Isogeometric analysis based shape optimization

Supervisor: O.Univ.-Prof. Dipl.-Ing. Dr. Ulrich Langer Co-Supervisor: Dipl.-Ing., Dr. Peter Gangl, Bakk. Techn.

Student: Rainer Schneckenleitner

JKU Linz

June 27, 2017

Overview

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Transmission problem

- From M.Eigel and K.Sturm, Reproducing kernel Hilbert spaces and variable metric algorithms in PDE constrained shape optimization, 2016

$$
\begin{aligned}
\min _{\Omega} J(\Omega) & =\int_{D}\left|u-u_{d}\right|^{2} d x \\
\text { s.t. }-\operatorname{div}\left(\beta_{+} \nabla u\right) & =f \text { in } \Omega^{+} \\
-\operatorname{div}(\beta-\nabla u) & =f \text { in } \Omega^{-} \\
u & =0 \text { on } \partial D \\
\llbracket u \rrbracket=0, \llbracket \beta \frac{\partial u}{\partial n} \rrbracket & =0 \text { on } \partial \Omega^{+} \cap \partial \Omega^{-}
\end{aligned}
$$

where $D \subset \mathbb{R}^{2}$ bounded, $\Omega_{+}:=\Omega, \Omega_{-}:=D \backslash \bar{\Omega}, f, u_{d} \in H^{1}(D)$,
$\beta=\left\{\begin{array}{l}\beta_{+} \text {on } \Omega_{+} \\ \beta_{-} \text {on } \Omega_{-}\end{array}, \beta_{+}, \beta_{-}>0\right.$

Transmission problem

- Deriving the variational formulation for the constraint yields

$$
\int_{D} \beta_{\Omega} \nabla u \cdot \nabla v d x=\int_{D} f v d x \quad \forall v \in H_{0}^{1}(D)
$$

with $\beta_{\Omega}:=\beta_{+} \chi+\beta_{-}(1-\chi), \chi:=\chi_{\Omega}$.

- The final problem formulation is

$$
\begin{aligned}
\min _{\Omega} J(\Omega) & =\int_{D}\left|u-u_{d}\right|^{2} d x \\
\text { s.t. } \int_{D} \beta_{\Omega} \nabla u \cdot \nabla v d x & =\int_{D} f v d x \quad \forall v \in H_{0}^{1}(D)
\end{aligned}
$$

Revision

Definition (Eulerian semi-derivative)

Let $D \subset \mathbb{R}^{d}$ open, $J: \equiv \subset \mathcal{P}(D) \rightarrow \mathbb{R}$ be a shape function defined on subsets of D. Let $\Omega \in \equiv$ and $X \in C^{k}\left(\bar{D}, \mathbb{R}^{d}\right), k \geq 1$, be such that $\Phi_{t}(\Omega) \in$ 三 for all $t>0$ sufficiently small. Then the Eulerian semi-derivative of J at Ω in direction X is defined by

$$
d J(\Omega)(X):=\lim _{t \searrow 0} \frac{J\left(\Phi_{t}(\Omega)\right)-J(\Omega)}{t}
$$

where $\Phi_{t}(\Omega)$ is the flow of X.

Revision

Definition (Shape differentiable)

Let the assumptions of the previous definition hold. Then J is said to be shape differentiable at Ω if for some $k \geq 1$ the Eulerian semi-derivative $d J(\Omega)(X)$ exists for all $X \in C_{0}^{k}\left(\bar{D}, \mathbb{R}^{d}\right)$ and

$$
X \mapsto d J(\Omega)(X)
$$

is linear and continuous on $C_{0}^{k}\left(\bar{D}, \mathbb{R}^{d}\right)$.

Revision

- Numerical tests with predetermined vector field
- Without L^{2} projection
- With L^{2} projection

Figure: Multipatch with the displaced circle

Revision

- Numerical tests with computed vector field with simple optimal domain

Figure: Plot of the steepest ascend, the initial shape and the optimal shape(white line)

Outline

(1) The model problem and short revision

(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Shape optimization

A descent direction for the model problem can be computed in four steps:
(1) Computation of u_{h} which solves

$$
\int_{D} \beta_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{D} f_{h} v_{h} d x \quad \forall v_{h} \in V_{h} \subset H_{0}^{1}(D)
$$

(2) Computation of p_{h} which solves

$$
\int_{D} \beta_{\Omega} \nabla v_{h} \cdot \nabla p_{h} d x=-\int_{D} 2\left(u_{h}-u_{d}\right) v_{h} d x \quad \forall v_{h} \in V_{h} \subset H_{0}^{1}(D)
$$

Shape optimization

(3) Computation of a descent direction X_{h} such that

$$
d J^{h}(\Omega)\left(X_{h}\right)<0
$$

as solution of the problem

$$
\left(X_{h}, \varphi_{h}\right)=-d J^{h}(\Omega)\left(\varphi_{h}\right) \quad \forall \varphi_{h} \in W_{h} \subset H_{0}^{1}\left(D, \mathbb{R}^{2}\right)
$$

where (.,.) is any positive definite bilinear form on $H^{1}\left(D, \mathbb{R}^{2}\right)$
(9) Move the geometry in the direction of X_{h}

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Reproducing kernel Hilbert spaces

Definition (Scalar reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \rightarrow \mathbb{R}$. A bivariate function

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is called scalar reproducing kernel for \mathcal{H} if
(1) $k(\cdot, x) \in \mathcal{H} \forall x \in \mathcal{X}$
(2) $f(x)=(f, k(\cdot, x))_{\mathcal{H}(\mathcal{X})} \forall f \in \mathcal{H}, \forall x \in \mathcal{X}$
k is called a radial scalar kernel if there exists a function $\gamma: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathcal{X}, k(x, y)=\gamma(|x-y|)$

Reproducing kernel Hilbert spaces

Theorem

A Hilbert space of real valued functions \mathcal{H} has a unique scalar reproducing kernel \Leftrightarrow The point evaluation is a continuous and linear functional

- A scalar reproducing kernel is symmetric and positive semi-definite
- A scalar reproducing kernel for a Hilbert space of real valued functions is unique

Reproducing kernel Hilbert spaces

Definition (Matrix valued reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f: \mathcal{X} \rightarrow \mathbb{R}^{d}$. A bivariate function

$$
K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d, d}
$$

is called matrix valued reproducing kernel for \mathcal{H} if
(1) $K(x, \cdot) a \in \mathcal{H} \forall x \in \mathcal{X}, \forall a \in \mathbb{R}^{d}$
(2) $a \cdot f(x)=\left(a \otimes \delta_{x}\right) f=(f, K(x, \cdot) a)_{\mathcal{H}\left(\mathcal{X}, \mathbb{R}^{d}\right)} \forall f \in \mathcal{H}, \forall a \in \mathbb{R}^{d}$
K is called a radial matrix kernel if there exists a function $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{d, d}$ such that for all $x, y \in \mathcal{X}, K(x, y)=\gamma(|x-y|)$

Reproducing kernel Hilbert spaces

Theorem

A Hilbert space of vector valued functions \mathcal{H} has a unique matrix valued reproducing kernel \Leftrightarrow The evaluation map

$$
\begin{aligned}
\mathcal{H}\left(\mathcal{X}, \mathbb{R}^{d}\right) & \rightarrow \mathbb{R}, \\
f & \mapsto\left(a \otimes \delta_{x}\right) f=f(x) \cdot a
\end{aligned}
$$

is continuous.

- A matrix valued reproducing kernel need not to be symmetric
- If a matrix valued reproducing kernel is symmetric it is also positiv semi-definite
- A Hilbert space of vector valued functions \mathcal{H} with a reproducing matrix kernel is called (vvRKHS)

Shape optimization

In vvRKHS we have explicit formulas for the descent direction which can be computed in four steps:
(1) Computation of u_{h} which solves

$$
\int_{D} \beta_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d x=\int_{D} f_{h} v_{h} d x \quad \forall v_{h} \in V_{h} \subset H_{0}^{1}(D)
$$

(2) Computation of p_{h} which solves

$$
\int_{D} \beta_{\Omega} \nabla v_{h} \cdot \nabla p_{h} d x=-\int_{D} 2\left(u_{h}-u_{d}\right) v_{h} d x \quad \forall v_{h} \in V_{h} \subset H_{0}^{1}(D)
$$

Shape optimization

(3) Computation of a descent direction X_{h} evaluated at y with

$$
\begin{aligned}
\left(X_{h}\right)(y)=\sum_{i=1}^{d}(& \int_{D} S_{1}(x): \partial K_{i}(x, y)+S_{0}(x) \cdot K_{i}(x, y) d x \\
& \left.-\int_{\partial D} S_{1}(s) \nu(s) \cdot K_{i}(x, y) d s\right) e_{i}
\end{aligned}
$$

where e_{i} denotes the i-th unit vector in \mathbb{R}^{d},

$$
S_{1}:=S_{1}\left(u_{h}, u_{d}, p_{h}\right) \in L_{1}\left(D, \mathbb{R}^{d, d}\right), S_{0}:=S_{0}\left(u_{h}, u_{d}, p_{h}\right) \in L_{1}\left(D, \mathbb{R}^{d}\right)
$$

(1) Move the geometry in every evaluation point in the direction of X_{h}

Outline

(1) The model problem and short revision

(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Considered optimal domains

- 3 different optimal domains

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Standard approach

- Follow the previous 4 step algorithm to obtain a descent direction - Various bilinear forms

(a) 725 iterations, Bilinearform $b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{H^{\mathbf{1}}}, \mathrm{J}=$ $1.2 \mathrm{e}-5$

(b) 1000 iterations, Bilinearform $b\left(X_{h}, \varphi_{h}\right)=$ $\left(X_{h}, \varphi_{h}\right)_{L^{2}}+10\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$, $\mathrm{J}=4.16 \mathrm{e}-6, \mathrm{~J}=1.15 \mathrm{e}-5$ after 725 iterations

Standard approach

Change of the bilinear form from $b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{L^{2}}+10\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$ to $b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{L^{2}}+0.1\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$ during the iteration process leads to

Standard approach

(a) Bilinearform
$b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{H^{\mathbf{1}}}, \mathrm{J}=$ 0.0001904

(b) Bilinearform $b\left(X_{h}, \varphi_{h}\right)=$ $\left(X_{h}, \varphi_{h}\right)_{L^{2}}+0.1\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$, $\mathrm{J}=0.0011$

Standard approach

(a) Bilinearform $b\left(X_{h}, \varphi_{h}\right)=$
$\left(X_{h}, \varphi_{h}\right)_{L^{2}}+0.001\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}, b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{L^{2}}$, $\mathrm{J}=0.00092$

Standard approach

For the pure translation problem I got

Figure: Bilinearform $b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{H^{1}}$

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Heuristic ansatz

- Idea from Volker Schulz and Martin Siebenborn from Trier
- The shape derivative depends only on perturbations on the interface
- Set all entries on rhs to 0 which lie not on the interface
- Then solve the auxiliary problem with the new rhs

Figure: No descent in the shape functional after 3 iterations,

$$
b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{H^{1}}, \mathrm{~J}=0.047 \text { (Standard: 1.2e-5) }
$$

Heuristic ansatz

(a) Bilinearform $b\left(X_{h}, \varphi_{h}\right)=$ $\left(X_{h}, \varphi_{h}\right)_{L^{2}}+10\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$, $\mathrm{J}=0.053$ (Standard: 4.16e-6)

(b) Bilinearform $b\left(X_{h}, \varphi_{h}\right)=$ $\left(X_{h}, \varphi_{h}\right)_{L^{2}}+0.1\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$, $\mathrm{J}=0.066$

Heuristic ansatz

- Change of the bilinear form from
$b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{L^{2}}+\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$ to $b\left(X_{h}, \varphi_{h}\right)=\left(X_{h}, \varphi_{h}\right)_{L^{2}}+0.1\left(\nabla X_{h}, \nabla \varphi_{h}\right)_{L^{2}}$ during the iteration process leads to

Figure: $\mathrm{J}=0.016$

Heuristic ansatz

Conclusion

- Some extra work before the auxiliary problem can be solved
- Minimum in only a few iterations
- Shape functional remains larger
\Rightarrow Does not really pay off in case of $\lg A$

Outline

(1) The model problem and short revision
(2) Algorithms

- Descent direction via auxiliary problem
- Descent direction via kernel function
(3) Numerical tests
- Standard approach
- Heuristic approach
- Approach in vvRKHS

Shape optimization in vvRKHS

- 2 radial kernels tested
(1) Gauss kernel

$$
K(x, y)=\left(e^{-\left(|x-y|^{2}\right) / \sigma}\right) \mathcal{I}
$$

(2) C^{2} Wendland kernel

$$
K(x, y)=\left(1-\frac{|x-y|}{\sigma}\right)_{+}^{4}\left(4 \frac{|x-y|}{\sigma}+1\right) \mathcal{I}
$$

where σ is a scaling factor to ensure a change of the metric during the iteration process

Shape optimization in vvRKHS

Init: $n=0, \gamma>0, \sigma>0, N \in \mathbb{N}, \Omega_{0} \subset D$
while $\mathrm{n} \leq \mathrm{N}$ do
(1) compute X_{h}
(2) decrease $t>0$ until $J^{h}\left(\left(\right.\right.$ id $\left.\left.-t X_{h}\right)\left(\Omega_{n}\right)\right)<J^{h}\left(\Omega_{n}\right)$ and set $\Omega_{n+1} \leftarrow\left(i d-t X_{h}\right)\left(\Omega_{n}\right)$
(3) if $J^{h}\left(\Omega_{n}\right)-J^{h}\left(\Omega_{n+1}\right) \geq \gamma\left(J^{h}\left(\Omega_{0}\right)-J^{h}\left(\Omega_{1}\right)\right)$ then step accepted: continue program; else decrease $\sigma \leftarrow q \sigma, q \in(0,1) ;$ end
(c) increase $n \leftarrow n+1$;
end
Variable metric algorithm in vvRKHS

Shape optimization in vvRKHS

Tests with the scaled Gauss kernel

Figure: $\mathrm{J}=0.0060$

Shape optimization in vvRKHS

(a) $\mathrm{J}=0.0025$

(b) $\mathrm{J}=0.00044,1 \times$ uniform refined

Shape optimization in vvRKHS

Tests with the scaled C^{2}-Wendland kernel

(a) $\mathrm{J}=0.0067$

Shape optimization in vvRKHS

Tests to solve the pure translation problem with the Gauss kernel and different values σ

(a) $\sigma=1$

(b) $\sigma=10$

(c) $\sigma=25$

Shape optimization in vvRKHS

Tests to solve the pure translation problem with the Gauss kernel and different start values σ

(a) $\sigma=10$

(b) $\sigma=10$
\Rightarrow Approximation quality also depends on the diffusion coefficients

Summary and Outlook

Summary:

- Short recap
- Numerical results with more complex domains
- Numerical results with heuristic approach
- Numerical tests in vvRKHS

Summary and Outlook

Next steps:

- Applying the optimization procedure to electrical machines

(a) Quarter of a cross section of an electric motor in Paraview

$$
\begin{aligned}
\min _{\Omega} J(u): & =\int_{\Gamma}\left|B(u) \cdot n_{g}-B_{d}\right|^{2} d s \\
& =\int_{\Gamma}\left|\nabla u \cdot \tau_{g}-B_{d}\right|^{2} d s
\end{aligned}
$$

subject to

$$
a(u, v)=\langle F, v\rangle \quad \forall v \in H_{0}^{1}(D)
$$ with

$$
\begin{aligned}
a(u, v) & =\int_{D} \nu(x,|\nabla u|) \nabla u \cdot \nabla v d x \\
\langle F, v\rangle & =\int_{\Omega_{M}} M^{\perp} \cdot \nabla v d x
\end{aligned}
$$

