Ωh

l(v̄) = (f , v)Ω
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Finite dimensional spaces

We first define:

Pp(∂K ) := {µ : µ|F ∈ Pp(F ) ∀F ∈ ∆n−1(K )}

where ∆n−1(K ) are the n − 1 dimensional simplexes of K

P̃p(∂K ) := Pp(∂K ) ∩ C 0(∂K )
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Finite dimensional spaces

Now we can define Uh := {(σ, u, û, σ̂n) ∈ U :

σ|K ∈ Pp(K ,V)

u|K ∈ Pp(K )

û|∂K ∈ P̃p+1(∂K )

σ̂n|∂K ∈ Pp(∂K )

∀ K ∈ Ωh}
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Finite dimensional spaces

The only thing left to be choosen is

V r := {(τ, v) ∈ V : τ |K ∈ Pr (K ,V), v |K ∈ Pr (K ) ∀K ∈ Ωh}

with r ≥ p + N
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Analysis of the Laplace equation

Our job now is to check all the conditions of our theorem. The first three
conditions were already shown, because they are sufficient for the ideal
DPG method. Therefore, we only have to construct the operator Π. This
operator will be constructed in the form:

Πv̄ = (Πdiv
p+2τ,Π

grad
r v)
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Analysis of the Laplace equation

Theorem

Let r ≥ p + N then for every v ∈ H1(K ) there is a unique

Π0
r v ∈ Bgrad

r (K ) := {pr ∈ Pr (K ) : pr |E = 0 ∀E ∈ ∆n−2(K )} satisfying:

(Π0
r v − v , qp−1)K = 0 ∀qp−1 ∈ Pp−1(K )

(Π0
r v − v , µp)∂K = 0 ∀µp ∈ Pp(∂K )

||Π0
r v ||K + hK ||grad Π0

r v ||K ≤ C (||v ||K + hK ||grad v ||K )
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Analysis of the Laplace equation

Theorem

Let r ≥ p + N. Define Πgrad
r v = Π0

r (v − v̄) + v̄ , where v̄ |K = |K |−1
∫
K v .

Then:

(Πgrad
r v − v , qp−1)K = 0 ∀qp−1 ∈ Pp−1(K )

(Πgrad
r v − v , µp)∂K = 0 ∀µp ∈ Pp(∂K )

||Πgrad
r v ||H1(K) ≤ C ||v ||H1(K)
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Analysis of the Laplace equation

Theorem

There exists an operator Πdiv
p+2 : H(div ,K ) 7→ Pp+2(K ,V) such that for

every τ ∈ H(div ,K ), we have:

(Πdiv
p+2τ, qp)K = (τ, qp)K ∀qp ∈ Pp(KV)

〈Πdiv
p+2τ · n, µp+1〉∂K = 〈µp+1, τ · n〉 1

2
,∂K ∀µp+1 ∈ P̃p+1(∂K )

||Πdiv
p+2τ ||H(div ,K) ≤ C ||τ ||H(div ,K)

This proves the conditions of our general theorem and therefore the
approximation is as good as the bestapproximation.
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Remarks and Conclusions

The discrete space V r can also be chosen a little bit weaker namely the
previous results can also be obtained by using:

Vr = {(τ, v) ∈ V : τK ∈ Pp+2(K ,V), v |K ∈ Pp+N(K ), ∀ ∈ Ωh}

For h being the maximal diameter of all K one can show

||ū − ūh||U ≤ Chs
(
||u||Hs+1(Ω) + ||σ||Hs+1(Ω)

)
for all 1

2 < s ≤ p + 1.
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Remarks and Conclusions

Proof: By the abstract theorem we obtain:

||ū − ūh||U ≤
C2CΠ

C1
infw∈Uh

||ū − w ||U

with

||ū−w ||U = ||σū − σw ||2Ω︸ ︷︷ ︸
standard

+ ||uū − uw ||2Ω︸ ︷︷ ︸
standard

+ ||ûū − ûw ||2
H

1
2 (∂Ω)︸ ︷︷ ︸

not standard

+ ||σ̂ū − σ̂w ||2
H− 1

2 (∂Ω)︸ ︷︷ ︸
not standard
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Remarks and Conclusions

Let Ωh be a quasiuniform tetrahedral mesh, r as above. Then the spectral
condition number of the stiffness matrix S of the DPG method can be
estimated by:

κ(S) ≤ Ch−2
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