"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 08 Tuesday, 23 May 2017, Time: $10^{\underline{15}-11^{45} \text {, Room: HT 177F. }}$

DEFINITION 3.3 A family $\left\{\tau_{h}\right\}_{h \in \mathcal{H}}$ of triangulations $\tau_{h}=\left\{\delta_{r}: r \in R_{h}\right\}$ is called regular, if there exists positive and h-independent constants $\underline{c}_{1}, \bar{c}_{1}, c_{2}, c_{3}>0$ such that

1. $\underline{c}_{1} h^{d} \leq\left|J_{\delta_{r}}\right| \leq \bar{c}_{1} h^{d}$
2. $\left\|J_{\delta_{r}}\right\| \leq c_{2} h$
3. $\left\|J_{\delta_{r}}^{-T}\right\| \leq c_{3} h^{-1}$

THEOREM 3.4 Let $a(\cdot, \cdot): V \times V \rightarrow \mathrm{R}^{n}$ be a bilinear form with $V=H^{1}(\Omega)$ and $\|\cdot\|=\|\cdot\|_{1}$, which is symmetric and fulfils the assumptions of Lax Milgram. Moreover, let the triangulation be regular in the sense of Definition 3.3.
Then the following two statements are valid:

1. There exists constants $\underline{c}_{E}, \bar{c}_{E}>0$, independent of h such that

$$
\underline{c}_{E} h^{d} \leq \lambda_{\min }\left(K_{h}\right) \leq \lambda_{\max }\left(K_{h}\right) \leq \bar{c}_{E} h^{d-2}
$$

2. $\kappa\left(K_{h}\right)=\frac{\lambda_{\max }\left(K_{h}\right)}{\lambda_{\min }\left(K_{h}\right)} \leq \frac{\bar{c}_{E}}{c_{E}} h^{-2}$

3.5 Properties of the Finite Elements Equations

40 Prove that the inheritance identity

$$
\begin{equation*}
\left(K_{h} \underline{u}_{h}, \underline{v}_{h}\right)=a\left(u_{h}, v_{h}\right) \quad \forall \underline{u}_{h}, \underline{v}_{h} \leftrightarrow u_{h}, v_{h} \in V_{0 h}! \tag{3.23}
\end{equation*}
$$

is valid!
41 Show that the eigenvalue estimates in Theorem 3.4 are sharp with respect to the h-order by proving the following statement. There exist positive constants $\underline{c}_{E}^{\prime}$ and \bar{c}_{E}^{\prime} independent of h satisfying the estimates

$$
\begin{equation*}
\lambda_{\min }\left(K_{h}\right) \leq \underline{c}_{E}^{\prime} h^{d} \quad \text { and } \quad \lambda_{\max }\left(K_{h}\right) \geq \bar{c}_{E}^{\prime} h^{d-2} \tag{3.24}
\end{equation*}
$$

For simplicity, consider the 1D case $(d=1)$:

$$
\begin{aligned}
-u^{\prime \prime}(x) & =f(x) \quad \forall x \in(0,1), \\
u(0)=u(1) & =0
\end{aligned}
$$

42 Show that, for a regular triangulation according to Definition 3.3, there exist h independent positive constants \underline{c}_{0} and \bar{c}_{0} satisfying the inequalities

$$
\begin{equation*}
\underline{c}_{0} h^{d}\left(\underline{v}_{h}, \underline{v}_{h}\right) \leq\left(M_{h} \underline{v}_{h}, \underline{v}_{h}\right) \leq \bar{c}_{0} h^{d}\left(\underline{v}_{h}, \underline{v}_{h}\right) \tag{3.25}
\end{equation*}
$$

for all $\underline{v}_{h} \in \mathbb{R}^{N_{h}}$, where M_{h} denotes the mass-matrix defined by the identity

$$
\begin{equation*}
\left(M_{h} \underline{u}_{h}, \underline{v}_{h}\right):=\int_{\Omega} u_{h}(x) v_{h}(x) d x \quad \forall \underline{u}_{h}, \underline{v}_{h} \leftrightarrow u_{h}, v_{h} \in V_{0 h} \tag{3.26}
\end{equation*}
$$

The spectral inequalities (3.26) yield that the mass matrix M_{h} is well conditioned, i.e the spectral condition number $\operatorname{cond}_{2}\left(M_{h}\right)$ can be bounded by the h-independent constant $\bar{c}_{0} / \underline{c}_{0}$.
43^{*} Let $\lambda=\lambda_{\max }$ be the maximal eigenvalue of the generalized eigenvalue problem

$$
\begin{equation*}
K_{h} \underline{u}_{h}=\lambda M_{h} \underline{u}_{h} \tag{3.27}
\end{equation*}
$$

and let $\lambda_{r}=\lambda_{r, \text { max }}$ be the maximal eigenvalues of generalized eigenvalue problems

$$
\begin{equation*}
K_{h}^{(r)} \underline{u}_{h}^{(r)}=\lambda_{r} M_{h}^{(r)} \underline{u}_{h}^{(r)}, \tag{3.28}
\end{equation*}
$$

where $K_{h}^{(r)}$ and $M_{h}^{(r)}$ denote the (local) element stiffness and mass matrices for element number $r=1,2, \ldots, R_{h}$, i. e., it holds

$$
K_{h}=\sum_{r=1}^{R_{h}} C_{r} K_{h}^{(r)} C_{r}^{T} \quad \text { and } \quad M_{h}=\sum_{r=1}^{R_{h}} C_{r} M_{h}^{(r)} C_{r}^{T}
$$

Show the eigenvalue estimate

$$
\begin{equation*}
\lambda \leq \max _{r=1,2, \ldots, R_{h}} \lambda_{r} . \tag{3.29}
\end{equation*}
$$

