# Time Parallel Eddy-Current Solver 

Martin Schwalsberger

Supervisor:<br>Martin Neumüller<br>martin.schwalsberger@gmx.at

June 29, 2017

## Overview

(1) Lecture Recap
(2) Model problem
(3) Time parallel

## Model Problem

Find $u$ given $u(0) \in \mathbb{R}$

$$
\begin{equation*}
M_{h} u_{h}^{\prime}(t)+K_{h} u_{h}(t)=f_{h}(t) \tag{1}
\end{equation*}
$$

With $K_{h}, M_{h}>0$ and symmetric Applying Implicit Euler yields:

$$
\begin{equation*}
-M_{h} u_{h}^{k}+\left(M_{h}+\tau_{k} K_{h}\right) u_{h}^{k+1}=\tau_{k} f_{h}^{k+1} \tag{2}
\end{equation*}
$$

For simplicity a uniform $\tau$ is chosen

## Big System

Let $A_{h}:=M_{h}+\tau K_{h}$
We can rewrite the problem as linear system:

$$
\left(\begin{array}{cccc}
A_{h} & & &  \tag{3}\\
-M_{h} & A_{h} & & \\
& \ddots & \ddots & \\
& & -M_{h} & A_{h}
\end{array}\right)\left(\begin{array}{c}
u_{h}^{1} \\
u_{h}^{2} \\
\vdots \\
u_{h}^{m}
\end{array}\right)=\left(\begin{array}{c}
\tau f_{h}^{1}+M_{h} u_{h}^{0} \\
\tau f_{h}^{2} \\
\vdots \\
\tau f_{h}^{m}
\end{array}\right)
$$

We call this matrix $L_{\tau}$
We want to solve this iteratively in parallel

## Richardson Scheme

Let $D_{\tau}$ be the block diagonal matrix of $L_{\tau}$
Then we define a Richardson scheme:

$$
\begin{equation*}
x_{k+1}=x_{k}+\omega D_{\tau}^{-1}\left(f-L_{\tau} x_{k}\right) \tag{4}
\end{equation*}
$$

Good behavior for $\omega \in[0.5,1)$
$\omega=1$ is the same as sequential solving

An appropriate choice smooths the error, Easy hierarchical mesh $\rightarrow$ Multigrid Methods

## Multigrid scheme

We use the Richardson Smoother in a Multigrid Method:

- Apply smoother $\nu_{1}$-times
- $d=R\left(f-L_{\tau} x\right)$
- Solve $L_{\text {coarse }} W=d$ recursively
- $x=x+P w$
- Apply smoother $\nu_{2}$-times

Can be mostly executed in parallel, except for coarse grids

## Geometry "Induction Furnace"



Figure: Geometry of the problem in Netgen

## PDE

$$
\sigma \frac{\partial E}{\partial t}+\text { curl } \mu^{-1} \text { curl } E=-\frac{\partial J_{i}}{\partial t}
$$

Material parameters

- Copper Coil: $\quad \sigma=6 * 10^{7} \mathrm{~S} / \mathrm{m}, \quad \mu=1.2 * 10^{-6} \mathrm{H} / \mathrm{m}$
- Iron Core: $\quad \sigma=10^{7} \mathrm{~S} / \mathrm{m}, \quad \mu=6.3 * 10^{-3} \mathrm{H} / \mathrm{m}$
- Vacuum:
$\sigma=1 S / m$,
$\mu=1.2 * 10^{-6} \mathrm{H} / \mathrm{m}$
Alternating current in copper-coil Homogeneous Dirichlet BC


## Implementation Details

- Implemented with MFEM
- Visualized with GL-Vis
- Implicit Euler scheme
- Works space-parallel
- Compatible with Neumüllers code


## Surface Flux 1



Figure: Intersection in the middle, surface fluxes visible

## Surface Flux 1



Figure: Intersection near the end of the iron core, surface fluxes still visible

## Implementation

Time parallel method:

- Writing a multi-time-level system solver interface with MFEM support Implements $A_{\tau}$ and $M_{h}$
- Space Problem solved with PCG, and AMS-Preconditioner
- Integrating Neumüllers code
- Result: time \& space parallel method with MPI

Used model:

- Random initial value (in space and time)
- Homogeneous BC and RHS
- Primitive mesh (technical problems)
- Two materials ("air", iron)
- Currently no visualization


## Convergence \& Scaling

Average convergence rate: $0.3 \pm 0.05$

Iterations: 18
Time Steps: 32
Degree of Freedom in Space: 13872

| time / space | 1 | 2 | 4 | 8 | 16 | 32 | 64 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 500.6 | $\times$ | $\times$ | $\times$ | $\times$ | $\times$ | 104.6 |
| 2 | $\times$ | 163.5 | 104.0 | 61 | 50.3 | 52.6 |  |
| 4 | $\times$ | 83.6 | 52.5 | 32.4 | 28.8 |  |  |
| 8 | $\times$ | 50.4 | 31.7 | 19.3 |  |  |  |
| 16 | $\times$ | 36.2 | 22.0 |  | 11 |  |  |
| 32 | 53.3 | 31.7 |  |  |  |  |  |

Total processors is time-processors times space-processors.

## Outlook

Further work will:

- Solve the "induction-furnace" problem time-parallel
- Add space coarsening for speedup
- Run tests on Vulcan
- Resolve the case $\sigma=0$
- Couple with heat equation
- Couple with heat equation and Stokes equation


## The End

