TUTORIAL

"Computational Mechanics"

to the lecture

"Numerical Methods in Continuum Mechanics 1"

Tutorial 03-04

Date: Thursday, 21 April 2016 Time : $10^{15} - 11^{45}$ Room : S2 354

1.4 Theorem of Babuska and Aziz

Theorem 1.5: (Babuška und Aziz, 1972)

Let U and V be Hilbert spaces. Then the linear map (operator) $A : U \mapsto V^*$ is an isomorphism (bijective, A and A^{-1} continuous) if and only if (= iff) the corresponding bilinear form $a(.,.): U \times V \to \mathbb{R}$ fulfills the following conditions:

1. continuity, i.e. $\exists \mu_2 = \text{const.} > 0$:

$$(8) \quad |a(u,v)| \le \mu_2 ||u||_U ||v||_V \ \forall u \in U, \forall v \in V,$$

2. inf-sup-condition, i.e. $\exists \mu_1 = \text{const.} > 0$:

(9)
$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \ge \mu_1,$$

3. $\forall v \in V \setminus \{0\} \exists u \in U :$

(10)
$$a(u,v) \neq 0$$

10^{*} Let us assume that the sufficient conditions (8) - (10) of the Babuška-Aziz-Theorem 1.5 are fulfilled. Let us consider the variational problem: find $u \in U$ such that

$$A(u,v) = \langle F, v \rangle, \quad \forall v \in V, \tag{1.10}$$

where the bilinear form A(u, v) and the linear form $\langle F, v \rangle$ are defined by the identities

$$A(u,v) = \langle A^* J A u, v \rangle, \quad \forall u, v \in U$$

$$(1.11)$$

$$\langle F, v \rangle = \langle A^* J f, v \rangle, \quad \forall v \in U,$$

$$(1.12)$$

respectively. Here $A^*: V \longrightarrow U^*$ denotes the adjoint to $A: U \longrightarrow V^*$ operator, and $J: V^* \longrightarrow V$ is the Riesz isomorphism between the Hilbert spaces V^* and V. Show that the linear form $\langle F, . \rangle$ and bilinear form A(., .) fulfil the assumption of the Lax-Milgram-Theorem and provide the ellipticity and the boundedness constants of the bilinear form A(., .) !

1.5 Nonlinear Variational Problems

- 11 Let us consider the abstract nonlinear variational problem (15) from Transparency 04 under the assumption made there. Show that there exists a unique solution $u \in V_0$ of the nonlinear variational problem (15) and that the fixed point iteration (17) converges to this solution !
- 12 Let us consider the abstract nonlinear variational problem (15) from Transparency 04 under the assumption made there, and its finite element approximation: find $u_h \in V_{0h} \subset V_0$ such that

$$a(u_h, v_h) = \langle f, v_h \rangle \quad \forall v_h \in V_{0h}.$$
(1.13)

Show the Cea-like discretization error estimate

$$\|u - u_h\|_{V_0} \le \frac{\mu_2}{\mu_1} \inf_{w_h \in V_{0h}} \|u - w_h\|_{V_0}, \tag{1.14}$$

where the μ_1 and μ_2 are the monotonicity and the Lipschitz constants, respectively.

2 Analysis and Numerics of Mixed Variational Problems

2.1 Mixed Variational Problems

Consider the mixed variational problem: Find $u \in X$ and $\lambda \in \Lambda$, such that

$$\begin{aligned} &a(u,v) + b(v,\lambda) {=} \langle f,v \rangle \,, \quad \forall v \in X \,, \\ &b(u,\mu) \qquad = \langle g,\mu \rangle \,, \quad \forall \mu \in \Lambda \,. \end{aligned}$$

In order to guarantee a unique existence of the solution (see Theorem 2.4 (Brezzi) in the lectures) one has to verify the following conditions:

1. The linear forms f and g are continuous, i.e.,

$$f \in X^*, \quad g \in \Lambda^*, \tag{2.15}$$

2. the bilinear forms $a(\cdot, \cdot) : X \times X \to \mathbf{R}$ and $b(\cdot, \cdot) : X \times \Lambda \to \mathbf{R}$ are continuous, i.e., \exists positive constants α_2, β_2 :

$$|a(u,v)| \leq \alpha_2 ||u||_X ||v||_X, \quad \forall u, v \in X,$$
(2.16)

$$|b(v,\mu)| \leq \beta_2 ||v||_X ||\mu||_\Lambda, \quad \forall v \in X, \forall \mu \in \Lambda,$$
(2.17)

3. LBB (Ladyshenskaja – Babuska – Brezzi) condition: \exists positive constant β_1 :

$$\inf_{\substack{\mu \in \Lambda \\ \mu \neq 0}} \sup_{\substack{v \in X \\ v \neq 0}} \frac{b(v, \mu)}{\|v\|_X \|\mu\|_\Lambda} \ge \beta_1 , \qquad (2.18)$$

4. Ker *B*-ellipticity, i.e., \exists positive constant α_1 :

$$a(v,v) \ge \alpha_1 \|v\|_X^2, \quad \forall v \in \operatorname{Ker} B,$$

$$(2.19)$$

where Ker $B = \{v \in X \mid Bv = 0 \text{ (in } \Lambda^*)\} = \{v \in X \mid \underbrace{b(v, \mu)}_{=\langle Bv, \mu \rangle} = 0, \forall \mu \in \Lambda\}.$

13 Consider the mixed formulation of the 1st BVP of the biharmonic equation (see Example 1.3 in the lectures, and Exercise 9 of the tutorials): Find $w \in X := H^1(\Omega)$ and $u \in \Lambda := H^1_0(\Omega)$ such that there holds

$$\int_{\Omega} w \, m \, \mathrm{d}x - \int_{\Omega} \nabla m \cdot \nabla u \, \mathrm{d}x = 0 \,, \quad \forall m \in X \,,$$
$$- \int_{\Omega} \nabla w \cdot \nabla v \, \mathrm{d}x \qquad \qquad = \int_{\Omega} f \, v \, \mathrm{d}x \,, \quad \forall v \in \Lambda$$

,

Solution 21 Show that for this problem, the conditions (2.16) and (2.18) are satisfied ! What can you say about (2.19) ?

14 Consider the Stokes problem (see Example 1.1 in the lectures): Find $u \in X := [H_0^1(\Omega)]^3$ and $p \in \Lambda := \{q \in L_2(\Omega) \mid \int_{\Omega} q \, \mathrm{d}x = 0\}$ such that there holds

$$\frac{1}{\operatorname{Re}} \int_{\Omega} \nabla u : \nabla v \, \mathrm{d}x - \int_{\Omega} \operatorname{div} v \, p \, \mathrm{d}x = \int_{\Omega} f \, v \, \mathrm{d}x \,, \quad \forall v \in X \,,$$
$$-\int_{\Omega} \operatorname{div} u \, q \, \mathrm{d}x \qquad = 0 \,, \quad \forall q \in \Lambda \,,$$

where the Reynolds number Re is positive, and where : denotes the inner product $A: B = \sum_{i,j=1}^{3} a_{ij} b_{ij}$, defined for matrices $A = (a_{ij})_{i,j=1,2,3}$ and $B = (b_{ij})_{i,j=1,2,3}$. Show that for this problem the conditions (2.16) – (2.19), except for the too difficult part (2.18), are satisfied.

15^{*} Let X and Λ be real Hilbert spaces and $B : X \to \Lambda^*$ a bounded linear operator. Show that B satisfies the LBB-condition

$$\exists \beta_1 > 0: \inf_{v \in \Lambda \atop v \neq 0} \sup_{\tau \in X \atop \tau \neq 0} \frac{\langle B\tau , v \rangle}{\|\tau\|_X \|v\|_{\Lambda}} \ge \beta_1 \,,$$

if and only if there exists a positive constant c such that for all $v^* \in \Lambda^*$ there exists a $\tau \in X$ such that $B\tau = v^*$ and $\|\tau\|_X \leq c \|v^*\|_{\Lambda^*}$.