$\mathrm{SS}~2016$

<u>TUTORIAL</u>

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 06-07

Date: Thursday, 12 May 2016 Time : $10^{15} - 11^{45}$ Room : K 001A

3.2 Solvers for Mixed Finite Element Equations

17 Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times n}$, and $C \in \mathbb{R}^{m \times m}$ such that $A = A^T$, A > 0, $C = C^T$, $C \ge 0$, and Rank $B = \min\{m, n\}$, $m \le n$. Show that

1. the matrix $\begin{pmatrix} A & B^T \\ B & -C \end{pmatrix}$ is symmetric but indefinite, and $\begin{pmatrix} A & B^T \end{pmatrix}$

2. if
$$C > 0$$
, then the matrix $\begin{pmatrix} A & B^{2} \\ -B & C \end{pmatrix}$ is positive definite !

- $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 18 & \text{Let } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}, \text{ and } C \in \mathbb{R}^{m \times m} \text{ such that } A = A^T, A > 0, C = C^T, \\ C \geq 0, \text{ and } \operatorname{Rank} B = \min\{m, n\}, \ m \leq n. \text{ Show that the dual Schur complement} \\ \text{matrix } S = BA^{-1}B^T + C \text{ is symmetric and positive definite (SPD) } . \end{array}$
- 19^* Show that the best (largest) discrete LBB-constant is given by the relation

$$\tilde{\beta}_1^2 = \lambda_{min} (G_\Lambda^{-1} (B G_X^{-1} B^T)), \qquad (3.31)$$

i.e. $\tilde{\beta}_1^2 = \lambda_{min}(G_{\Lambda}^{-1}(BG_X^{-1}B^T))$ is the minimal eigenvalue of the generalized EVP

$$BG_X^{-1}B^T\underline{\mu} = \lambda G_{\Lambda}\underline{\mu},\tag{3.32}$$

where the Gram matrices G_X and G_{Λ} are defined by the identities

$$(G_X \underline{u}_h, \underline{v}_h)_{\mathbb{R}^n} = (u_h, v_h)_X, \quad \forall \underline{u}_h, \underline{v}_h \leftrightarrow u_h, v_h \in X_h \text{ and}$$

 $(G_{\Lambda}\underline{\lambda}_{h},\underline{\mu}_{h})_{\mathbb{R}^{m}} = (\lambda_{h},\mu_{h})_{\Lambda}, \quad \forall \underline{\lambda}_{h},\underline{\mu}_{h} \leftrightarrow \lambda_{h},\mu_{h} \in \Lambda_{h}, \text{ respectively.}$ *Hint:* Use the Rayleigh-quotient representation of the minimal eigenvalue of the

Hint: Use the Rayleign-quotient representation of the minimal eigenvalue of the generalized EVP (3.32) !

20 Derive the Uzawa–CG–Method, i.e., the CG–Method for the Schur-Complement-System

Given $\underline{f} \in \mathbb{R}^n$ and $\underline{g} \in \mathbb{R}^m$, find $\underline{\lambda} \in \mathbb{R}^m$: $(BA^{-1}B^T + C) \underline{\lambda} = BA^{-1}\underline{f} - \underline{g}$

in an algorithmic form !

21 Show that the preconditioned Uzawa Algorithm (see formula (51) in Chapter 2 of the Lectures) is equivalent to the classical Uzawa Algorithm (see formula (48) in Chapter 2 of the Lectures) applied to the preconditioned system

$$A\underline{u} + B^T D^{-1/2} \underline{\mu} = \underline{f},$$

$$D^{-1/2} B\underline{u} - D^{-1/2} C D^{-1/2} \underline{\mu} = D^{-1/2} \underline{g}.$$