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Introduction: Systems of linear conservation laws

The examples that were discussed in the first talk of this seminar
session can be written as systems of linear conservation laws. We

can write
D

Av =" ByOgv = divF(v)
d=1
for symmetric J x J-matrices By and linear flux function

F(v) = [Biv,...,Bpv].
The problem then becomes

MOou(t) + divF(u(t)) = f(t) for t €0, T]
u(0) = wp.
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Defining the numerical flux



Numerical flux

In our numerical method we are going to need to replace the flux

n-F(v)

between two elements by a numerical flux
n- F'(v).

We will define F"P using local solutions of the Riemann problem.



Weak formulation

A function
v e LY((0, T) x RP,RY)

is a weak solution to our problem with right hand side f = 0 if for
all g € C§((~1, T) x Q,RY)
/ uMOrpdtdx +/ udivF(¢)dtdx
(0, T)xRD

(0, T)xRD

+ /RD Muo(x)¢(0, x)dx = 0



The Riemann problem

For a unit vector n € RP and the piecewise constant initial function

(x) u ifn-x<0
ug(x) =
0 up ifn-x>0

with u;, ug € R” find a piecewise constant weak solution with
right hand side f = 0.



Solution to the Riemann problem

Begin with constructing discontinuous traveling waves.
For any unit vector n = (n1,...,np) the flux is given by

n-F(u) = Bu

with the symmetric matrix

D
B = Z ndBd.
d=1



For any eigenpair (A, w) € R x R’ with
Bw = AMw

the piecewise constant function u on [0, T] x RP given by

(t, %) aw ifn-x=—Xt<0
u(t,x) =
arw ifn-x—Xt>0

with o, ar € R is a weak solution.



We superpose traveling waves to get a solution to the Riemann
problem.
Let (\j, wj) be M-orthonormal eigenpairs of B, i.e.

wy - Mw; = oM.

Then

with

(s) wj-Mu, ifs<0
aj(s) =
! wj- Mugp ifs>0

is a solution to the Riemann problem.



Definition of the upwind flux

The solution to the Riemann problem at (t,0) for t > 0 defines the
upwind flux on 9Q; N 9k, where
Q ={xeRP:n-x<0}
Qr={xecRP:n.-x>0}
It is

n-F"(u) = Bup + Z w; - M[u]Bw;,
Aj<0

where [u] = ug — ug is the jump term.



Discretisation



Discontinuous Galerkin discretisation in space

We assume to be €2 a bounded polyhedral Lipschitz domain that is
decomposed into open elements K C €2 such that

a=|JKk

We denote by
> K the set of elements,
» Fi the faces of an element K,
» nk the outer unit normal on OK.

We choose polynomial degrees px on each element and define the
global discontinuous Galerkin space

Hp = {vy € L2(Q)? : VK € K |k € Hpk = P (K, R7)}



Discretisation of the mass operator

The mass operator My, € L(Hp, Hy) is defined as the Galerkin
approximation of M, i.e.

(Mpvp, wh)oo = (Mvp, wh)oa Vv, wh € Hp,.



Discretisation of the differential operator

We define the discrete operator A, € L(Hp, Hp,) on each element
K for vi, € Hp, and ¢p k € Hp i using the numerical flux:

(AnVh, On.k )o.k =(divF(va k), dn K)ok
+ ) (k- (FP(v) = F(vik)), n.k)o.f

feFk



This definition, in our applications, is consistent, i.e. for all
v € D(A) and ¢p, € Hy

(Av, dn)o.0 = (Anv, dn)o0

and for all v, € Hp,, v € D(A) N HY(Q,RY)

D (k- FP(vik), v)o.ok = 0.

KeKx

For all our applications there is a constant C > 0 such that

(Anvh,vido = € > > Ink(-(FP(vi) = F(vw I3 ¢ > O

KeK feFk



Petrov-Galerkin discretisation in space-time

Next, we decompose the space-time cylinder Q = [0, T] x Q using
a tensor-product discretisation. We choose a time sequence

O=ty<...<ty=T

and define elements R = (t,—1,t,) X K for K € K. Then

RER

Now we want to define ansatz and test spaces V;, and W}, such
that on each element R € R the local spaces fulfil

Wh,r C OtV r-



On each element R = (t,—1,t,) X K we choose as the local test
space
Wh.r = Hnk

to be constant in time. The global test space then is

Wy, = {wy, € L2((0, T), H) : Vn wy(ta,x) € Hp and
Wh(t,X) = Wh(t,,,l,X) on (t,,fl, tn)}.



For this choice of test spaces the global ansatz space then consists
of functions which are piecewise linear in time:

Vi, = {v, € HY((0, T), H) : v4(0,x) = 0,Yn vp(tn, x) € Hp and
th — t t—th—1

Vh(tn—l,X) + ;Vh(tnyx) on (tn—la tn)}
th — th—1 th — th-1

vh(t,x) =
Functions in V}, are continuous in time.

Remark
We can generalise this for any polynomial degree in time.



The discrete space-time operator

We extend the differential operator A, to a space-time operator in
LV, W) by defining on each element R = (t,-1,t,) X K
(AnVh; wh)o,r =(divF(vh,r), Wh,R)o,R

+ ) i (FP(vi) = F(VhR)): Wh,R)o, (60 1,t0)xF-
feFk



Finally we can define the discrete space-time operator
Lp € L(Vp, W) and the corresponding bilinear form by, by

br(vh, wh) = (LhVh, Wh)o,@ = (MhO:vih + Apvh, Wh)o,@-



Existence, uniqueness and error convergence



Existence and uniqueness

As in the infinite-dimensional case we use the norm
lwal [y = (Mws, wh)o,q
on W}, and the norm
[1val[¥, = [1vallSy + My Laval Iy

on V).
Again we are going to prove the inf-sup stability of b, with respect
to these norms.



First, we need the following lemma
Lemma (No proof)
For any v, € V, we have

(Mhatvh, dTVh)O,Q < (Lthp dTnth)O,Q’

where My, : W — W), is the Ly-projection and dr(t) = (T — t).
The proof involves the non-negativity of A and the tensor-product
structure of the discretisation.



Lemma (inf-sup stability)

by, is continuous and fulfils for all vy, € V},

b
sup h(Vh, wh)

> /BHVhHVh
wpew\ {0} |[wallw

with B = (1+4T2) 2.



Theorem (Existence and uniqueness)

For any f € L2(Q,R’) there exists a unique solution uy, € V), such
that

bn(un, wr)o,@ = (f, wh)o,@
for all wy, € W,



Convergence

Theorem
Let u € V be the solution of the original problem and u, € V), the
solution of the discrete problem. Then

lu—upllv, <@+ 871 inf |lu—villy,.
VhEV)

If the solution is sufficiently smooth, then

[|lu = unllv, < C(AL + AxXP)(||O¢u

0.¢ + 1107 ullo,q),

where At,Ax,p > 1 with p < px, At > (tp—1 — t,) and
Ax > diam(K).
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