Time Parallel Eddy-Current Solver

Martin Schwalsberger

Supervisor: Martin Neumüller

martin.schwalsberger@gmx.at

June 29, 2017

Martin Schwalsberger (JKU)

Image: Image:

Find *u* given $u(0) \in \mathbb{R}$

$$M_h u'_h(t) + K_h u_h(t) = f_h(t) \tag{1}$$

With K_h , $M_h > 0$ and symmetric Applying Implicit Euler yields:

$$-M_{h}u_{h}^{k} + (M_{h} + \tau_{k}K_{h})u_{h}^{k+1} = \tau_{k}f_{h}^{k+1}$$
(2)

For simplicity a uniform τ is chosen

Let
$$A_h := M_h + \tau K_h$$

We can rewrite the problem as linear system:

$$\begin{pmatrix} A_h & & \\ -M_h & A_h & & \\ & \ddots & \ddots & \\ & & -M_h & A_h \end{pmatrix} \begin{pmatrix} u_h^1 \\ u_h^2 \\ \vdots \\ u_h^m \end{pmatrix} = \begin{pmatrix} \tau f_h^1 + M_h u_h^0 \\ \tau f_h^2 \\ \vdots \\ \tau f_h^m \end{pmatrix}$$

We call this matrix L_{τ} We want to solve this iteratively in parallel (3)

Let D_{τ} be the block diagonal matrix of L_{τ} Then we define a Richardson scheme:

$$x_{k+1} = x_k + \omega D_{\tau}^{-1} (f - L_{\tau} x_k)$$
(4)

Good behavior for $\omega \in [0.5, 1)$ $\omega = 1$ is the same as sequential solving

An appropriate choice **smooths** the error, Easy hierarchical mesh \rightarrow Multigrid Methods We use the Richardson Smoother in a Multigrid Method:

- Apply smoother ν_1 -times
- $d = R(f L_{\tau}x)$
- Solve $L_{coarse}w = d$ recursively
- x = x + Pw
- Apply smoother ν_2 -times

Can be mostly executed in parallel, except for coarse grids

Geometry "Induction Furnace"

Figure: Geometry of the problem in Netgen

Martin Schwalsberger (JKU)

Eddy Currents

$$\sigma \frac{\partial E}{\partial t} + curl \mu^{-1} curl \ E = -\frac{\partial J_i}{\partial t}$$

Material parameters

- Copper Coil: $\sigma = 6 * 10^7 S/m$, $\mu = 1.2 * 10^{-6} H/m$
- Iron Core: $\sigma = 10^7 S/m$, $\mu = 6.3 * 10^{-3} H/m$ • Vacuum: $\sigma = 1S/m$, $\mu = 1.2 * 10^{-6} H/m$

Alternating current in copper-coil Homogeneous Dirichlet BC

- Implemented with MFEM
- Visualized with GL-Vis
- Implicit Euler scheme
- Works space-parallel
- Compatible with Neumüllers code

Figure: Intersection in the middle, surface fluxes visible

Martin Schwalsberger (JKU)

2

<ロ> (日) (日) (日) (日) (日)

Surface Flux 1

Figure: Intersection near the end of the iron core, surface fluxes still visible $\log 10^{-10}$

Martin Schwalsberger (JKU)

Time parallel method:

- Writing a multi-time-level system solver interface with MFEM support Implements A_{τ} and M_h
- Space Problem solved with PCG, and AMS-Preconditioner
- Integrating Neumüllers code
- Result: time & space parallel method with MPI

Used model:

- Random initial value (in space and time)
- Homogeneous BC and RHS
- Primitive mesh (technical problems)
- Two materials ("air", iron)
- Currently no visualization

Convergence & Scaling

Average convergence rate: 0.3 ± 0.05

Iterations: 18 Time Steps: 32 Degree of Freedom in Space: 13872

time / space	1	2	4	8	16	32	64
1	500.6	x	x	х	х	х	104.6
2	x	163.5	104.0	61	50.3	52.6	
4	x	83.6	52.5	32.4	28.8		
8	x	50.4	31.7	19.3			
16	x	36.2	22.0		11		
32	53.3	31.7					

Total processors is time-processors times space-processors.

Further work will:

- Solve the "induction-furnace" problem time-parallel
- Add space coarsening for speedup
- Run tests on Vulcan
- Resolve the case $\sigma = 0$
- Couple with heat equation
- Couple with heat equation and Stokes equation

The End

Image: A math a math

æ