TUTORIAL

"Computational Mechanics"

to the lecture
"Numerical Methods in Continuum Mechanics 1"

Tutorial 06-07

Date: Thursday, 12 May 2016
Time : $10^{\underline{15}}-11^{45}$
Room : K 001A

3.2 Solvers for Mixed Finite Element Equations

17 Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}$, and $C \in \mathbb{R}^{m \times m}$ such that $A=A^{T}, A>0, C=C^{T}$, $C \geq 0$, and Rank $B=\min \{m, n\}, m \leq n$. Show that

1. the matrix $\left(\begin{array}{cc}A & B^{T} \\ B & -C\end{array}\right)$ is symmetric but indefinite, and
2. if $C>0$, then the matrix $\left(\begin{array}{cc}A & B^{T} \\ -B & C\end{array}\right)$ is positive definite !

18 Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}$, and $C \in \mathbb{R}^{m \times m}$ such that $A=A^{T}, A>0, C=C^{T}$, $C \geq 0$, and $\operatorname{Rank} B=\min \{m, n\}, m \leq n$. Show that the dual Schur complement matrix $S=B A^{-1} B^{T}+C$ is symmetric and positive definite (SPD)!

19* Show that the best (largest) discrete LBB-constant is given by the relation

$$
\begin{equation*}
\tilde{\beta}_{1}^{2}=\lambda_{\min }\left(G_{\Lambda}^{-1}\left(B G_{X}^{-1} B^{T}\right)\right) \tag{3.31}
\end{equation*}
$$

i.e. $\tilde{\beta}_{1}^{2}=\lambda_{\min }\left(G_{\Lambda}^{-1}\left(B G_{X}^{-1} B^{T}\right)\right)$ is the minimal eigenvalue of the generalized EVP

$$
\begin{equation*}
B G_{X}^{-1} B^{T} \underline{\mu}=\lambda G_{\Lambda} \underline{\mu} \tag{3.32}
\end{equation*}
$$

where the Gram matrices G_{X} and G_{Λ} are defined by the identities

$$
\begin{gathered}
\left(G_{X} \underline{u}_{h}, \underline{v}_{h}\right)_{\mathbb{R}^{n}}=\left(u_{h}, v_{h}\right)_{X}, \quad \forall \underline{u}_{h}, \underline{v}_{h} \leftrightarrow u_{h}, v_{h} \in X_{h} \quad \text { and } \\
\left(G_{\Lambda} \underline{\lambda}_{h}, \underline{\mu}_{h}\right)_{\mathbb{R}^{m}}=\left(\lambda_{h}, \mu_{h}\right)_{\Lambda}, \quad \forall \underline{\lambda}_{h}, \underline{\mu}_{h} \leftrightarrow \lambda_{h}, \mu_{h} \in \Lambda_{h}, \quad \text { respectively. }
\end{gathered}
$$

Hint: Use the Rayleigh-quotient representation of the minimal eigenvalue of the generalized EVP (3.32) !

20 Derive the Uzawa-CG-Method, i.e., the CG-Method for the Schur-ComplementSystem

Given $\underline{f} \in \mathbb{R}^{n}$ and $\underline{g} \in \mathbb{R}^{m}$, find $\underline{\lambda} \in \mathbb{R}^{m}: \quad\left(B A^{-1} B^{T}+C\right) \underline{\lambda}=B A^{-1} \underline{f}-\underline{g}$ in an algorithmic form!

21 Show that the preconditioned Uzawa Algorithm (see formula (51) in Chapter 2 of the Lectures) is equivalent to the classical Uzawa Algorithm (see formula (48) in Chapter 2 of the Lectures) applied to the preconditioned system

$$
\begin{aligned}
A \underline{u}+B^{T} D^{-1 / 2} \underline{\mu} & =\underline{f} \\
D^{-1 / 2} B \underline{u}-D^{-1 / 2} C D^{-1 / 2} \underline{\mu} & =D^{-1 / 2} \underline{g} .
\end{aligned}
$$

