"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 05 Tuesday, 02 May 2017, Time: $10^{15}-11^{45}$, Room: HT 177F.

3 Galerkin FEM

3.1 Galerkin-Ritz-Method

03 Let us consider the variational problem: Find $u \in V_{g}=V_{0}=L_{2}(0,1)$:

$$
\begin{equation*}
\int_{0}^{1} u(x) v(x) d x=\int_{0}^{1} f(x) v(x) d x \quad \forall v \in V_{0} \tag{3.9}
\end{equation*}
$$

Solve this variational problem with the Galerkin-Method using the basis

$$
V_{0 h}=V_{0 n}=\operatorname{span}\left\{1, x, x^{2}, \ldots, x^{n-1}\right\},
$$

where the right-hand side is given as $f(x)=\cos (k \pi x), k=l+1$ and l is the last digit from your study code (Matrikelnummer)! Compute the stiffness matrix K_{h} analytically and solve the linear system $K_{h} \underline{u}_{h}=\underline{f}_{h}$ numerically using the Gaussian elimination method! Consider n to be $2,4,8,10,50,100$!

3.2 Mesh Generation and Refinement

24 In the lectures, we used the input file *.net (see Slide 10) for the input of the mesh data. Design and implement a new Algorithm, which inputs the file coarse.net containing a coarse triangulation and outputs the file fine. net containing the refinement of the coarse triangulation by dividing every triangle of the coarse mesh into 4 triangles (red refinement)!
25^{\star} How would you modify the algorithm from Exercise 24 in order to refine selected elements only ? Note that you have to ensure conformity of the triangulation by using the green refinement dividing a triangle into two triangles by bisection.

3.3 Mapping

26 Show the inequality

$$
\begin{equation*}
\frac{1}{2} \sin \theta_{r} h_{r}^{2} \leq\left|J_{\delta_{r}}\right| \leq \frac{\sqrt{3}}{2} h_{r}^{2} \tag{3.10}
\end{equation*}
$$

where h_{r} is the largest edge and θ_{r} the smallest angle of the triangle δ_{r}.

