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Introduction: Systems of linear conservation laws

The examples that were discussed in the first talk of this seminar
session can be written as systems of linear conservation laws. We
can write

Av =
D∑

d=1

Bd∂dv = divF (v)

for symmetric J × J-matrices Bd and linear flux function

F (v) = [B1v , . . . ,BDv ].

The problem then becomes

M∂tu(t) + divF (u(t)) = f (t) for t ∈ [0,T ]

u(0) = u0.
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Defining the numerical flux



Numerical flux

In our numerical method we are going to need to replace the flux

n · F (v)

between two elements by a numerical flux

n · F up(v).

We will define F up using local solutions of the Riemann problem.



Weak formulation

A function
u ∈ L1((0,T )× RD ,RJ)

is a weak solution to our problem with right hand side f = 0 if for
all φ ∈ C1

0((−1,T )× Ω,RJ)∫
(0,T )×RD

uM∂tφdtdx +

∫
(0,T )×RD

udivF (φ)dtdx

+

∫
RD

Mu0(x)φ(0, x)dx = 0



The Riemann problem

For a unit vector n ∈ RD and the piecewise constant initial function

u0(x) =

{
uL if n · x < 0

uR if n · x > 0

with uL, uR ∈ RJ find a piecewise constant weak solution with
right hand side f = 0.



Solution to the Riemann problem

Begin with constructing discontinuous traveling waves.
For any unit vector n = (n1, . . . , nD) the flux is given by

n · F (u) = Bu

with the symmetric matrix

B =
D∑

d=1

ndBd .



For any eigenpair (λ,w) ∈ R× RJ with

Bw = λMw

the piecewise constant function u on [0,T ]× RD given by

u(t, x) =

{
αLw if n · x − λt < 0

αRw if n · x − λt > 0

with αL, αR ∈ R is a weak solution.



We superpose traveling waves to get a solution to the Riemann
problem.
Let (λj ,wj) be M-orthonormal eigenpairs of B, i.e.

wk ·Mwj = δkj .

Then

u(t, x) =
J∑

j=1

aj(x · n − λj t)wj

with

aj(s) =

{
wj ·MuL if s < 0

wj ·MuR if s > 0

is a solution to the Riemann problem.



Definition of the upwind flux

The solution to the Riemann problem at (t, 0) for t > 0 defines the
upwind flux on ∂ΩL ∩ ∂ΩR , where

ΩL = {x ∈ RD : n · x < 0},
ΩR = {x ∈ RD : n · x > 0}.

It is
n · F up(u0) = BuL +

∑
λj<0

wj ·M[u]Bwj ,

where [u] = uR − uL is the jump term.



Discretisation



Discontinuous Galerkin discretisation in space

We assume to be Ω a bounded polyhedral Lipschitz domain that is
decomposed into open elements K ⊂ Ω such that

Ω̄ =
⋃
K∈K

K̄ .

We denote by

I K the set of elements,

I FK the faces of an element K ,

I nK the outer unit normal on ∂K .

We choose polynomial degrees pK on each element and define the
global discontinuous Galerkin space

Hh = {vh ∈ L2(Ω)J : ∀K ∈ K vh|K ∈ Hh,K = PpK (K ,RJ)}



Discretisation of the mass operator

The mass operator Mh ∈ L(Hh,Hh) is defined as the Galerkin
approximation of M, i.e.

(Mhvh,wh)0,Ω = (Mvh,wh)0,Ω ∀vh,wh ∈ Hh.



Discretisation of the differential operator

We define the discrete operator Ah ∈ L(Hh,Hh) on each element
K for vh ∈ Hh and φh,K ∈ Hh,k using the numerical flux:

(Ahvh, φh,K )0,K =(divF (vh,K ), φh,K )0,K

+
∑
f ∈FK

(nK · (F up
K (vh)− F (vh,K )), φh,K )0,f .



I This definition, in our applications, is consistent, i.e. for all
v ∈ D(A) and φh ∈ Hh

(Av , φh)0,Ω = (Ahv , φh)0,Ω

and for all vh ∈ Hh, v ∈ D(A) ∩H1(Ω,RJ)∑
K∈K

(nK · F up
K (vh,K ), v)0,∂K = 0.

I For all our applications there is a constant C > 0 such that

(Ahvh, vh)0,Ω ≥ C
∑
K∈K

∑
f ∈FK

||nK (·(F up
K (vh)− F (vhK ))||20,f ≥ 0.



Petrov-Galerkin discretisation in space-time

Next, we decompose the space-time cylinder Q = [0,T ]× Ω using
a tensor-product discretisation. We choose a time sequence

0 = t0 < . . . < tN = T

and define elements R = (tn−1, tn)× K for K ∈ K. Then

Q̄ =
⋃
R∈R

R̄.

Now we want to define ansatz and test spaces Vh and Wh such
that on each element R ∈ R the local spaces fulfil

Wh,R ⊂ ∂tVh,R .



On each element R = (tn−1, tn)× K we choose as the local test
space

Wh,R = Hh,K

to be constant in time. The global test space then is

Wh = {wh ∈ L2((0,T ),H) : ∀n wh(tn, x) ∈ Hh and

wh(t, x) = wh(tn−1, x) on (tn−1, tn)}.



For this choice of test spaces the global ansatz space then consists
of functions which are piecewise linear in time:

Vh = {vh ∈ H1((0,T ),H) : vh(0, x) = 0, ∀n vh(tn, x) ∈ Hh and

vh(t, x) =
tn − t

tn − tn−1
vh(tn−1, x) +

t − tn−1

tn − tn−1
vh(tn, x) on (tn−1, tn)}

Functions in Vh are continuous in time.

Remark
We can generalise this for any polynomial degree in time.



The discrete space-time operator

We extend the differential operator Ah to a space-time operator in
L(Vh,Wh) by defining on each element R = (tn−1, tn)× K

(Ahvh,wh)0,R =(divF (vh,R),wh,R)0,R

+
∑
f ∈FK

nK · (F up
K (vh)− F (vh,R)),wh,R)0,(tn−1,tn)×f .



Finally we can define the discrete space-time operator
Lh ∈ L(Vh,Wh) and the corresponding bilinear form bh by

bh(vh,wh) = (Lhvh,wh)0,Q = (Mh∂tvh + Ahvh,wh)0,Q .



Existence, uniqueness and error convergence



Existence and uniqueness

As in the infinite-dimensional case we use the norm

||wh||2W = (Mwh,wh)0,Q

on Wh and the norm

||vh||2Vh
= ||vh||2W + ||M−1

h Lhvh||2W

on Vh.
Again we are going to prove the inf-sup stability of bh with respect
to these norms.



First, we need the following lemma

Lemma (No proof)

For any vh ∈ Vh we have

(Mh∂tvh, dT vh)0,Q ≤ (Lhvh, dTΠhvh)0,Q ,

where Πh : W →Wh is the L2-projection and dT (t) = (T − t).

The proof involves the non-negativity of Ah and the tensor-product
structure of the discretisation.



Lemma (inf-sup stability)

bh is continuous and fulfils for all vh ∈ Vh

sup
wh∈Wh\{0}

bh(vh,wh)

||wh||W
≥ β||vh||Vh

with β = (1 + 4T 2)−
1
2 .



Theorem (Existence and uniqueness)

For any f ∈ L2(Q,RJ) there exists a unique solution uh ∈ Vh such
that

bh(uh,wh)0,Q = (f ,wh)0,Q

for all wh ∈Wh.



Convergence

Theorem
Let u ∈ V be the solution of the original problem and uh ∈ Vh the
solution of the discrete problem. Then

||u − uh||Vh
≤ (1 + β−1) inf

vh∈Vh

||u − vh||Vh
.

If the solution is sufficiently smooth, then

||u − uh||Vh
≤ C (∆t + ∆xp)(||∂tu||0,Q + ||Dp+1u||0,Q),

where ∆t,∆x , p ≥ 1 with p ≤ pK , ∆t ≥ (tn−1 − tn) and
∆x ≥ diam(K ).
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