Parallelization of Fluid-Structure-Interaction

D. Jodlbauer

Johannes Kepler University, Linz

3. Juli 2017

D. Jodlbauer

□ Fluid-Structure Interaction

Discretization

□ Solvers

D.	Jod	bauer
----	-----	-------

□ Fluid-Structure Interaction

Discretization

Solvers

- Ingredients: fluid (Navier-Stokes), solid
- Coupling conditions:
 - 1. Continuity of stresses (propagate forces)
 - 2. Continuity of velocities (no-slip)
- ALE-coordinates
- Turek-Hron Benchmark:

$\mathsf{FSI}\xspace$ in $\mathsf{ALE}\xspace$

-

$$\begin{split} \hat{J}\hat{\rho}_{f}\hat{\partial}_{t}\hat{v}_{f} + \hat{J}\hat{\rho}_{f}\hat{\nabla}\hat{v}_{f}\hat{F}^{-1}\cdot(\hat{v}_{f} - \partial_{t}\hat{\mathcal{A}}) - \mathsf{div}_{R}(\hat{J}\hat{\sigma}_{f}\hat{F}^{-T}) &= 0\\ \hat{J}\,\operatorname{tr}(\hat{\nabla}\hat{v}_{f}\hat{F}^{-1}) &= 0 \end{split}$$

$$\hat{\rho}_s \partial_t \hat{v}_s - \operatorname{div}_R(\hat{F}\hat{\Sigma}) = 0$$
$$(\partial_t \hat{u}_s - \hat{v}_s) = 0$$

$$-\alpha_u \operatorname{div}_R(\hat{\sigma}_{MM}(\hat{u}_f)) = 0$$

D. Jodlbauer	JKU Linz	4 / 17

FSI in ALE

$$\begin{split} \hat{J}\hat{\sigma}_{f}\hat{F}^{-T}\hat{n}_{f} + \hat{F}\hat{\Sigma}_{s} &= 0 \text{ on } \hat{\Gamma}_{I} & \hat{v}_{f} &= g \text{ on } \hat{\Gamma}_{in} \\ \hat{v}_{f} - \hat{v}_{s} &= 0 \text{ on } \hat{\Gamma}_{I} & \hat{v}_{f} &= 0 \text{ on } \hat{\Gamma}_{tb} \cup \hat{\Gamma}_{c} \\ \hat{u}_{f} - \hat{u}_{s} &= 0 \text{ on } \hat{\Gamma}_{I} & \hat{u}_{f} &= 0 \text{ on } \partial \hat{\Omega}_{f} \backslash \hat{\Gamma}_{I} \\ \hat{u}_{s}, \hat{v}_{s} &= 0 \text{ on } \hat{\Gamma}_{cf} \end{split}$$

Do-nothing condition:

$$\hat{J}(-\hat{p}_f I + \hat{\rho}_f \hat{\nu}_f \hat{\nabla} \hat{v}_f \hat{F}^{-1}) \hat{F}^{-T} = 0 \text{ on } \hat{\Gamma}_{out}.$$

Fluid-Structure Interaction

Discretization

Solvers

Discretization

- 1. Variational formulation
- 2. Time-stepping (One-step-θ-scheme)
- 3. Linearization (Newton's method)
- 4. Spatial discretization (Q(2) Q(2) Q(1) for u,v,p)
- 5. Interface conditions: global elements

Coupled System

$$:= \begin{bmatrix} \mathcal{M} & \mathcal{C}_{ms} & 0 \\ \mathcal{C}_{sm} & \mathcal{S} & \mathcal{C}_{sf} \\ \mathcal{C}_{fm} & \mathcal{C}_{fs} & \mathcal{F} \end{bmatrix}$$

D. Jodlbauer	JKU Linz	7 / 17

$$\mathcal{A} :=$$

Fluid-Structure Interaction

Discretization

Solvers

Solvers

Solvers:

- Sparse-Direct:
 - easy to use, robust
 - 2d: $\mathcal{O}(n^{\frac{3}{2}})$ flops, $\mathcal{O}(n \log n)$ memory ($\mathcal{O}(n^{\frac{4}{3}}), \mathcal{O}(n^2)$ in 3d)
- Iterative:
 - less memory requirement
 - need good preconditioner

Preconditioning

FGMRES with

- "Black-box" preconditioners (ILU, AMG, ...): not good
- Multigrid [Richter, ...]
- Approximate Block-LU-factorization, partitioned scheme: [Heil][Gee,Küttler,Wall][Langer, Yang]

Preconditioning Steps

Motivated by the block-factorization of A, we arrive at the following steps to compute P^{-1} :

1.
$$x_m = \mathcal{M}^{-1} r_m$$

2. $x_s = \mathcal{S}^{-1} r_s$
3. $x_f = \mathcal{F}^{-1} (r_f - \mathcal{C}_{fs} x_s - \mathcal{C}_{fm} x_m)$
4. $x_s = \mathcal{S}^{-1} (\mathcal{C}_{sf} x_f)$
5. $x_m = \mathcal{M}^{-1} (\mathcal{C}_{mf} x_f)$

- \rightarrow Similar to partitioned solver
- \rightarrow Iterative solvers to approximate inverses
- $\rightarrow \varnothing$ 5-25 iterations for different $h, \Delta t$ and material parameters

Fluid-Structure Interaction

Discretization

Solvers

- FEM-library deal.II
- Parallel computation with Trilinos (vectors, matrices, ...), p4est (partitioning)
- Distributed setting: each CPU only stores parts of the problem
- Communication via MPI

Triangulation

- Distribution between fluid / solid domain:
 - Split: each CPU owns parts of the fluid XOR the solid domain (but not both)

Shared: each CPU owns parts of the fluid AND the solid domain

D. Jodlbau	ier
------------	-----

Simulation

 \blacksquare Direct solver, $\approx 15k~{\rm dofs}$

Function	Calls	%
Assemble matrix	19	63.5
Assemble rhs	62	4.03
Solve	28	31.1
D .		

But:

- solving time increases faster for higher refinements
- assembling scales better if more CPUs are used

Direct solver for $\approx 4m$ dofs.

D. Jod	lbauer
--------	--------

Scalability of the Iterative Solver

- $\blacksquare \approx 15m$ dofs, shared-type partitioning
- Similar results as in [1], no other monolithic scalability tests found

[1] Crosetto, Deparis, Fourestey, Quarteroni: Parallel Algorithms for Fluid-Structure Interaction Problems in

Haemodynamics		
D. Jodlbauer	JKU Linz	15 / 17

References

- M.W.Gee, U.Küttler, W.A.Wall. Truly monolithic algebraic multigrid for fluid-structure interaction, Int. J. Numer. Meth. Engng., Vol 85, 987-1016, 2010
- T. Wick. Solving Monolithic Fluid-Structure Interaction Problems in Arbitrary Lagrangian Eulerian Coordinates with the deal.II Library. Archive of Numerical Software, Vol. 1, 1–19, 2013.
- U. Langer and H. Yang. Robust and efficient monolithic fluid-structure-interaction solvers. *Int. J. Numer. Meth. Engng.*, Vol. 108, 303–325, 2016.
- D. Jodlbauer, T. Wick. Monolithic FSI. *Radon Series on Comp. App. Math.*, Vol. **20**, 2017

Thank you for your attention!