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Transmission problem

From M.Eigel and K.Sturm, Reproducing kernel Hilbert spaces and

variable metric algorithms in PDE constrained shape optimization,

2016

min
Ω

J(Ω) =

∫
D

|u − ud |2dx

s.t.− div(β+∇u) = f in Ω+

−div(β−∇u) = f in Ω−

u = 0 on ∂D

[u ] = 0, [β
∂u

∂n
] = 0 on ∂Ω+ ∩ ∂Ω−

where D ⊂ R2 bounded, Ω+ := Ω, Ω− := D\Ω, f , ud ∈ H1(D),

β =

{
β+ on Ω+

β− on Ω−
, β+, β− > 0
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Transmission problem

Deriving the variational formulation for the constraint yields∫
D

βΩ∇u · ∇v dx =

∫
D

fv dx ∀v ∈ H1
0 (D)

with βΩ := β+χ+ β−(1− χ), χ := χΩ.

The �nal problem formulation is

min
Ω

J(Ω) =

∫
D

|u − ud |2dx

s.t.

∫
D

βΩ∇u · ∇v dx =

∫
D

fv dx ∀v ∈ H1
0 (D)
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Revision

De�nition (Eulerian semi-derivative)

Let D ⊂ Rd open, J : Ξ ⊂ P(D)→ R be a shape function de�ned on

subsets of D. Let Ω ∈ Ξ and X ∈ C k(D,Rd ), k ≥ 1, be such that

Φt(Ω) ∈ Ξ for all t > 0 su�ciently small. Then the Eulerian

semi-derivative of J at Ω in direction X is de�ned by

dJ(Ω)(X ) := lim
t↘0

J(Φt(Ω))− J(Ω)

t

where Φt(Ω) is the �ow of X .
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Revision

De�nition (Shape di�erentiable)

Let the assumptions of the previous de�nition hold. Then J is said to be

shape di�erentiable at Ω if for some k ≥ 1 the Eulerian semi-derivative

dJ(Ω)(X ) exists for all X ∈ C k
0

(D,Rd ) and

X 7→ dJ(Ω)(X )

is linear and continuous on C k
0

(D,Rd ).
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Revision

Numerical tests with predetermined vector �eld
Without L2 projection
With L2 projection

Figure: Multipatch with the displaced circle
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Revision

Numerical tests with computed vector �eld with simple optimal domain

Figure: Plot of the steepest ascend, the initial shape and the optimal
shape(white line)
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Shape optimization

A descent direction for the model problem can be computed in four steps:

1 Computation of uh which solves∫
D

βΩ∇uh · ∇vh dx =

∫
D

fhvh dx ∀vh ∈ Vh ⊂ H1
0 (D)

2 Computation of ph which solves∫
D

βΩ∇vh · ∇ph dx = −
∫
D

2(uh − ud )vh dx ∀vh ∈ Vh ⊂ H1

0 (D)
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Shape optimization

3 Computation of a descent direction Xh such that

dJh(Ω)(Xh) < 0

as solution of the problem

(Xh, ϕh) = −dJh(Ω)(ϕh) ∀ϕh ∈Wh ⊂ H1
0 (D,R2)

where (., .) is any positive de�nite bilinear form on H1(D,R2)

4 Move the geometry in the direction of Xh
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Reproducing kernel Hilbert spaces

De�nition (Scalar reproducing kernel)

Let H be a Hilbert space of functions f : X → R. A bivariate function

k : X × X → R

is called scalar reproducing kernel for H if

1 k(·, x) ∈ H ∀x ∈ X
2 f (x) = (f , k(·, x))H(X ) ∀f ∈ H, ∀x ∈ X

k is called a radial scalar kernel if there exists a function γ : R→ R such

that for all x , y ∈ X , k(x , y) = γ(|x − y |)
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Reproducing kernel Hilbert spaces

Theorem

A Hilbert space of real valued functions H has a unique scalar reproducing

kernel ⇔ The point evaluation is a continuous and linear functional

A scalar reproducing kernel is symmetric and positive semi-de�nite

A scalar reproducing kernel for a Hilbert space of real valued functions

is unique
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Reproducing kernel Hilbert spaces

De�nition (Matrix valued reproducing kernel)

Let H be a Hilbert space of functions f : X → Rd . A bivariate function

K : X × X → Rd ,d

is called matrix valued reproducing kernel for H if

1 K (x , ·)a ∈ H ∀x ∈ X ,∀a ∈ Rd

2 a · f (x) = (a ⊗ δx)f = (f ,K (x , ·)a)H(X ,Rd ) ∀f ∈ H, ∀a ∈ Rd

K is called a radial matrix kernel if there exists a function γ : R→ Rd ,d

such that for all x , y ∈ X , K (x , y) = γ(|x − y |)
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Reproducing kernel Hilbert spaces

Theorem

A Hilbert space of vector valued functions H has a unique matrix valued

reproducing kernel ⇔ The evaluation map

H(X ,Rd )→ R,
f 7→ (a ⊗ δx)f = f (x) · a

is continuous.

A matrix valued reproducing kernel need not to be symmetric

If a matrix valued reproducing kernel is symmetric it is also positiv

semi-de�nite

A Hilbert space of vector valued functions H with a reproducing

matrix kernel is called (vvRKHS)
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Shape optimization

In vvRKHS we have explicit formulas for the descent direction which can

be computed in four steps:

1 Computation of uh which solves∫
D

βΩ∇uh · ∇vh dx =

∫
D

fhvh dx ∀vh ∈ Vh ⊂ H1
0 (D)

2 Computation of ph which solves∫
D

βΩ∇vh · ∇ph dx = −
∫
D

2(uh − ud )vh dx ∀vh ∈ Vh ⊂ H1
0 (D)

( JKU Linz ) Project seminar SS17 June 27, 2017 19 / 43



Shape optimization

3 Computation of a descent direction Xh evaluated at y with

(Xh)(y) =
d∑

i=1

(∫
D

S1(x) : ∂Ki (x , y) + S0(x) · Ki (x , y)dx

−
∫
∂D

S1(s)ν(s) · Ki (x , y)ds
)
ei

where ei denotes the i-th unit vector in Rd ,

S1 := S1(uh, ud , ph) ∈ L1(D,Rd ,d ), S0 := S0(uh, ud , ph) ∈ L1(D,Rd )

4 Move the geometry in every evaluation point in the direction of Xh
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Considered optimal domains

3 di�erent optimal domains

(a) (b) (c)
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Standard approach

Follow the previous 4 step algorithm to obtain a descent direction

Various bilinear forms

(a) 725 iterations, Bilinearform
b(Xh, ϕh) = (Xh, ϕh)H1 , J =
1.2e-5

(b) 1000 iterations, Bilinearform
b(Xh, ϕh) =
(Xh, ϕh)L2 + 10(∇Xh,∇ϕh)L2 ,
J = 4.16e-6, J = 1.15e-5 after
725 iterations
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Standard approach

Change of the bilinear form from

b(Xh, ϕh) = (Xh, ϕh)L2 + 10(∇Xh,∇ϕh)L2 to

b(Xh, ϕh) = (Xh, ϕh)L2 + 0.1(∇Xh,∇ϕh)L2 during the iteration process

leads to

Figure: J = 3.33e-7
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Standard approach

(a) Bilinearform
b(Xh, ϕh) = (Xh, ϕh)H1 , J =
0.0001904

(b) Bilinearform b(Xh, ϕh) =
(Xh, ϕh)L2 + 0.1(∇Xh,∇ϕh)L2 ,
J = 0.0011
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Standard approach

(a) Bilinearform b(Xh, ϕh) =
(Xh, ϕh)L2+0.001(∇Xh,∇ϕh)L2 ,
J = 0.00092

(b) Bilinearform
b(Xh, ϕh) = (Xh, ϕh)L2 ,
J = 0.0015
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Standard approach

For the pure translation problem I got

Figure: Bilinearform b(Xh, ϕh) = (Xh, ϕh)H1
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Heuristic ansatz

Idea from Volker Schulz and Martin Siebenborn from Trier

The shape derivative depends only on perturbations on the interface

Set all entries on rhs to 0 which lie not on the interface

Then solve the auxiliary problem with the new rhs

Figure: No descent in the shape functional after 3 iterations,
b(Xh, ϕh) = (Xh, ϕh)H1 , J = 0.047 (Standard: 1.2e-5)
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Heuristic ansatz

(a) Bilinearform b(Xh, ϕh) =
(Xh, ϕh)L2 + 10(∇Xh,∇ϕh)L2 ,
J = 0.053 (Standard: 4.16e-6)

(b) Bilinearform b(Xh, ϕh) =
(Xh, ϕh)L2 + 0.1(∇Xh,∇ϕh)L2 ,
J = 0.066
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Heuristic ansatz

Change of the bilinear form from

b(Xh, ϕh) = (Xh, ϕh)L2 + (∇Xh,∇ϕh)L2 to

b(Xh, ϕh) = (Xh, ϕh)L2 + 0.1(∇Xh,∇ϕh)L2 during the iteration

process leads to

Figure: J = 0.016
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Heuristic ansatz

Conclusion

Some extra work before the auxiliary problem can be solved

Minimum in only a few iterations

Shape functional remains larger

⇒ Does not really pay o� in case of IgA
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Shape optimization in vvRKHS

2 radial kernels tested
1 Gauss kernel

K (x , y) = (e−(|x−y |2)/σ)I

2 C 2 Wendland kernel

K (x , y) = (1− |x − y |
σ

)4+(4
|x − y |
σ

+ 1)I

where σ is a scaling factor to ensure a change of the metric during the

iteration process
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Shape optimization in vvRKHS

Init: n = 0, γ > 0, σ > 0, N ∈ N, Ω0 ⊂ D

while n ≤ N do

1 compute Xh

2 decrease t > 0 until Jh((id − tXh)(Ωn)) < Jh(Ωn) and set

Ωn+1 ← (id − tXh)(Ωn)

3 if Jh(Ωn)− Jh(Ωn+1) ≥ γ(Jh(Ω0)− Jh(Ω1)) then

step accepted: continue program;

else

decrease σ ← qσ, q ∈ (0, 1);
end

4 increase n← n + 1;

end

Variable metric algorithm in vvRKHS
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Shape optimization in vvRKHS

Tests with the scaled Gauss kernel

Figure: J = 0.0060
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Shape optimization in vvRKHS

(a) J = 0.0025
(b) J = 0.00044, 1 x uniform
re�ned
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Shape optimization in vvRKHS

Tests with the scaled C 2-Wendland kernel

(a) J = 0.0067
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Shape optimization in vvRKHS

Tests to solve the pure translation problem with the Gauss kernel and

di�erent values σ

(a) σ = 1 (b) σ = 10 (c) σ = 25
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Shape optimization in vvRKHS

Tests to solve the pure translation problem with the Gauss kernel and

di�erent start values σ

(a) σ = 10 (b) σ = 10

⇒ Approximation quality also depends on the di�usion coe�cients
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Summary and Outlook

Next steps:

Applying the optimization procedure to electrical machines

(a) Quarter of a cross section of
an electric motor in Paraview

min
Ω

J(u) : =

∫
Γ
|B(u) · ng − Bd |2ds

=

∫
Γ
|∇u · τg − Bd |2ds

subject to

a(u, v) = 〈F , v〉 ∀v ∈ H1
0 (D)

with

a(u, v) =

∫
D

ν(x , |∇u|)∇u · ∇v dx ,

〈F , v〉 =

∫
ΩM

M⊥ · ∇v dx
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