T UTORIAL

"Computational Mechanics"

to the lecture
"Numerical Methods in Continuum Mechanics 1"

Tutorial 08

Date: Thursday, 19 May 2016
Time : $10^{15}-11^{00}$
Room : K 001A
22 Let us consider the problem $S \underline{X}=\underline{F}$, where

$$
S=\left(\begin{array}{cc}
\left(A-A_{0}\right) A_{0}^{-1} A & \left(A-A_{0}\right) A_{0}^{-1} B^{T} \\
B A_{0}^{-1}\left(A-A_{0}\right) & B A_{0}^{-1} B^{T}+C
\end{array}\right), \underline{X}=\binom{\underline{u}}{\underline{\lambda}}, \underline{F}=\binom{\left(A-A_{0}\right) A_{0}^{-1} \underline{f}}{B A_{0}^{-1} \underline{f}-\underline{g}} .
$$

(see formula (61) in Chapter 2 of the Lectures). Write down in detail (for \underline{u}_{k} and $\left.\underline{\lambda}_{k}\right)$ the preconditioned Richardson-method

$$
\begin{equation*}
\bar{S} \frac{\underline{X}_{k+1}-\underline{X}_{k}}{\tau}+S \underline{X}_{k}=\underline{F} \tag{3.33}
\end{equation*}
$$

with

$$
\bar{S}=\left(\begin{array}{cc}
A-A_{0} & 0 \\
0 & D
\end{array}\right)
$$

where D is a good preconditioner for the Schur complement $B A^{-1} B^{T}+C$, c.f. spectral equivalence inequalities (49) from Chapter 2 of the Lectures !

23 Describe the relation of the preconditioned Richardson Method (3.33) with $A_{0}=\gamma G$ and the Arrow-Hurwicz Algorithm (see formula (54) in Chapter 2 of the Lectures) !
24^{*} Consider the discrete mixed variational problem: Find $\left(u_{h}, \lambda_{h}\right) \in X_{h} \times \Lambda_{h}$ such that

$$
\begin{array}{ll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, \lambda_{h}\right) & =\left\langle F, v_{h}\right\rangle \quad \forall v_{h} \in X_{h} \\
b\left(u_{h}, \mu_{h}\right) & =\left\langle G, \mu_{h}\right\rangle \quad \forall \mu_{h} \in \Lambda_{h} \tag{3.35}
\end{array}
$$

Let $\left\{\phi^{(i)}\right\}$ be a basis for X_{h} and $\left\{\varphi^{(k)}\right\}$ be a basis for Λ_{h}. Then, the discrete solutions u_{h} and λ_{h} can be represented by

$$
u_{h}:=\sum_{i} u_{i} \phi^{(i)}, \lambda_{h}:=\sum_{k} \lambda_{k} \varphi^{(k)},
$$

and the problem (3.34)-(3.35) can equivalently written as: Find $(\underline{u}, \underline{\lambda})$ such that

$$
\left(\begin{array}{cc}
A & B^{T} \tag{3.36}\\
B & 0
\end{array}\right)\binom{\underline{u}}{\underline{\lambda}}=\left(\frac{f}{\underline{g}}\right)
$$

where

$$
A=\left(a\left(\phi^{(j)}, \phi^{(i)}\right)\right)_{i j}, \quad B=\left(b\left(\phi^{(j)}, \varphi^{(k)}\right)\right)_{k j}, \quad \underline{f}=\left(\left\langle F, \phi^{(i)}\right\rangle\right)_{i}, \underline{g}=\left(\left\langle G, \varphi^{(k)}\right\rangle\right)_{k} .
$$

Show that under the assumptions

1. the bilinear form a is symmetric, elliptic and bounded in the whole space X (e. g., Stokes problem),
2. the bilinear form b is bounded, i. e.,

$$
|b(v, \mu)| \leq \beta_{2}\|v\|_{X}\|\mu\|_{\Lambda},
$$

3. the discrete inf-sup condition is satisfied, i. e.,

$$
\inf _{0 \neq \mu_{h} \in \Lambda_{h}} \sup _{0 \neq v_{h} \in X_{h}} \frac{b\left(v_{h}, \mu_{h}\right)}{\left\|v_{h}\right\|_{X}\left\|\mu_{h}\right\|_{\Lambda}} \geq \tilde{\beta}_{1}>0
$$

where $\tilde{\beta}_{1}$ is independent of h,
the matrix $M=\left(\left(\varphi^{(l)}, \varphi^{(k)}\right)_{\Lambda}\right)_{k l}$ is a preconditioner for the Schur-complement $S=B A^{-1} B^{T}$, i. e., there exist positive constants $\underline{\gamma}$ and $\bar{\gamma}$ such that

$$
\underline{\gamma} M \leq S \leq \bar{\gamma} M .
$$

Hint: Since a is bounded and elliptic on the whole space, we can define $\|\cdot\|_{X}:=$ $a(\cdot, \cdot)^{1 / 2}$. Show that

$$
\left(B A^{-1} B^{T} \underline{\mu}, \underline{\mu}\right)_{l_{2}}=\sup _{0 \neq v_{h} \in X_{h}} \frac{b\left(v_{h}, \mu_{h}\right)^{2}}{\left\|v_{h}\right\|_{X}^{2}}
$$

Then, use the discrete inf-sup condition and the boundedness for $b(\cdot, \cdot)$.

