<u>TUTORIAL</u>

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture

"Numerics of Elliptic Problems"

Tutorial 06 Tuesday, 09 May 2017, Time: $10^{15} - 11^{45}$, Room: HT 177F.

3.4 Generation of systems of Finite Elements Equations

27 Show that the integration rule

$$\int_{\Delta} f(\xi,\eta) d\xi d\eta \approx \frac{1}{2} \{ \alpha_1 f(\xi_1,\eta_1) + \alpha_2 f(\xi_2,\eta_2) + \alpha_3 f(\xi_3,\eta_3) \}$$
(3.16)

integrates quadratic polynomials exactly, if the the weights α_i and the integration points (ξ_i, η_i) are choosen as follows: $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$ und $(\xi_1, \eta_1) = (1/2, 0)$, $(\xi_2, \eta_2) = (1/2, 1/2)$, $(\xi_3, \eta_3) = (0, 1/2)$.

Hint: cf. also Exercise 17 !

28 Let us assume that $\mathcal{T}_h = \{\delta_r : r \in \mathbb{R}_h\}$ is a regular triangulation of the polygonally bounded Lipschitz domain $\overline{\Omega} = \bigcup_{r \in \mathbb{R}_h} \overline{\delta}_r \subset \mathbb{R}^2$ into triangles δ_r , and let $u \in H^2(\Omega)$. Let us now compute the integral

$$I(u) = \int_{\Omega} u(x) dx$$

by the quadrature rule

$$I_h(u) = \sum_{r \in \mathbb{R}_h} u(x_{\delta_r}(\xi^*)) |\delta_r|,$$

where $x_{\delta_r}(\cdot)$ maps the unit triangle Δ onto δ_r , and $\xi^* = (1/3, 1/3)$. Show that

$$|I(u) - I_h(u)| \le ch^2 |u|_{H^2(\Omega)},$$

where c is some generic positive constant. Can you weaken the assumption that $u \in H^2(\Omega)$?

Hint: Use the mapping principle and the Bramble-Hilbert Lemma; cf. also Exercise 17 !

29 Generate the system of finite element equations for the mixed boundary value problem

$$-\Delta u(x_1, x_2) = 1 \quad \forall (x_1, x_2) \in \Omega := (0, 1) \times (0, 1), \tag{3.17}$$

$$u(x_1, 1) = 0 \quad \forall x_1 \in [0, 1], \tag{3.18}$$

$$u(1, x_2) = 0 \quad \forall x_2 \in [0, 1], \tag{3.19}$$

$$u_{x_1}(0, x_2) = 1 - x_2 \quad \forall x_2 \in (0, 1],$$
(3.20)

$$u_{x_2}(x_1, 0) = 1 - x_1 \quad \forall x_1 \in (0, 1),$$
(3.21)

and for the triangulation shown in the attached figure. Solve this linear system of algebraic equations ! Note that u_{x_1} and u_{x_2} denote the partial derivatives with respect to x_1 and x_2 .

