TUTORIAL

"Computational Mechanics"

to the lecture
"Numerical Methods in Continuum Mechanics 1"

1.3 Scalar Elliptic BVP of the Fourth Order.

04 Show that the first biharmonic BVP

$$
\begin{equation*}
u \in V_{0}:=H_{0}^{2}(\Omega): \int_{\Omega} \Delta u(x) \Delta v(x) d x=\int_{\Omega} f(x) v(x) d x \forall v \in V_{0} \tag{1.7}
\end{equation*}
$$

has a unique solution, where $H_{0}^{2}(\Omega):=\left\{v \in H^{2}(\Omega): u=\frac{\partial u}{\partial n}=0\right.$ on $\left.\Gamma\right\}$! Hint: Use the Lax-Milgram theorem and the following inequality

$$
\begin{equation*}
\int_{\Omega}|\Delta v(x)|^{2} d x \geq \mu_{1}\|v\|_{H^{2}(\Omega)}^{2} \tag{1.8}
\end{equation*}
$$

which is valid for all $v \in H_{0}^{2}(\Omega)$.

05^{*} Show inequality (1.8)!

06 Give the variational formulations for BVPs of the second, the third and the fourth kind mentioned in Example 1.3 !
07^{*} Prove that the so-called Kirchhoff plate bilinear form
$a(u, v):=\int_{\Omega}\left\{\Delta u(x) \Delta v(x)+(1-\sigma)\left[2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}-\frac{\partial^{2} u}{\partial x_{1}^{2}} \frac{\partial^{2} v}{\partial x_{2}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}} \frac{\partial^{2} v}{\partial x_{1}^{2}}\right]\right\} d x$
is identical to the biharmonic bilinear form given in (1.7) in the case of the first BVP (i.e., on $H_{0}^{2}(\Omega)$), where $\sigma \in(0,1)$ is a given material parameter (Poisson-coefficient).

08 Derive the natural boundary conditions for the plate bilinear form (1.9) ?
Hint: Use Schwarz' theorem, i.e. $\frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}=\frac{\partial^{2} u}{\partial x_{2} \partial x_{1}}$, and two times partial integrations !
09 Derive a mixed variational formulation for the first biharmonic boundary value problem (1.7) by introducing a new variable $w=\Delta u$!

