T U T O R I A L

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 03 Tuesday, 4 April 2017, Time: $10^{15}-11^{45}$, Room: HT 177F.

2 Tools from the Theory of Sobolev Spaces

12 Let us consider the function
$u(x)=\left\{\begin{array}{l}1,-1 \leq x \leq 0 \\ -1,0 \leq x \leq-1\end{array}\right.$,
Obviously, $u \in L_{p}(\Omega) \subset L_{\text {loc }}(\Omega) \subset D^{\prime}(\Omega)$, but $u \notin C(\bar{\Omega})!$
Compute

1. $u^{\prime}=\partial^{1} u \in$?
2. $u^{\prime \prime}=\partial^{2} u \in$?
3. $u^{\prime \prime \prime}=\partial^{3} u \in$?
in the distributive sense !
13 Show that

$$
\begin{equation*}
|g|_{H^{1 / 2}(\Gamma)}=\inf _{u \in H^{1}(\Omega): \gamma_{0} u=g}|u|_{H^{1}(\Omega)} \tag{2.6}
\end{equation*}
$$

defines a semi-norm in $H^{1 / 2}(\Gamma):=\gamma_{0} H^{1}(\Omega)$ (check the norm semi-axioms), where $|u|_{H^{1}(\Omega)}:=\|\nabla u\|_{L_{2}(\Omega)}$ denotes the standard semi-norm in $H^{1}(\Omega)$! The infimum in (2.6) is realized. Characterize the minimizer $u^{*} \in H^{1}(\Omega)$ as a unique solution of a variational problem!

Show that

$$
\|u\|_{W_{2}^{2}(\Omega)}^{*}=\left(\int_{\Gamma_{D}}|u|^{2} d s+\int_{\Gamma_{D}}\left|\partial_{n} u\right|^{2} d s+|u|_{W_{2}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

defines a new norm in $W_{2}^{2}(\Omega)$ that is equivalent to the standard norm

$$
\|u\|_{W_{2}^{2}(\Omega)}=\left(\sum_{|\alpha| \leq 2} \int_{\Omega}\left|\partial^{\alpha} u\right|^{2} d x\right)^{1 / 2}=\left(\int_{\Omega}|u|^{2} d x+\int_{\Omega}|\nabla u|^{2} d x+|u|_{W_{2}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

where $\Gamma_{D} \subset \Gamma=\partial \Omega$ with $\operatorname{meas}_{d-1}\left(\Gamma_{D}\right)>0, \partial_{n} u(x)=\frac{\partial u}{\partial n}(x)=(\nabla u(x), n(x))=$ $\nabla u(x)^{T} n(x)=\nabla u(x) \bullet n(x)$, and $|u|_{W_{2}^{2}(\Omega)}=\left(\sum_{|\alpha|=2} \int_{\Omega}\left|\partial^{\alpha} u\right|^{2} d x\right)^{1 / 2}$ denotes the standard semi-norm in $W_{2}^{2}(\Omega)$.

15 Show that there exists a positive constant $c_{0}=$ const >0 and $c_{1}=$ const >0 such that

$$
\int_{\Pi}(u(x))^{2} d x \leq c_{0}\left(\int_{\Pi} u(x) d x\right)^{2}+c_{1} \int_{\Pi}|\nabla u(x)|^{2} d x \quad \forall u \in H^{1}(\Pi)
$$

with $c_{0}=$? and $c_{1}=$?, where $\Pi:=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}: a_{i}<x_{i}<b_{i}, i=1,2\right\}$.
Hint: Use the representation

$$
u\left(y_{1}, y_{2}\right)-u\left(x_{1}, x_{2}\right)=\int_{x_{2}}^{y_{2}} \frac{\partial u}{\partial \xi_{2}}\left(y_{1}, \xi_{2}\right) d \xi_{2}+\int_{x_{1}}^{y_{1}} \frac{\partial u}{\partial \xi_{1}}\left(\xi_{1}, x_{2}\right) d \xi_{1}
$$

16 Show that the inequalities

$$
\inf _{q \in \mathbf{R}} \int_{\Omega}|u(x)-q|^{2} d x \leq c^{2} \int_{\Omega}|\nabla u(x)|^{2} d x \quad \forall u \in W_{2}^{1}(\Omega)=H^{1}(\Omega)
$$

and

$$
\int_{\Omega}|u(x)|^{2} d x \leq \frac{1}{|\Omega|}\left(\int_{\Omega} u(x) d x\right)^{2}+c^{2} \int_{\Omega}|\nabla u(x)|^{2} d x \quad \forall u \in W_{2}^{1}(\Omega)=H^{1}(\Omega)
$$

are equivalent!

