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The Problem
The Problem

Let Qr = Q x (0,7) be a space-time cylinder with a sufficiently smooth

boundary. We consider the problem
0
Mu =uy — ——(aii(z, t)ug,; + ai(z,t)u)

8901-
B Ofi
+ bi(x, t)ug, +alz,t)u= f+ Py

u’t=0 = g0($), u|ST =0

with the conditions a;; = aj;,

n

n
SN S NN
i=1 =1

0 € La(), f€Loi(Qr), fi€LaQr)

and
vE? < aij(z, )¢ < puE?, v, pu = const > 0.
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The Problem
Motivation

Consider an electrical machine with the follwing assumptions:
Q0 Q=0 x (—00,+00)
9 JZ = (07 07 J3(x1a x?))T
@ M = Hy = (Hou(z1,x2), Hoz(21,22),0)7,
H = (Hi(x1,22), Hy(x1,22),0)"
With the ansatz B = curlA, where A = (0,0, u(z1,72))T, we obtain the
equations

OHp1  OHpo

0
Oy (@, t)ua,) = J3(z,t) — ( T2 Z1

)

Ut
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UL
Roadmap

@ Derive an a priori bound for |u|g,

@ Proof of solvability in the space H(Q7)

© Show that such a generalized solution is in %I’O(QT)
@ Proof of uniqueness in H19(Qr)
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Deriving of a bound for |u|g,

Deriving of a bound for |u|o,

To get a bound for the norm |u|g,, we need to derive an energy balance

equation. We follow the procedure:
o Multiply the PDE with u

ofi
ox;

(Muu = (f + Sy

@ Integrate over the domain Q; := Q x (0, )

/Qt(/\/lu)u dxdt:/ (f + afz) dadt
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An Energy Balance Equation
An Energy Balance Equation

We continue with

@ Integration by parts and incorporation of the boundary conditions

@ Rewriting the time derivative and obtaining the energy balance

equation

1
§Hu(-,t)||%@ —I—/ (Qijte; Ug; + aiutty; + biug,u + aug) dzdt

o

1
= 5 lu(,0)]

We will use this equation to derive a bound for

ulo, = gmasx [u(7) a0 + uell20
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Deriving the bound
Deriving the bound

From (6) we obtain

1
G Dl + Vi3 o,
1 v 242
<l OB+ o, + (P + )l g,

+1f

With some rewriting, we obtain then

lul )30+ lluall3 o,
<y(®)llu(-, 0)ll2 + cty(t)*

+ 2y I fll2,1,00 + 20 Fll2,0 uall2,0 = (1)
with y(t) = maxo<s<¢ [u(-,)[l2.0 and ¢ = 2((2u2) /v + p).
1st IBVP for Parabolic Equations November 15, 2016
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Deriving of a bound for |u|g, Deriving the bound

With this equation, we further obtain two inequalities
y(t)* < (),
luzll3.0, < v ().
Taking the square root and adding them up yields
lulg, = y(t) + llucll2,0,
1 1 —
<(U+v2)Vellulg, + (1 +v72)|ulg,”?
1/2
x (lluC, 0)ll2.0 + 2l f 21,0 + 1 £ll2,0:)

Fort<t;=(1+ 1/7%)_20_1, we get the estimate

ulo, <(1+v72)2(1 = (14 v 2)Vet) 2
x (lu(-,0)l2.0 +2[ fllor.00 + | fll2.00)
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Deriving of a bound for |u|g, Deriving the bound

We subdivide out time interval [0, ¢] into subintervals A, i.e,

A =0, %tl], Ay = [%tl,tl], ..., Where length of the last interval Ay does
not exceed t;/2. On each of these subintervals we have now such a
bound, therefore we obtain

|U‘Qt < Cl(t)f(t)> Vt € [OaT] (7)
with the constant ¢ (t) depending on p, v and ¢ and with

F (@) = [lu(-0)llz.0 + 2l fll2.1.0, + | Fll2.0r-
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Proof of Solvability

Definition of a Generalized Solution

Definition
We call u € H-0(Qr) a generalized solution in H°(Qr) (or H°(Q7)),
if it satisfies the integral identity
M(u,n) = / (—ume + @ijus,Ne; + aiung, + biug,n + aun) dzdt
Qr

_ /W@,m dz + / (fn— fins,) dadt  (8)
Q Or

for all n € HY(Qr) := {v € HY(Qr) : v|s=r = 0}.
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Proof of Solvability

Definition of a Generalized Solution

Definition
We call u € H-0(Qr) a generalized solution in H°(Qr) (or H°(Q7)),
if it satisfies the integral identity
M(u,n) = / (—ume + @ijus,Ne; + aiung, + biug,n + aun) dzdt
Qr

— [ente0y o [ (n- i) dudt ()
Q Qr

for all n € HY(Qr) := {v € HY(Qr) : v|s=r = 0}.

Does our problem have a generalized solution in H?(Q7r)?
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Proof of Solvability

We use a Galerkin approach. We take a fundamental system {¢x(z)} in
H'(Q), which has been orthonormalized w.r. to Ly(£2). Moreover, let
ulN(z,t) = fo:l el (t)pr(x) be an approximate solution of the system

(ui\/’ (Pl) + (aiju;]c\i + aiuNa (Spl)xz) + (bzui\z + CLUN, (pl)
=(f,o1) = (fi, (@)z;), 1=1,..,N,

e (0) = (¢, 1)
(9)

This is a system of N ODEs for ¢;(t) = ¢/ (t), with principal terms
dey(t)/dt. This system has a unique solution ¢! (¢) on [0, T7.
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Proof of Solvability [NCITLERE AT

A bound for u®

Next, we multiply each equation in (9) with the corresponding c!¥, sum
them all up and integrate w.r.t. ¢t from O to ¢t < T~

i

/ (uNu + aijuajyjui\i + aiu™Nul) + bull o + a(uM)?) dzdt
Q¢

— / (fu® — full) dedt
[of
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Proof of Solvability [NCITLERE AT

A bound for u®

Next, we multiply each equation in (9) with the corresponding c!¥, sum
them all up and integrate w.r.t. ¢t from O to ¢t < T~

uNu + g ulN Wl + auN el + e o + a(wN)?) dedt
0 t J x4 Ty X4 T4
t

— / (fu® — full) dedt
[of

As before, the energy balance equation holds and moreover the bound
|uN|Qt < Cl(t)>

where ¢ (t) is a constant independent of N.
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Proof of Solvability

The sequence {1V} is bounded, it has a subsequence {u’V¥}, that
converges weakly, together with the derivatives ui\i’c in Lo(Qr) to some

element u(z,t) € H0(Qr). This element u(z, ) is the desired
generalized solution.
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Proof of Solvability

The sequence {1V} is bounded, it has a subsequence {u’V¥}, that
converges weakly, together with the derivatives ui\i’c in Lo(Qr) to some
element u(z,t) € H0(Qr). This element u(z, ) is the desired
generalized solution.

We multiply each equation in (9) with some arbitrary, absolutely
continuous function d;(t), with dd;/dt € L2(0,T) and d;(T) = 0. Again,
we add them up, integrate over (0,7) and obtain the result

M, ®) =/¢<I>|t:0 d:z:+/ (f® — f;®,,) dodt
Q Qr

with M(-,-) as before and ®(x,t) = S, di(t)pi(x).
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Proof of Solvability

We denote by My the set of functions d;(t), I =1, ..., N, which fulfil the
conditions above. The totality [J,Z, 90, is dense in the subspace H}(Or)
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Proof of Solvability

We denote by My the set of functions d;(t), I =1, ..., N, which fulfil the
conditions above. The totality [J,Z, 90, is dense in the subspace H)(Or)
We fix now a ® € 9, and take the limit of the subsequence {u™*},
starting with IV, > p. We obtain the definition of a generalized solution
(8) for u(z,t), with n = ® € M, As the union [ J;2; M, is dense in
H}(Qr), the definition holds for any n € H}(Qr), that means u(z,t) is
indeed a generalized solution in H0(Q7).
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Proof of Solvability An Existence Theorem

An Existence Theorem

Theorem 3.1
If the conditions a;; = aj;,

0 € La()), f€Loi(Qr), fi€ LaQr)

and
vE? < agj(x,0)6&; < p€®, v = const > 0.

are fulfilled, the problem has a generalized solution in H0(Qy)
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An Existence Theorem
An Existence Theorem

Theorem 3.1
If the conditions a;; = aj;,

0 € La()), f€Loi(Qr), fi€ LaQr)

and
vE? < agj(x,0)6&; < p€®, v = const > 0.

are fulfilled, the problem has a generalized solution in H0(Qy)

But is this solution unique?
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Uniqueness of a Solution Repetition

Uniqueness of a Solution

We will now use the following two theorems from the last presentation.
Theorem 2.2
The problem

ofi
ut—Au:f—i—ai‘

uli=o = (),  uls; =0

cannot have more than one generalized solution in Ly(Q7).
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Uniqueness of a Solution Repetition

Uniqueness of a Solution

We will now use the following two theorems from the last presentation.

Theorem 2.2

The problem
wi— Au = f 4 2
8952-
u’t:(] - 90(1')7 U|ST =0

cannot have more than one generalized solution in Ly(Q7).

Theorem 2.3

The problem in Thm. 2.2 has a generalized solution in V,"°(Qr) for
(NS LQ(Q), f S LZJ(QT), and fl c LQ(QT).
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Uniqueness of a Solution Application to our problem

Now we consider our generalized solution u € ﬁ170(QT) as a generalized
solution in Ly(Q7p) for the problem

- Of;
U|ST =0 (11)

with f = f — bjuy, — au and f; = f; + aijuq; + a;u — ug,. It holds that
f € L1(Qr) and f; € La(Qr).

U’t:() - QO(‘T)7
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Uniqueness of a Solution Application to our problem

We transform the identity

M(u,n) Z/Qsm(x,o) dﬂf+/QT(f77—fmxi)dxdt
to

[l dn) dnde+ [ gn0)do = [ (=Frt Fons) dodt (12)
Or Q Or

which holds for all Hy"' (Qr) with n|—7 = 0.
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Uniqueness of a Solution Application to our problem

Then it follows from Thm. 2.2 that u is indeed unique in L2(Q7r) and
from Thm. 2.3 the problem (12) has a generalized solution in Vzl’o(QT).
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Uniqueness of a Solution Application to our problem

Then it follows from Thm. 2.2 that u is indeed unique in L2(Q7r) and
from Thm. 2.3 the problem (12) has a generalized solution in VZLO(QT).
Moreover, it holds that

1 1 ~ -
SIC D+ uelo, = 5.0l + [ (Fu— fau) dadt (13
t

and

/Q u(x, t)n(z,t) doe — /ng](x,O) dz
+ /Qt(—l”?t + an:c) dzdt = /t(fn - fﬂ?xz) dzdt. (14)
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Uniqueness of a Solution Application to our problem

We can easily rewrite (13) to our energy balance equation (6) and we
rewrite (14) to

[ttty do— [ ne0) da
Q Q
+ / (—um + @i, Mo, + aiung, + biug,n + aun) dzdt
Ot

= / (fn = fina,) dadt. (15)

t

We have now proved that any generalized solution in f[l*o(QT) is a
generalized solution in V21’0(QT) and they fulfil the energy balance
equation (6) and (15). Are these solutions unique?
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Uniqueness of a Solution Application to our problem

Suppose we have two generalized solutions u’ # u” for the same right
hand side and initial data, then the difference u = v’ — u” is also a
generalized solution in H(Qy) with zero right hand side and
homogeneous initial data. We have shown that it is then also a generalized
solution in V,"°(Qr) and fulfils

1
§||u(~,t)|!§,g +luzl3.0, =0

as well as
|U|Qt <0.

From this, we deduce that u = 0 and moreover u' = u”, hence it is unique
in H19(Qr).
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T
An Uniqueness Theorem

With these arguments, it follows that the operator B, which assigns each

{f; fi; ¢} its generalized solution in VQI’O(QT) is linear and that the energy
balance equation is a result of (15).

Theorem

Under the assumptions of Theorem 3.1, any generalized solution from
H'Y(Qr) is the generalized solution in V21’0(QT) and it is unique in
Hl’O(QT).
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The End?

Thank you for your attention!
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