Analysis of the practical DPG Method

M. Mandlmayr

Supervisor:
o. Univ.-Prof. Dipl.-Ing. Dr. Ulrich LANGER

January 9, 2018

Overview

(1) Ideal Testfunctions
(2) Ideal/Practical DPG Method
(3) Analysis in the abstract setting

4 Laplace Equation

(1) Ideal Testfunctions

(2) Ideal/Practical DPG Method

(3) Analysis in the abstract setting

4 Laplace Equation

Ideal Testfunctions

For the problem: find $u \in U$ satisfying:

$$
b(u, v)=I(v) \quad \forall v \in V
$$

the opterator $T: U \mapsto V$ is defined as:

$$
(T w, v)_{v}=b(w, v) \quad \forall v \in V
$$

for a chosen finite dimensional subspace U_{h} of the trial space U the corresponding ideal test functions are defined as follows:

$$
V_{h}=T\left(U_{h}\right)
$$

(1) Ideal Testfunctions

(2) Ideal/Practical DPG Method

(3) Analysis in the abstract setting

4. Laplace Equation

Ideal/Practical DPG Method

This leads to the ideal DPG method:

$$
\text { find } u_{h} \in U_{h}: \quad b\left(u_{h}, v\right)=f(v) \quad \forall v \in V_{h}=T\left(U_{h}\right)
$$

computing V_{h} leads to an infinite dimensional problem. A numerically cheaper approach is to first approximate V by a finite dimensional subspace V^{r}. We approximate T by T^{r} :

$$
\left(T^{r} w, v\right)_{v}=b(w, v) \quad \forall v \in V^{r}
$$

now the corresponding nearly optimal test functions are

$$
V_{h}^{r}=T^{r}\left(U_{h}\right)
$$

And this leads to the practical DPG method:

$$
\text { find } u_{h}^{r} \in U_{h}: \quad b\left(u_{h}^{r}, v\right)=I(v) \quad \forall v \in V_{h}^{r}=T^{r}\left(U_{h}\right)
$$

(1) Ideal Testfunctions

(2) Ideal/Practical DPG Method

(3) Analysis in the abstract setting

4 Laplace Equation

Analysis in the abstract setting

Theorem Under the assumptions:

$$
\begin{gather*}
\{w \in U: b(w, v)=0 \quad \forall v \in V\}=\{0\} \tag{1}\\
\exists C_{1}: C_{1}\|v\| v \leq \sup _{w \in U} \frac{b(w, v)}{\|w\|_{u}}, \forall v \in V \tag{2}\\
\exists C_{2}: b(w, v) \leq C_{2}\|w\|_{u}\|v\|_{v} \tag{3}
\end{gather*}
$$

and the existence of a linear operator $\Pi: V \mapsto V^{r}$ such that:

$$
\begin{gather*}
b(w, v-\Pi v)=0 \quad \forall w \in U_{h} \tag{4}\\
\|\Pi v\| v \leq C_{\Pi}\|v\| v \tag{5}
\end{gather*}
$$

the problem is well posed and

$$
\left\|u-u_{h}^{r}\right\| u \leq \frac{C_{2} C_{\Pi}}{C_{1}} i n f_{w \in U_{h}}\|u-w\| u
$$

Proof:logical structure

$$
\begin{aligned}
& \qquad C_{1}\|v\|_{V} \leq \sup _{w \in U} \frac{b(w, v)}{\|w\|_{u}} \Longrightarrow C_{1}\|w\|_{u} \leq \sup _{v \in V} \frac{b(w, v)}{\|v\|_{V}} \\
& \qquad C_{1}\|w\|_{u} \leq \sup _{v \in V} \frac{b(w, v)}{\|v\| v} \text { and } \Pi \Longrightarrow \frac{C_{1}}{C_{\Pi}}\|w\|_{u} \leq \sup _{v \in V^{r}} \frac{b(w, v)}{\|v\|_{V}} \\
& \frac{C_{1}}{C_{\Pi}}\|w\|_{u} \leq \sup _{v \in V^{r}} \frac{b(w, v)}{\|v\| v} \text { and } T^{r} \Longrightarrow \frac{C_{1}}{C_{\Pi}}\|w\|_{u} \leq \sup _{v \in V_{h}^{r}} \frac{b(w, v)}{\|v\|_{V}} \\
& \text { With (1), (3) and the last line the conditions of Babuska Aziz are fullfilled } \\
& \text { and the result follows. }
\end{aligned}
$$

Some remarks

- Under the assumptions of the previous theorem the operator $T^{r}: U_{h} \mapsto V^{r}$ is injective. That means:

$$
\operatorname{dim}\left(V_{h}^{r}\right)=\operatorname{dim}\left(U_{h}\right)
$$

- One can also think about the condition number of the stiffness matrix. Let \mathcal{B}_{i} be a basis for U_{h}. Moereover let $\bar{x}=\sum_{i} x_{i} \mathcal{B}_{i}$ the basis expansion of any \bar{x}. If now λ_{0}, λ_{1} are positive number such that:

$$
\lambda_{0}\|x\|_{1^{2}}^{2} \leq\|\bar{x}\|_{u} \leq \lambda_{1}\|x\|_{1^{2}}^{2} \quad \forall \bar{x} \in U_{h}
$$

The spectral condition number $\kappa(S)$ can be estimated:

$$
\kappa(s) \leq \frac{\lambda_{1}}{\lambda_{0}} \frac{C_{2}^{2} C_{\Pi}^{2}}{C_{1}^{2}}
$$

(1) Ideal Testfunctions

(2) Ideal/Practical DPG Method

(3) Analysis in the abstract setting

4 Laplace Equation

Infinite dimensional spaces

For $\mathbb{V}=\mathbb{R}^{n}$, we denote $L^{2}(\Omega, \mathbb{V})$ the vector valued function whose components are in $L^{2}(\Omega)$. We set the trial and test spaces as:

$$
\begin{gathered}
U=L^{2}(\Omega, \mathbb{V}) \times L^{2}(\Omega) \times H_{0}^{\frac{1}{2}}\left(\partial \Omega_{h}\right) \times H^{-\frac{1}{2}}\left(\partial \Omega_{h}\right) \\
V=H\left(\operatorname{div}, \Omega_{h}\right) \times H^{1}\left(\Omega_{h}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
H_{0}^{\frac{1}{2}}(\partial \Omega) & :=\left\{\eta \in \Pi_{K} H^{\frac{1}{2}}(\partial K): \exists w \in H_{0}^{1}(\Omega):\left.\quad \eta\right|_{\partial K}=\left.w\right|_{\partial K} \quad \forall K \in \Omega_{h}\right\} \\
H^{-\frac{1}{2}}(\partial \Omega) & :=\left\{\eta \in \Pi_{K} H^{-\frac{1}{2}}(\partial K): \exists q \in H(\operatorname{div}, \Omega):\left.\eta\right|_{\partial K}=\left.q \cdot n\right|_{\partial K} \forall K \in \Omega_{h}\right\}
\end{aligned}
$$

Norms

$$
\left\|\left(\sigma, u, \hat{u}, \hat{\sigma}_{n}\right)\right\|_{U}^{2}=\|\sigma\|_{\Omega}^{2}+\|u\|_{\Omega}^{2}+\|\hat{u}\|_{H^{\frac{1}{2}}(\partial \Omega)}^{2}+\|\hat{\sigma}\|_{H^{-\frac{1}{2}}(\partial \Omega)}^{2}
$$

Here the traces must come from a global $H^{1}(\Omega)$ and the fluxes from a global $H(\operatorname{div}, \Omega)$ function.

$$
\|(\tau, v)\|_{V}^{2}=\|\tau\|_{H\left(d i v, \Omega_{h}\right)}^{2}+\|v\|_{H^{1}\left(\Omega_{h}\right)}^{2}
$$

Ultraweak formulation

Find $\bar{u}:=\left(\sigma, u, \hat{u}, \hat{\sigma}_{n}\right) \in U$ such that:

$$
b(\bar{u}, \bar{v})=I(\bar{v}) \quad \forall \bar{v}=(\tau, v) \in V
$$

,with

$$
\begin{gathered}
b(\bar{u}, \bar{v})=(\sigma, \tau)_{\Omega}-(u, \operatorname{div} \tau)_{\Omega_{h}}+\langle\hat{u}, \tau \cdot n\rangle_{\partial \Omega_{h}}-(\sigma, \operatorname{grad} v)_{\Omega_{h}}+\left\langle v, \hat{\sigma}_{n}\right\rangle_{\partial \Omega_{h}} \\
I(\bar{v})=(f, v)_{\Omega}
\end{gathered}
$$

Finite dimensional spaces

We first define:

$$
P_{p}(\partial K):=\left\{\mu:\left.\mu\right|_{F} \in P_{p}(F) \quad \forall F \in \Delta_{n-1}(K)\right\}
$$

where $\Delta_{n-1}(K)$ are the $n-1$ dimensional simplexes of K

$$
\tilde{P}_{p}(\partial K):=P_{p}(\partial K) \cap C^{0}(\partial K)
$$

Finite dimensional spaces

Now we can define $U_{h}:=\left\{\left(\sigma, u, \hat{u}, \hat{\sigma}_{n}\right) \in U\right.$:

$$
\begin{aligned}
\left.\sigma\right|_{K} & \in P_{p}(K, \mathbb{V}) \\
\left.u\right|_{K} & \in P_{p}(K) \\
\left.\hat{u}\right|_{\partial K} & \in \tilde{P}_{p+1}(\partial K) \\
\left.\hat{\sigma}_{n}\right|_{\partial K} & \in P_{p}(\partial K)
\end{aligned}
$$

$$
\left.\forall K \in \Omega_{h}\right\}
$$

Finite dimensional spaces

The only thing left to be choosen is

$$
V^{r}:=\left\{(\tau, v) \in V:\left.\tau\right|_{K} \in P_{r}(K, \mathbb{V}),\left.v\right|_{K} \in P_{r}(K) \forall K \in \Omega_{h}\right\}
$$

with $r \geq p+N$

Analysis of the Laplace equation

Our job now is to check all the conditions of our theorem. The first three conditions were already shown, because they are sufficient for the ideal DPG method. Therefore, we only have to construct the operator Π. This operator will be constructed in the form:

$$
\Pi \bar{v}=\left(\Pi_{p+2}^{d i v} \tau, \Pi_{r}^{\text {grad }} v\right)
$$

Analysis of the Laplace equation

Theorem

Let $r \geq p+N$ then for every $v \in H^{1}(K)$ there is a unique $\Pi_{r}^{0} v \in B_{r}^{\text {grad }}(K):=\left\{p_{r} \in P_{r}(K):\left.p_{r}\right|_{E}=0 \quad \forall E \in \Delta_{n-2}(K)\right\}$ satisfying:

$$
\left(\Pi_{r}^{0} v-v, q_{p-1}\right)_{K}=0 \quad \forall q_{p-1} \in P_{p-1}(K)
$$

$$
\left(\Pi_{r}^{0} v-v, \mu_{p}\right)_{\partial K}=0 \quad \forall \mu_{p} \in P_{p}(\partial K)
$$

$$
\left\|\Pi_{r}^{0} v\right\|_{K}+h_{K}\left\|\operatorname{grad} \Pi_{r}^{0} v\right\|_{K} \leq C\left(\|v\|_{K}+h_{K}\|\operatorname{grad} v\|_{K}\right)
$$

Analysis of the Laplace equation

Theorem

Let $r \geq p+N$. Define $\Pi_{r}^{\text {grad }} v=\Pi_{r}^{0}(v-\bar{v})+\bar{v}$, where $\bar{v}\left|K=|K|^{-1} \int_{K} v\right.$. Then:

$$
\begin{aligned}
\left(\Pi_{r}^{\text {grad }} v-v, q_{p-1}\right)_{K} & =0 \quad \forall q_{p-1} \in P_{p-1}(K) \\
\left(\Pi_{r}^{\text {grad }} v-v, \mu_{p}\right)_{\partial K} & =0 \quad \forall \mu_{p} \in P_{p}(\partial K) \\
\left\|\Pi_{r}^{\text {grad }} v\right\|_{H^{1}(K)} & \leq C\|v\|_{H^{1}(K)}
\end{aligned}
$$

Analysis of the Laplace equation

Theorem

There exists an operator $\Pi_{p+2}^{\text {div }}: ~ H(\operatorname{div}, K) \mapsto P_{p+2}(K, \mathbb{V})$ such that for every $\tau \in H(\operatorname{div}, K)$, we have:

$$
\begin{aligned}
\left(\Pi_{p+2}^{\text {div }} \tau, q_{p}\right)_{K} & =\left(\tau, q_{p}\right)_{K} \quad \forall q_{p} \in P_{p}(K \mathbb{V}) \\
\left\langle\Pi_{p+2}^{\text {div }} \tau \cdot n, \mu_{p+1}\right\rangle_{\partial K} & =\left\langle\mu_{p+1}, \tau \cdot n\right\rangle_{\frac{1}{2}, \partial K} \quad \forall \mu_{p+1} \in \tilde{P}_{p+1}(\partial K) \\
\left\|\Pi_{p+2}^{d i v} \tau\right\|_{H(d i v, K)} & \leq C\|\tau\|_{H(d i v, K)}
\end{aligned}
$$

This proves the conditions of our general theorem and therefore the approximation is as good as the bestapproximation.

Remarks and Conclusions

The discrete space V^{r} can also be chosen a little bit weaker namely the previous results can also be obtained by using:

$$
V_{r}=\left\{(\tau, v) \in V: \tau_{K} \in P_{p+2}(K, \mathbb{V}),\left.v\right|_{K} \in P_{p+N}(K), \quad \forall \in \Omega_{h}\right\}
$$

For h being the maximal diameter of all K one can show

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{u} \leq C h^{s}\left(\|u\|_{H^{s+1}(\Omega)}+\|\sigma\|_{H^{s+1}(\Omega)}\right)
$$

for all $\frac{1}{2}<s \leq p+1$.

Remarks and Conclusions

Proof: By the abstract theorem we obtain:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{u} \leq \frac{C_{2} C_{\Pi}}{C_{1}} i n f_{w \in U_{h}}\|\bar{u}-w\|_{u}
$$

with
$\|\bar{u}-w\|_{u}=\underbrace{\left\|\sigma_{\bar{u}}-\sigma_{w}\right\|_{\Omega}^{2}}_{\text {standard }}+\underbrace{\left\|u_{\bar{u}}-u_{w}\right\|_{\Omega}^{2}}_{\text {standard }}+\underbrace{\left\|\hat{u}_{\bar{u}}-\hat{u}_{w}\right\|_{H^{\frac{1}{2}}(\partial \Omega)}^{2}}_{\text {not standard }}+\underbrace{\left\|\hat{\sigma}_{\bar{u}}-\hat{\sigma}_{w}\right\|_{H^{-\frac{1}{2}}(\partial \Omega)}^{2}}_{\text {not standard }}$

Remarks and Conclusions

Let Ω_{h} be a quasiuniform tetrahedral mesh, r as above. Then the spectral condition number of the stiffness matrix S of the DPG method can be estimated by:

$$
\kappa(S) \leq C h^{-2}
$$

Literature

- J. Gopalakrishnan and W. Qiu. An analysis of the practical DPG method. Math. Comput., 83(286):537-552, 2014.

