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3.6 Discretization Error Estimates

Show that for d =1: Q= (0,1), k = 1: S(A) = P;(A), and u(x) = x? there holds
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inf W' (z) — v, (z)Pdx = §h2 , (3.29)
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where V}, = span{p® : i = 0,1,...,n} is defined using continuous affine linear finite
elements on the mesh 0 =z < .. <29 =ih < ... <2™ =1 h=1/n.

Prove the completeness of the FE-spaces {V, }neo in V = HY(Q), i.e.,

lim inf |[u—w,|| =0 VYueV, (3.30)
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under the assumptions 1 and 2 of the Approximation Theorem 3.6 , i.e.,

Assumption 1: The bounded Lipschitz domain {2 is provided by a regular trian-
gulation (see Definition 3.3),

Assumption 2: P,(A) C S(A) = span{p® : a € A}.

3.7 Inverse-Inequalities

Compute the constant c4(A) in the inequality
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used in the proof of Lemma 3.11, for linear triangular elements (d = 2, k = 1,
S(A)="Py) !

Under the assumptions of Lemma 3.11, i.e. assumptions 1 of and dimS(A) =
|A.| < 0o, prove the inverse inequality
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||Uh||LOO(Q) < ch F||Uh||Lp(Q) Vvh c Vh (3.32)

for some given natural number p !



