T U T O R I A L

"Numerical Methods for the Solution of Elliptic Partial Differential Equations"

to the lecture
"Numerics of Elliptic Problems"

Tutorial 01 Tuesday, 21 March 2017, Time: $10^{15}-11^{45}$, Room: S2 120.

1 Variational formulation of multi-dimensional elliptic Boundary Value Problems (BVP)

1.1 Scalar Second-order Elliptic BVP

In Section 1.2.1 of our lectures, we considered the BVP in classical formulation$$
\begin{aligned}
& \text { Find } u \in X:=C^{2}(\Omega) \cap C^{1}\left(\Omega \cup \Gamma_{2} \cup \Gamma_{3}\right) \cap C\left(\Omega \cup \Gamma_{1}\right): \\
& -\sum_{\imath, j=1}^{d} \frac{\partial}{\partial x_{i}}\left(a_{\imath \jmath}(x) \frac{\partial u}{\partial x_{\jmath}}\right)+\sum_{\imath=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u(x)=f(x), x \in \Omega \\
& +\mathrm{BC}: ~ \bullet ~ \\
& \text { • }(x)=g_{1}(x), x \in \Gamma_{1} \\
& \quad \bullet \frac{\partial u}{\partial N}:=\sum_{r, \jmath=1}^{d} a_{\imath \jmath}(x) \frac{\partial u(x)}{\partial x_{\jmath}} n_{i}(x)=g_{2}(x), x \in \Gamma_{2} \\
& \quad \bullet \frac{\partial u}{\partial N}+\alpha(x) u(x)=\underbrace{g_{3}(x)}_{\alpha(x) u_{A}(x)}, x \in \Gamma_{3}
\end{aligned}
$$

and derived the variational formulation

$$
\begin{aligned}
& \text { Find } u \in V_{g} \text { such that } a(u, v)=\langle F, v\rangle \quad \forall v \in V_{0}, \\
& \text { with } \\
& a(u, v) \quad:=\int_{\Omega}\left(\sum_{\imath, j=1}^{d} a_{\imath \jmath} \frac{\partial u}{\partial x_{\jmath}} \frac{\partial v}{\partial x_{i}}+\sum_{i=1}^{d} b_{i} \frac{\partial u}{\partial x_{i}} v+c u v\right) d x+\int_{\Gamma_{3}} \alpha u v d s, \\
& \langle F, v\rangle:=\int_{\Omega} f v d x+\int_{\Gamma_{2}} g_{2} v d s+\int_{\Gamma_{3}} g_{3} v d s \\
& V_{g}:=\left\{v \in V=W_{2}^{1}(\Omega): v=g_{1} \text { on } \Gamma_{1}\right\} \\
& V_{0}:=\left\{v \in V: v=0 \text { on } \Gamma_{1}\right\} .
\end{aligned}
$$

under the assumptions

1) $a_{\imath \jmath}, b_{i}, c \in L_{\infty}(\Omega), \alpha \in L_{\infty}\left(\Gamma_{3}\right)$,
2) $f \in L_{2}(\Omega), g_{i} \in L_{2}\left(\Gamma_{i}\right), i=2,3$,
3) $g_{1} \in H^{\frac{1}{2}}\left(\Gamma_{1}\right)$, i.e., $\exists \tilde{g}_{1} \in H^{1}(\Omega):\left.\tilde{g}_{1}\right|_{\Gamma_{1}}=g_{1}$,
4) $\Omega \subset \mathbf{R}^{d}$ (bounded) : $\Gamma=\partial \Omega \in C^{0,1}$ (Lip boundary),
5) uniform ellipticity:

$$
\left.\begin{array}{l}
\sum_{\imath, \jmath=1}^{d} a_{\imath \jmath}(x) \xi_{\imath} ; \xi_{\jmath} \geq \bar{\mu}_{1}|\xi|^{2} \quad \forall \xi \in \mathbf{R}^{d} \\
a_{\imath \jmath}(x)=a_{\jmath i}(x) \quad \forall i, \jmath=\overline{1, d}
\end{array}\right\} \forall \text { a.e. } x \in \Omega
$$

01 Formulate the classical assumptions on $\left\{a_{i j}, b_{i}, c, \alpha, f, g_{i}, \Omega\right.$ resp. $\left.\partial \Omega\right\}$ for (1.1)!
02 Show that, for sufficiently smooth data, a the generalized solution $u \in V_{g} \cap X \cap H^{2}(\Omega)$ of the Boundary Value Problem (2) is also a classical solution, i.e. a solution of (1)!

$$
\left\{\begin{array}{l}
\text { Find } u \in X=C^{2}(\Omega) \cap C^{1}\left(\Omega \cup \Gamma_{2} \cup \Gamma_{3}\right) \cap C\left(\Omega \cup \Gamma_{1}\right): \tag{1}\\
-\Delta u(x)+u(x)=f(x), x \in \Omega \subset \mathbf{R}^{d} \text { (bounded), } \\
u(x)=g_{1}(x), x \in \Gamma_{1}, \\
\frac{\partial u}{\partial n}(x)=g_{2}(x), x \in \Gamma_{2}, \\
\frac{\partial u}{\partial n}(x)=\alpha(x)\left(g_{3}(x)-u(x)\right), x \in \Gamma_{3}
\end{array}\right.
$$

$? \Downarrow \Uparrow ?$

$$
\left\{\begin{array}{l}
\text { Find } u \in V_{g}=\left\{v \in V=H^{1}(\Omega): v=g_{1} \text { on } \Gamma_{1}\right\} \text { such that } \forall v \in V_{0}: \tag{2}\\
\underbrace{\int_{\Omega}\left(\nabla^{T} u \nabla v+u v\right) d x+\int_{\Gamma_{3}} \alpha u v d s}_{=a(u, v)}=\underbrace{\int_{\Omega} f v d x+\int_{\Gamma_{2}} g_{2} v d s+\int_{\Gamma_{3}} \alpha g_{3} v d s}_{=<F, v>},
\end{array}\right.
$$

where $V_{0}=\left\{v \in V=H^{1}(\Omega): v=0\right.$ on $\left.\Gamma_{1}\right\}$.
03 Show that the assumptions of the Lax-Milgram-Theorem are satisfied for the variational problem (1.2) under the assumptions (1.3) and the additional assumptions $b_{i}=0, c=0, \alpha(x) \geq \underline{\alpha}=\mathrm{const}>0 \quad \forall$ a.e. $x \in \Gamma_{3}$, and $\operatorname{meas}_{d-1}\left(\Gamma_{i}\right)>0, i=1,2,3!$

04 In addition to assumption (1.3), let us assume that $c(x) \geq \underline{c}=$ const >0 for almost all $x \in \Omega, \Gamma_{1}=\Gamma_{3}=\emptyset$, and $b_{i} \not \equiv 0$. Provide conditions for the coefficients $b_{i}(\cdot)$ such that the assumptions of the Lax-Milgram-Theorem are satisfied!

Hint: For the estimate of the convection term $\sum_{i=1}^{d} \int_{\Omega} b_{i} \frac{\partial u}{\partial x_{i}} v d x$, make use of the ε-inequality (Young's inequality)

$$
|a b| \leq \frac{1}{2 \varepsilon} a^{2}+\varepsilon b^{2}, \quad \forall a, b \in \mathbf{R}^{1} \quad \forall \varepsilon>0!
$$

05 Derive the variational formulation of the pure Neumann problem for the Poisson equation

$$
\begin{equation*}
-\Delta u=f \text { in } \Omega \quad \text { and } \quad \frac{\partial u}{\partial n}=0 \text { on } \Gamma:=\partial \Omega, \tag{1.4}
\end{equation*}
$$

and discuss the question of the existence and uniqueness of a generalized solution of (1.4) !Hint:
Obviously, $u(x)+c$ with an arbitrary constant $c \in \mathbb{R}^{1}$ solves (1.4) provided that u is the solution of the BVP (1.4). There are the following ways to analyze the existence of a generalized solution:

1) Set up the variational formulation in $V=H^{1}(\Omega)$ and apply the Fredholm-Theory!
2) Set up the variational formulation in the factor-space $V=\left.H^{1}(\Omega)\right|_{\text {ker }}$ with ker $=\left\{c: c \in \mathbb{R}^{1}\right\}=\mathbb{R}^{1}$ and apply the Lax-Milgram-Theorem!
06^{*} Derive the variational formulation of the Dirichlet problem for the Helmholtz equation

$$
\begin{equation*}
-\Delta u-\omega^{2} u=f \text { in } \Omega=(0,1)^{2} \subset \mathbb{R}^{2} \quad \text { and } \quad u=0 \text { on } \Gamma:=\partial \Omega, \tag{1.5}
\end{equation*}
$$

where ω^{2} is a given positive constant. Then discuss the problem of the existence and uniqueness of a generalized solution of (1.5) !

