First Initial-Boundary Value Problem for General Parabolic Equations

Andreas Schafelner

Johannes Kepler Universität Linz

November 15, 2016

A. Schafelner (JKU Linz)

1st IBVP for Parabolic Equations

November 15, 2016

The Problem

Let $Q_T = \Omega \times (0,T)$ be a space-time cylinder with a sufficiently smooth boundary. We consider the problem

$$\mathcal{M}u \equiv u_t - \frac{\partial}{\partial x_i} (a_{ij}(x,t)u_{x_j} + a_i(x,t)u) + b_i(x,t)u_{x_i} + a(x,t)u = f + \frac{\partial f_i}{\partial x_i}$$
(1)
$$u|_{t=0} = \varphi(x), \qquad u|_{S_T} = 0$$
(2)

with the conditions $a_{ij} = a_{ji}$,

$$\sqrt{\sum_{i=1}^{n} a_i^2}, \quad \sqrt{\sum_{i=1}^{n} b_i^2}, \quad |a| \le \mu,$$
 (3)

$$\varphi \in L_2(\Omega), \quad f \in L_{2,1}(\mathcal{Q}_T), \quad f_i \in L_2(\mathcal{Q}_T)$$
 (4)

and

$$\nu\xi^2 \le a_{ij}(x,t)\xi_i\xi_j \le \mu\xi^2, \quad \nu,\mu = const > 0.$$

A. Schafelner (JKU Linz)

November 15, 2016

Motivation

Consider an electrical machine with the follwing assumptions:

$$\hat{\Omega} = \Omega \times (-\infty, +\infty) 2 \quad J_i = (0, 0, J_3(x_1, x_2))^T 3 \quad M = H_0 = (H_{01}(x_1, x_2), H_{02}(x_1, x_2), 0)^T, \\ H = (H_1(x_1, x_2), H_2(x_1, x_2), 0)^T$$

With the ansatz B = curlA, where $A = (0, 0, u(x_1, x_2))^T$, we obtain the equations

$$u_t - \frac{\partial}{\partial x_i} (\nu(x,t)u_{x_i}) = J_3(x,t) - \left(\frac{\partial H_{01}}{x_2} - \frac{\partial H_{02}}{x_1}\right)$$

A. Schafelner (JKU Linz)

- 3

(日) (周) (三) (三)

Roadmap

- **1** Derive an a priori bound for $|u|_{Q_t}$
- **2** Proof of solvability in the space $H^{1,0}(\mathcal{Q}_T)$
- Show that such a generalized solution is in $\mathring{V}_{2}^{1,0}(\mathcal{Q}_{T})$
- Proof of uniqueness in $H^{1,0}(\mathcal{Q}_T)$

Deriving of a bound for $|u|_{Q_t}$

To get a bound for the norm $|u|_{Q_t}$, we need to derive an energy balance equation. We follow the procedure:

• Multiply the PDE with \boldsymbol{u}

$$(\mathcal{M}u)u = (f + \frac{\partial f_i}{\partial x_i})u$$

• Integrate over the domain $\mathcal{Q}_t := \Omega \times (0,t)$

$$\int_{\mathcal{Q}_t} (\mathcal{M}u) u \, \mathrm{d}x \mathrm{d}t = \int_{\mathcal{Q}_t} (f + \frac{\partial f_i}{\partial x_i}) u \, \mathrm{d}x \mathrm{d}t$$

A. Schafelner (JKU Linz)

くほと くほと くほと

An Energy Balance Equation

We continue with

- Integration by parts and incorporation of the boundary conditions
- Rewriting the time derivative and obtaining the *energy balance* equation

$$\frac{1}{2} \|u(\cdot,t)\|_{2,\Omega}^2 + \int_{\mathcal{Q}_t} (a_{ij}u_{x_j}u_{x_i} + a_iuu_{x_i} + b_iu_{x_i}u + au^2) \, \mathrm{d}x \mathrm{d}t$$
$$= \frac{1}{2} \|u(\cdot,0)\|_{2,\Omega}^2 + \int_{\mathcal{Q}_t} (fu - f_iu_{x_i}) \, \mathrm{d}x \mathrm{d}t \quad (6)$$

We will use this equation to derive a bound for

$$|u|_{\mathcal{Q}_t} := \max_{0 \le \tau \le t} ||u(\cdot, \tau)||_{2,\Omega} + ||u_x||_{2,\mathcal{Q}_t}.$$

不同 とう きょうちょう

Deriving the bound

From (6) we obtain

$$\begin{split} \frac{1}{2} \| u(\cdot,t) \|_{2,\Omega}^2 &+ \nu \| u_x \|_{2,\mathcal{Q}_t}^2 \\ &\leq & \frac{1}{2} \| u(\cdot,0) \|_{2,\Omega}^2 + \frac{\nu}{2} \| u_x \|_{2,\mathcal{Q}_t}^2 + (\frac{2\mu^2}{\nu} + \mu) \| u \|_{2,\mathcal{Q}_t}^2 \\ &+ \| f \|_{2,1,\mathcal{Q}_t} \max_{0 \leq \tau \leq t} \| u(\cdot,\tau) \|_{2,\Omega} + \| f \|_{2,\mathcal{Q}_t} \| u_x \|_{2,\mathcal{Q}_t}. \end{split}$$

With some rewriting, we obtain then

$$\begin{aligned} \|u(\cdot,t)\|_{2,\Omega}^2 + \|u_x\|_{2,\mathcal{Q}_t}^2 \\ \leq y(t)\|u(\cdot,0)\|_{2,\Omega} + cty(t)^2 \\ + 2y(t)\|f\|_{2,1,\mathcal{Q}_t} + 2\|f\|_{2,\mathcal{Q}_t}\|u_x\|_{2,\mathcal{Q}_t} \equiv j(t) \end{aligned}$$

with $y(t) = \max_{0 \le \tau \le t} \|u(\cdot, \tau)\|_{2,\Omega}$ and $c = 2((2\mu^2)/\nu + \mu)$.

With this equation, we further obtain two inequalities

$$y(t)^2 \le j(t),$$

 $||u_x||^2_{2,Q_t} \le \nu^{-1} j(t).$

Taking the square root and adding them up yields

$$\begin{aligned} |u|_{\mathcal{Q}_{t}} &\equiv y(t) + ||u_{x}||_{2,\mathcal{Q}_{t}} \\ &\leq (1+\nu^{-\frac{1}{2}})\sqrt{ct}|u|_{\mathcal{Q}_{t}} + (1+\nu^{-\frac{1}{2}})|u|_{\mathcal{Q}_{t}}^{-1/2} \\ &\times \left(||u(\cdot,0)||_{2,\Omega} + 2||f||_{2,1,\mathcal{Q}_{t}} + ||f||_{2,\mathcal{Q}_{t}}\right)^{1/2} \end{aligned}$$

For $t < t_1 \equiv (1+\nu^{-\frac{1}{2}})^{-2}c^{-1}$, we get the estimate

$$|u|_{\mathcal{Q}_t} \leq (1+\nu^{-\frac{1}{2}})^2 (1-(1+\nu^{-\frac{1}{2}})\sqrt{ct})^{-2} \\ \times \left(\|u(\cdot,0)\|_{2,\Omega} + 2\|f\|_{2,1,\mathcal{Q}_t} + \|f\|_{2,\mathcal{Q}_t} \right)$$

イロト 不得下 イヨト イヨト

- 34

We subdivide out time interval [0,t] into subintervals Δ_l , i.e, $\Delta_1 = [0, \frac{1}{2}t_1], \Delta_2 = [\frac{1}{2}t_1, t_1], \ldots$, where length of the last interval Δ_N does not exceed $t_1/2$. On each of these subintervals we have now such a bound, therefore we obtain

$$|u|_{\mathcal{Q}_t} \le c_1(t)\mathcal{F}(t), \quad \forall t \in [0,T]$$
 (7)

with the constant $c_1(t)$ depending on μ , ν and t and with

 $\mathcal{F}(t) = \|u(\cdot, 0)\|_{2,\Omega} + 2\|f\|_{2,1,\mathcal{Q}_t} + \|\boldsymbol{f}\|_{2,\mathcal{Q}_T}.$

A. Schafelner (JKU Linz)

Definition of a Generalized Solution

Definition

We call $u \in H^{1,0}(\mathcal{Q}_T)$ a generalized solution in $H^{1,0}(\mathcal{Q}_T)$ (or $\mathring{H}^{1,0}(\mathcal{Q}_T)$), if it satisfies the integral identity

$$\mathcal{M}(u,\eta) \equiv \int_{\mathcal{Q}_T} (-u\eta_t + a_{ij}u_{x_j}\eta_{x_i} + a_iu\eta_{x_i} + b_iu_{x_i}\eta + au\eta) \,\mathrm{d}x\mathrm{d}t$$
$$= \int_{\Omega} \varphi\eta(x,0) \,\mathrm{d}x + \int_{\mathcal{Q}_T} (f\eta - f_i\eta_{x_i}) \,\mathrm{d}x\mathrm{d}t \quad (8)$$

for all $\eta \in \hat{H}_0^1(\mathcal{Q}_T) := \{ v \in H_0^1(\mathcal{Q}_T) : v |_{t=T} = 0 \}.$

A. Schafelner (JKU Linz)

1st IBVP for Parabolic Equations

November 15, 2016 9

Definition of a Generalized Solution

Definition

We call $u \in H^{1,0}(\mathcal{Q}_T)$ a generalized solution in $H^{1,0}(\mathcal{Q}_T)$ (or $\mathring{H}^{1,0}(\mathcal{Q}_T)$), if it satisfies the integral identity

$$\mathcal{M}(u,\eta) \equiv \int_{\mathcal{Q}_T} (-u\eta_t + a_{ij}u_{x_j}\eta_{x_i} + a_iu\eta_{x_i} + b_iu_{x_i}\eta + au\eta) \,\mathrm{d}x\mathrm{d}t$$
$$= \int_{\Omega} \varphi\eta(x,0) \,\mathrm{d}x + \int_{\mathcal{Q}_T} (f\eta - f_i\eta_{x_i}) \,\mathrm{d}x\mathrm{d}t \quad (8)$$

for all $\eta \in \hat{H}_0^1(\mathcal{Q}_T) := \{ v \in H_0^1(\mathcal{Q}_T) : v |_{t=T} = 0 \}.$

Does our problem have a generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$?

A. Schafelner (JKU Linz)

Proof of Solvability

We use a Galerkin approach. We take a fundamental system $\{\varphi_k(x)\}$ in $\mathring{H}^1(\Omega)$, which has been orthonormalized w.r. to $L_2(\Omega)$. Moreover, let $u^N(x,t) = \sum_{k=1}^N c_k^N(t)\varphi_k(x)$ be an approximate solution of the system

$$(u_{t}^{N},\varphi_{l}) + (a_{ij}u_{x_{i}}^{N} + a_{i}u^{N},(\varphi_{l})_{x_{i}}) + (b_{i}u_{x_{i}}^{N} + au^{N},\varphi_{l})$$

= $(f,\varphi_{l}) - (f_{i},(\varphi_{l})_{x_{i}}), \quad l = 1,...,N,$
 $c_{l}^{N}(0) = (\varphi,\varphi_{l})$
(9)

This is a system of N ODEs for $c_l(t) \equiv c_l^N(t)$, with principal terms $dc_l(t)/dt$. This system has a unique solution $c_l^N(t)$ on [0, T].

A. Schafelner (JKU Linz)

A bound for u^N

Next, we multiply each equation in (9) with the corresponding c_l^N , sum them all up and integrate w.r.t. t from 0 to $t \leq T$:

$$\begin{split} \int_{\mathcal{Q}_t} (u_t^N u^N + a_{ij} u_{x_j}^N u_{x_i}^N + a_i u^N u_{x_i}^N + b_i u_{x_i}^N u^N + a(u^N)^2) \, \mathrm{d}x \mathrm{d}t \\ &= \int_{\mathcal{Q}_t} (f u^N - f_i u_{x_i}^N) \, \mathrm{d}x \mathrm{d}t \end{split}$$

3

(日) (周) (三) (三)

A bound for u^N

Next, we multiply each equation in (9) with the corresponding c_l^N , sum them all up and integrate w.r.t. t from 0 to $t \leq T$:

$$\begin{split} \int_{\mathcal{Q}_t} (u_t^N u^N + a_{ij} u_{x_j}^N u_{x_i}^N + a_i u^N u_{x_i}^N + b_i u_{x_i}^N u^N + a(u^N)^2) \, \mathrm{d}x \mathrm{d}t \\ &= \int_{\mathcal{Q}_t} (f u^N - f_i u_{x_i}^N) \, \mathrm{d}x \mathrm{d}t \end{split}$$

As before, the energy balance equation holds and moreover the bound

$$|u^N|_{\mathcal{Q}_t} \le c_1(t),$$

where $c_1(t)$ is a constant independent of N.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

The sequence $\{u^N\}$ is bounded, it has a subsequence $\{u^{N_k}\}$, that converges weakly, together with the derivatives $u_{x_i}^{N_k}$, in $L_2(\mathcal{Q}_T)$ to some element $u(x,t) \in \mathring{H}^{1,0}(\mathcal{Q}_T)$. This element u(x,t) is the desired generalized solution.

The sequence $\{u^N\}$ is bounded, it has a subsequence $\{u^{N_k}\}$, that converges weakly, together with the derivatives $u_{x_i}^{N_k}$, in $L_2(\mathcal{Q}_T)$ to some element $u(x,t) \in \mathring{H}^{1,0}(\mathcal{Q}_T)$. This element u(x,t) is the desired generalized solution.

We multiply each equation in (9) with some arbitrary, absolutely continuous function $d_l(t)$, with $dd_l/dt \in L_2(0,T)$ and $d_l(T) = 0$. Again, we add them up, integrate over (0,T) and obtain the result

$$\mathcal{M}(u^N, \mathbf{\Phi}) = \int_{\Omega} \varphi \mathbf{\Phi}|_{t=0} \, \mathrm{d}x + \int_{\mathcal{Q}_T} (f \mathbf{\Phi} - f_i \mathbf{\Phi}_{x_i}) \, \mathrm{d}x \mathrm{d}t$$

with $\mathcal{M}(\cdot, \cdot)$ as before and $\Phi(x, t) = \sum_{l=1}^{N} d_l(t) \varphi_l(x)$.

A. Schafelner (JKU Linz)

We denote by \mathfrak{M}_N the set of functions $d_l(t)$, l = 1, ..., N, which fulfil the conditions above. The totality $\bigcup_{p=1}^{\infty} \mathfrak{M}_p$ is dense in the subspace $\hat{H}_0^1(\mathcal{Q}_T)$ of $H_0^1(\mathcal{Q}_T)$.

We denote by \mathfrak{M}_N the set of functions $d_l(t)$, l = 1, ..., N, which fulfil the conditions above. The totality $\bigcup_{p=1}^{\infty} \mathfrak{M}_p$ is dense in the subspace $\hat{H}_0^1(\mathcal{Q}_T)$ of $H_0^1(\mathcal{Q}_T)$.

We fix now a $\Phi \in \mathfrak{M}_p$ and take the limit of the subsequence $\{u^{N_k}\}$, starting with $N_k \ge p$. We obtain the definition of a generalized solution (8) for u(x,t), with $\eta = \Phi \in \mathfrak{M}_p$. As the union $\bigcup_{p=1}^{\infty} \mathfrak{M}_p$ is dense in $\hat{H}_0^1(\mathcal{Q}_T)$, the definition holds for any $\eta \in \hat{H}_0^1(\mathcal{Q}_T)$, that means u(x,t) is indeed a generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$.

An Existence Theorem

Theorem 3.1

If the conditions $a_{ij} = a_{ji}$,

$$\sqrt{\sum_{i=1}^{n} a_i^2}, \quad \sqrt{\sum_{i=1}^{n} b_i^2}, \quad |a| \le \mu, \\
\varphi \in L_2(\Omega), \quad f \in L_{2,1}(\mathcal{Q}_T), \quad f_i \in L_2(\mathcal{Q}_T)$$

and

$$\nu\xi^2 \le a_{ij}(x,t)\xi_i\xi_j \le \mu\xi^2, \quad \nu,\mu = const > 0.$$

are fulfilled, the problem has a generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$

A. Schafelner (JKU Linz)

1st IBVP for Parabolic Equations

An Existence Theorem

Theorem 3.1

If the conditions $a_{ij} = a_{ji}$,

$$\sqrt{\sum_{i=1}^{n} a_i^2}, \quad \sqrt{\sum_{i=1}^{n} b_i^2}, \quad |a| \le \mu,$$
$$\varphi \in L_2(\Omega), \quad f \in L_{2,1}(\mathcal{Q}_T), \quad f_i \in L_2(\mathcal{Q}_T)$$

and

$$\nu\xi^2 \le a_{ij}(x,t)\xi_i\xi_j \le \mu\xi^2, \quad \nu,\mu = const > 0.$$

are fulfilled, the problem has a generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$

But is this solution unique?

A. Schafelner (JKU Linz)

Repetition

Uniqueness of a Solution

We will now use the following two theorems from the last presentation. Theorem 2.2

The problem

$$u_t - \Delta u = f + \frac{\partial f_i}{\partial x_i}$$
$$u|_{t=0} = \varphi(x), \qquad u|_{S_T} = 0$$

cannot have more than one generalized solution in $L_2(\mathcal{Q}_T)$.

A. Schafelner (JKU Linz)

1st IBVP for Parabolic Equations

November 15, 2016 15 / 22

Uniqueness of a Solution

We will now use the following two theorems from the last presentation. Theorem 2.2

The problem

$$u_t - \Delta u = f + \frac{\partial f_i}{\partial x_i}$$
$$u|_{t=0} = \varphi(x), \qquad u|_{S_T} = 0$$

cannot have more than one generalized solution in $L_2(\mathcal{Q}_T)$.

Theorem 2.3

The problem in Thm. 2.2 has a generalized solution in $\mathring{V}_{2}^{1,0}(\mathcal{Q}_{T})$ for $\varphi \in L_{2}(\Omega)$, $f \in L_{2,1}(\mathcal{Q}_{T})$, and $f_{i} \in L_{2}(\mathcal{Q}_{T})$.

Now we consider our generalized solution $u \in \mathring{H}^{1,0}(\mathcal{Q}_T)$ as a generalized solution in $L_2(\mathcal{Q}_T)$ for the problem

$$u_t - \Delta u = \tilde{f} + \frac{\partial f_i}{\partial x_i}$$
(10)
$$u|_{t=0} = \varphi(x), \qquad u|_{S_T} = 0$$
(11)

with $\tilde{f} = f - b_i u_{x_i} - au$ and $\tilde{f}_i = f_i + a_{ij} u_{x_j} + a_i u - u_{x_i}$. It holds that $\tilde{f} \in L_{2,1}(\mathcal{Q}_T)$ and $\tilde{f}_i \in L_2(\mathcal{Q}_T)$.

We transform the identity

$$\mathcal{M}(u,\eta) = \int_{\Omega} \varphi \eta(x,0) \, \mathrm{d}x + \int_{\mathcal{Q}_T} (f\eta - f_i \eta_{x_i}) \, \mathrm{d}x \mathrm{d}t$$

to

$$\int_{\mathcal{Q}_T} u(\eta_t + \Delta \eta) \, \mathrm{d}x \mathrm{d}t + \int_{\Omega} \varphi \eta(x, 0) \, \mathrm{d}x = \int_{\mathcal{Q}_T} (-\tilde{f}\eta + \tilde{f}_i \eta_{x_i}) \, \mathrm{d}x \mathrm{d}t \quad (12)$$

which holds for all $H_0^{\Delta,1}(\mathcal{Q}_T)$ with $\eta|_{t=T} = 0$.

A. Schafelner (JKU Linz)

3

< (17) × <

Then it follows from Thm. 2.2 that u is indeed unique in $L_2(\mathcal{Q}_T)$ and from Thm. 2.3 the problem (12) has a generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$.

Then it follows from Thm. 2.2 that u is indeed unique in $L_2(\mathcal{Q}_T)$ and from Thm. 2.3 the problem (12) has a generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$. Moreover, it holds that

$$\frac{1}{2} \|u(\cdot,t)\|_{2,\Omega}^2 + \|u_x\|_{2,\mathcal{Q}_t}^2 = \frac{1}{2} \|u(\cdot,0)\|_{2,\Omega}^2 + \int_{\mathcal{Q}_t} (\tilde{f}u - \tilde{f}_i u_{x_i}) \, \mathrm{d}x \mathrm{d}t \quad (13)$$

and

$$\int_{\Omega} u(x,t)\eta(x,t) \, \mathrm{d}x - \int_{\Omega} \varphi \eta(x,0) \, \mathrm{d}x + \int_{\mathcal{Q}_t} (-u\eta_t + u_x\eta_x) \, \mathrm{d}x \mathrm{d}t = \int_{\mathcal{Q}_t} (\tilde{f}\eta - \tilde{f}_i\eta_{x_i}) \, \mathrm{d}x \mathrm{d}t.$$
(14)

A. Schafelner (JKU Linz)

We can easily rewrite (13) to our energy balance equation (6) and we rewrite (14) to

$$\int_{\Omega} u(x,t)\eta(x,t) \, \mathrm{d}x - \int_{\Omega} \varphi \eta(x,0) \, \mathrm{d}x + \int_{\mathcal{Q}_t} (-u\eta_t + a_{ij}u_{x_j}\eta_{x_i} + a_i u\eta_{x_i} + b_i u_{x_i}\eta + au\eta) \, \mathrm{d}x \mathrm{d}t = \int_{\mathcal{Q}_t} (f\eta - f_i\eta_{x_i}) \, \mathrm{d}x \mathrm{d}t.$$
(15)

We have now proved that any generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$ is a generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$ and they fulfil the energy balance equation (6) and (15). Are these solutions unique?

Suppose we have two generalized solutions $u' \neq u''$ for the same right hand side and initial data, then the difference u = u' - u'' is also a generalized solution in $\mathring{H}^{1,0}(\mathcal{Q}_T)$ with zero right hand side and homogeneous initial data. We have shown that it is then also a generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$ and fulfils

$$\frac{1}{2} \|u(\cdot,t)\|_{2,\Omega}^2 + \|u_x\|_{2,\mathcal{Q}_t}^2 = 0$$

as well as

 $|u|_{\mathcal{Q}_t} \le 0.$

From this, we deduce that u = 0 and moreover u' = u'', hence it is unique in $H^{1,0}(\mathcal{Q}_T)$.

An Uniqueness Theorem

With these arguments, it follows that the operator B, which assigns each $\{f; f_i; \varphi\}$ its generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$ is linear and that the energy balance equation is a result of (15).

Theorem

Under the assumptions of Theorem 3.1, any generalized solution from $H^{1,0}(\mathcal{Q}_T)$ is the generalized solution in $\mathring{V}_2^{1,0}(\mathcal{Q}_T)$ and it is unique in $H^{1,0}(\mathcal{Q}_T)$.

Thank you for your attention!

A. Schafelner (JKU Linz)

1st IBVP for Parabolic Equations

November 15, 2016

< 67 ▶

3