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1 Variational formulation of multi-dimensional ellip-
tic Boundary Value Problems (BVP)

1.1 Scalar Second-order Elliptic BVP

(O In Section 1.2.1 of our lectures, we considered the BVP in classical formulation

Find we X =C*(QNCHQUTL,UT;)NC(QUTY) : (1.1)
- Z o (0 (2) 5 +§1b"($)% +c(@)u(z) = fz),r € Q

2,9=1

+BC: o u(:z:):gl( )a:EFl
® g]% = 2 am( ) oz, ni(x)IQQ(x)7$EF2

2,9=1
g—]{, + a(z)u(x) = gs(z) ,z €T3
—~—

a(z)ua(z)

and derived the variational formulation

Find v € V, such that a(u,v) =< F,v > Yv €V}, (1.2)
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under the assumptions

1) Ay, bi, C € LOO(Q), o € LOO(Fg),
2) f€L2(Q>7gz ELQ(Fi),iZQ,?),
3) g1 € H%(F1)> ie, 351 € H'(Q) : qilr, = g1,
4) Q c R%bounded) : I' = 9Q € C*! (Lip boundary), (1.3)
5) uniform ellipticity:
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Formulate the classical assumptions on { a;j, b;, ¢, @, f, g;, 2 resp. 0 } for (1.1) !

Show that, for sufficiently smooth data, a the generalized solution u € V,NXNH?*(Q)
of the Boundary Value Problem (2) is also a classical solution, i.e. a solution of (1) !

(1) ( Findue X =C*Q)NCHQUT,UT3)NCQUTY):
—Au(z) +u(z) = f(x),z € 2 C R? (bounded),
u(z) = gi(z), z €I,

%(m) = go(x), x € Ty,

| 54(x) = a(x)(gs(x) —u(x)), © € I
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where Vo ={v eV =H'(Q):v=0o0nT4}.

Show that the assumptions of the Lax-Milgram-Theorem are satisfied for the vari-

ational problem (1.2) under the assumptions (1.3) and the additional assumptions
b;=0,c=0,a(x) >a=const >0 Vae. xcls andmeas; 1(I';) >0,i=1,2,3!

In addition to assumption (1.3), let us assume that ¢(z) > ¢ = const > 0 for almost
all z € Q,Ty =T3 =0, and b; Z 0. Provide conditions for the coefficients b;(-) such
that the assumptions of the Lax-Milgram-Theorem are satisfied !

d
O Hint: For the estimate of the convection term »_ [ bi%v dz, make use of the
i=1Q ¢
e-inequality (Young’s inequality)
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yaby§2—a2+eb2, Va,b € R' Ve >0 !
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Derive the variational formulation of the pure Neumann problem for the Poisson

equation
0
—Au= fin Q) and 8_u =0on [ :=0Q, (1.4)
n
and discuss the question of the existence and uniqueness of a generalized solution
of (1.4) !
(O Hint:

Obviously, u(z) + ¢ with an arbitrary constant ¢ € R! solves (1.4) provided
that u is the solution of the BVP (1.4). There are the following ways to analyze
the existence of a generalized solution:

1) Set up the variational formulation in V' = H'(Q) and apply the
FREDHOLM-Theory !

2) Set up the variational formulation in the factor-space V = H'(Q)]|}, with
ker= {c: ¢ € R'} = R! and apply the LAX-MILGRAM-Theorem !

m Derive the variational formulation of the Dirichlet problem for the Helmholtz equa-
tion
—Au—wu=finQ=(0,1>CR*> and u=0onT :=0Q, (1.5)
where w? is a given positive constant. Then discuss the problem of the existence
and uniqueness of a generalized solution of (1.5) !



