<u>TUTORIAL</u>

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 11-12

Date: Thursday, 30 June 2016 Time : $10^{15} - 11^{45}$ Room : K 001A

4.2 The Hellinger-Reisner Principle

 $\begin{array}{|c|c|} \hline 31 & \text{Show that every tensor-function } \sigma \in \mathbf{H}(div, \Omega) \text{ has a well-defined trace } \gamma_{\Gamma} \sigma := \sigma \cdot n|_{\Gamma} \\ & \text{in } \mathbf{H}^{-1/2}(\Gamma) \text{ and that the inequality} \end{array}$

$$\|\gamma_{\Gamma}\sigma\|_{\mathbf{H}^{-1/2}(\Gamma)} \le c \|\sigma\|_{\mathbf{H}(div,\Omega)} \tag{4.41}$$

holds for all $\sigma \in \mathbf{H}(div, \Omega)$, i.e. the trace operator $\gamma_{\Gamma} \in L(\mathbf{H}(div, \Omega), \mathbf{H}^{-1/2}(\Gamma))$. *Hint:* Use the identity (integration by parts)

$$\int_{\Omega} \operatorname{div}(\sigma) \cdot v \, dx = -\int_{\Omega} \sigma \cdot \nabla v \, dx + \int_{\Gamma} (\sigma \cdot n) \cdot v \, ds$$

that is valid for all smooth tensor function σ and for all smooth vector function v.

<u>32</u> Let $v \in \mathbf{L}_2(\Omega)$ be a given vector function. Let $u \in \mathbf{H}^1_{0,\Gamma_u}(\Omega)$ be such that

$$(\varepsilon(u), \varepsilon(w))_0 = -(v, w)_0, \quad \forall w \in \mathbf{H}^1_{0,\Gamma_u}(\Omega).$$

Show that $\tau := \varepsilon(u)$ is in $X = \mathbf{H}(div, \Omega)$, and that $\operatorname{div} \tau = v$.

33* Show that $\tau_n(=\tau n) = 0$ on Γ_t in the sense

$$\langle \tau n, w \rangle_{H^{-1/2}(\Gamma) \times H^{1/2}(\Gamma)} = 0, \quad \forall w \in \mathbf{H}^{1}_{0,\Gamma_{u}}(\Omega),$$

where τ is defined in Exercise 32.