T UTORIAL

"Computational Mechanics"

to the lecture
"Numerical Methods in Continuum Mechanics 1"

Tutorial 10

Date: Thursday, 23 June 2016
Time : $10^{15}-11^{00}$
Room : K 001A

4 Linear Elasticity

4.1 The Basic Equations

28 Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with Lipschitz continuous boundary $\Gamma:=\partial \Omega$, and let $f \in\left[L_{2}(\Omega)\right]^{3}$, and $t \in\left[L_{2}\left(\Gamma_{t}\right)\right]^{3}$. We define the right hand side F of an elastic BVP (see the lectures, Chapter 3, Box (2)) by
$\langle F, v\rangle:=\int_{\Omega} f^{T} v \mathrm{~d} x+\int_{\Gamma_{t}} t^{T} v \mathrm{~d} s, \quad \forall v \in V_{0}=\left\{v \in V=\left[H^{1}(\Omega)\right]^{3}: v=0\right.$ on $\left.\Gamma_{u}\right\}$.
Show that F is in V_{0}^{*}, i.e., F is linear and bounded.
29 Consider the fixed point iteration (see Lectures, Theorem 3.7, Equation (11)): Given initial guess $u_{0} \in V_{0}$, find $u_{n+1} \in V_{0}$ such that

$$
\left(u_{n+1}, v\right)_{1}=\left(u_{n}, v\right)_{1}+\tau\left(\langle F, v\rangle-a\left(u_{n}, v\right)\right), \quad \forall v \in V_{0},
$$

for $n=0,1,2, \ldots$ where (see also Lectures, Chapter 3, Box (2))

$$
\begin{aligned}
& (u, v)_{1}=\int_{\Omega} \nabla u^{T} \nabla v \mathrm{~d} x, \\
& a(u, v)=\int_{\Omega} \varepsilon(u)^{T} D \varepsilon(v) \mathrm{d} x, \\
& \langle F, v\rangle=\int_{\Omega} f^{T} v \mathrm{~d} x+\int_{\Gamma_{t}} t^{T} v \mathrm{~d} s .
\end{aligned}
$$

Apply a finite element (FE) discretization to this iteration scheme! Which systems of algebraic equations have to be solved, and which matrix-times-vector multiplications occur within the FE-discretized iteration?

30* Show that in the case of the Neumann boundary value problem $\left(\Gamma_{t}=\Gamma\right)$ the primal variational problem (2) from the Letcure (Chapter 3) is solvable iff

$$
\begin{equation*}
\langle F, v\rangle=0, \quad \forall v \in \mathcal{R} \text { (rigid body motions). } \tag{4.38}
\end{equation*}
$$

If this solvability condition is fulfilled, then the solution is uniquely defined up to rigid body motions! (cf. Exercise 3.8 from the Lecture)
Hint: Let us consider the Neumann problem: find $u \in V=\left[H^{1}(\Omega)\right]^{3}$:

$$
\begin{equation*}
a(u, v):=\int_{\Omega} \varepsilon(u)^{T} D \varepsilon(v) \mathrm{d} x=\int_{\Omega} f^{T} v \mathrm{~d} x+\int_{\Gamma} t^{T} v \mathrm{~d} s=:\langle F, v\rangle \quad \forall v \in V . \tag{4.39}
\end{equation*}
$$

Introduce the scalar product (Korn's inequality !)

$$
[u, v]:=\int_{\Omega} \varepsilon(u)^{T} D \varepsilon(v) \mathrm{d} x+\int_{\Omega} u^{T} v \mathrm{~d} x
$$

in V, and rewrite (4.39) as

$$
[u, v]-\int_{\Omega} u^{T} v \mathrm{~d} x=\langle F, v\rangle=:[\tilde{f}, v] \quad \forall v \in V
$$

where $\tilde{f}=J F \in V$ is uniquely defined by Riesz-isomorphism $J: V^{*} \rightarrow V$ provided that V is now equiped with scalar product $[\cdot, \cdot]$. Define the operator $K: V \rightarrow V$:

$$
[K u, v]:=\int_{\Omega} u^{T} v \mathrm{~d} x \quad \forall u, v \in V
$$

and show that K is compact (H^{1} is compactly embedded in $L_{2}!$)! Then (4.39) can be rewritten as operator equation

$$
\begin{equation*}
(I-K) u=\tilde{f} \quad \text { in } V . \tag{4.40}
\end{equation*}
$$

Now apply the Fredholm-theory to the operator equation (4.40)!

