Stability of Petrov-Galerkin discretizations: Application to the space-time weak formulation for parabolic evolution problems

Sahar Faghfouri

NUMA seminar

January 24, 2017

Schedule for the talks

Sahar Faghfouri

- Introduction to the Petrov-Galerkin discretization
- General Set-up and Main Result

Felix Scholz

Application to Space-Time Weak Formulation

Schedule for the talks

Sahar Faghfouri

- Introduction to the Petrov-Galerkin discretization
- General Set-up and Main Result

Felix Scholz

Application to Space-Time Weak Formulation

Our goal

We want to prove that

- under standard approximation and smoothness conditions
- without any further coupling between the discrete trial and test spaces for sufficiently regular operators

the **discrete inf-sup condition** for a priori fixed **Petrov-Galerkin discretization** is satisfied uniformly .

Outline

Basic Concepts

2 Petrov-Galerkin discretization

3 General Set-up and Main Result

Basic Concepts

Let $B \in \mathcal{L}(X,Y')$, X and Y' be two Hilbert spaces.

Generic operator equation:

$$Bu=f \quad u\in X, \quad f\in Y'$$

Boundedly invertible operator

Three conditions:

$$\text{(i) Boundedness}: \qquad C_B:= \sup_{v \in X \setminus \{0\}} \sup_{q \in Y \setminus \{0\}} \frac{|\langle Bv, q \rangle|}{\|v\|_X \|q\|_Y} < \infty$$

$$\text{(\it{ii}) Inf-sup condition}: \qquad c_B := \inf_{v \in X \setminus \{0\}} \sup_{q \in Y \setminus \{0\}} \frac{|\langle Bv, q \rangle|}{\|v\|_X \|q\|_Y} > 0$$

$$(\textit{iii}) \; \textit{Surjectivity}: \qquad \sup_{v \in X \setminus \{0\}} |\langle Bv, q \rangle| > 0 \quad \; \forall q \in Y \setminus \{0\}$$

Babuska Aziz theorem

The operator B is **boundedly invertible** if and only if the operator is **bounded**, **surjective** and if an **inf-sup condition** is fulfilled.

Petrov-Galerkin discretization

Petrov-Galerkin discretization w.r.t discrete subspaces $S_j \subset X$ and $Q_l \subset Y$:

The Petrov-Galerkin solution $u_j \in S_j$ is given by the solution of the variational problem

$$\langle Bu_j,q_l\rangle = \langle f,q_l\rangle \quad \text{ for all } q_l \in Q_l.$$

The **minimal residual Petrov-Galerkin** solution of Bu=f is defined as the minimizer of the functional residual

$$u_j := \text{arg} \min_{v_j \in S_j} \sup_{q_l \in Q_l \setminus \{0\}} \frac{|\langle Bv_j - f, q_l \rangle|}{\|q_l\|_Y}$$

Three conditions for discrete subspaces

The operator B is bounded on the discrete subspaces as well since

$$\sup_{v_j \in S_j \setminus \{0\}} \sup_{q_l \in Q_l \setminus \{0\}} \frac{|\langle Bv_j, q_l \rangle|}{\|v_j\|_X \|q_l\|_Y} \leq \sup_{v \in X \setminus \{0\}} \sup_{q \in Y \setminus \{0\}} \frac{|\langle Bv, q \rangle|}{\|v\|_X \|q\|_Y} < \infty.$$

But for general B, the inf-sup condition on the spaces \boldsymbol{X} and \boldsymbol{Y} does generally not imply its discrete counterpart

$$\inf_{v_j \in S_j \setminus \{0\}} \sup_{q_l \in Q_l \setminus \{0\}} \frac{|\langle Bv_j, q_l \rangle|}{\|v_j\|_X \|q_l\|_Y} =: \beta_{j,l} > 0$$

Remark on discrete inf-sup condition

- The discrete inf-sup condition determines the stability of a Petrov-Galerkin approach
- lacksquare The constants $eta_{j,l}$ can be bounded uniformly by a constants eta>0
- \blacksquare Otherwise stability problem appears for the limit $S_j \to X$ and $Q_l \to Y$

Quasi optimality of Petrov-Galerkin solutions

Theorem

Let $B \in \mathcal{L}(X,Y')$ and assume that the discrete inf-sup condition with respect to $S_j \subset X$ and $Q_l \subset Y$ is satisfied. Then for any $u \in X$ there exists a unique $u_i \in S_j$ which satisfies

$$\mathcal{R}_l(u_j) = \inf_{v_j \in S_j} \mathcal{R}_l(v_j),$$

$$\mathcal{R}_l(v_j) := \sup_{q_l \in Q_l \setminus \{0\}} \frac{|\langle Bv_j - Bu, q_l \rangle|}{\|q_l\|_{\boldsymbol{\mathcal{Y}}}}.$$

Moreover, there holds the quasi-optimality estimate

$$\|u-u_j\|_X \leq \frac{C_B}{\beta_{j,l}}\inf_{v_j \in S_j} \|u-v_j\|_X,$$

with discrete inf-sup constant $\beta_{i,l}$ and continuity constant C_B .

Quasi optimality of Petrov-Galerkin solutions

If the discrete inf-sup condition is satisfied uniformly ,i.e., $\inf_{j,l} \beta_{j,l} \geq \beta > 0$ for some β independent of j and l, then \mathbf{u}_j is the quasi-optimal approximation of u with

$$\|u-u_j\|_X \leq \frac{C_B}{\beta}\inf_{v_j \in S_j} \|u-v_j\|_X.$$

otherwise, if $\beta_{j,l}$ tends to zero for $j,l \to \infty$, the quasi-optimality constants $\frac{C_B}{\beta_{j,l}}$ tend to infinity.

General Set-up and Main Result

Let X, Y and $\mathcal H$ are three Hilbert spaces. By identifying the pivot space $\mathcal H$ with its dual we obtain the Gelfand triple

$$X \hookrightarrow \mathcal{H} \hookrightarrow X'.$$

Let $X'_+ \hookrightarrow X'$ and $Y_+ \hookrightarrow Y$ are Hilbert spaces which are continuously and densely embedded in X' and Y.

General Set-up and Main Result

Assuming a B.I.O. $B \in \mathcal{L}(X,Y'),$ there are constants $0 < C_B < \infty$ and $0 < c_B < \infty$ with

$$\|Bv\|_{Y'} \leq C_B \|v\|_{\mathcal{X}} \quad \ (v \in X), \ \ \text{and} \quad \|B^{-1}\tilde{q}\|_X \leq c_B^{-1} \|\tilde{q}\|_{Y'} \quad \ (\tilde{q} \in Y').$$

To prove a U.D. inf-sup condition the dual operator $B':Y\to X'$ by

$$\langle v, B'q \rangle_{X \times X'} := \langle Bv, q \rangle_{Y' \times Y} \quad (v \in X, q \in Y)$$

is defined. It is well known that $B\in \mathcal{L}(X,Y')$ implies $B'\in \mathcal{L}(Y,X')$ with

$$\|\mathbf{B}'\|_{\mathbf{Y}\to\mathbf{X}'} = \|\mathbf{B}\|_{\mathbf{X}\to\mathbf{Y}'}$$
 and $\|(\mathbf{B}'^{-1})\|_{\mathbf{X}'\to\mathbf{Y}} = \|\mathbf{B}^{-1}\|_{\mathbf{Y}'\to\mathbf{X}}$.

Regularity assumption on operator B

Assumption 1

Assume that the dual operator B^\prime satisfies the regularity condition

$$(B')^{-1} \in \mathcal{L}(X'_+,Y_+), \quad \text{with} \quad \|(B')^{-1}\|_{\mathcal{L}(X'_+,Y_+)} \leq C_+,$$

with a constant $0 < C_+ < \infty$.

Jackson-Bernstein estimates

Assumption 2 (part I)

Let $\{S_j\}_{j=j_0}^{\infty}\subset X$, and $\{\tilde{S}_j\}_{j=j_0}^{\infty}\subset X'_+$ and $\{Q_l\}_{l=l_0}^{\infty}\subset Y_+$ be closed subspaces such that for some $\rho>1$ the **Bernstein estimate**

$$\|\tilde{\boldsymbol{v}}_j\|_{\boldsymbol{X}_+'} \leq C_{\boldsymbol{B},\boldsymbol{X}'} \rho^j \|\tilde{\boldsymbol{v}}_j\|_{\boldsymbol{X}'} \quad \tilde{\boldsymbol{v}}_j \in \tilde{\boldsymbol{S}}_j,$$

as well as the Jackson estimate

$$\inf_{q_l \in \mathcal{Q}_l} \|q - q_l\|_Y \le C_{J,Y} \rho^{-l} \|q\|_{Y_+}, \quad q \in Y_+$$

are satisfied with constants $C_{B,X'}, C_{J,Y} > 0$.

Jackson-Bernstein estimates

Assumption 2 (part II)

Moreover, we assume that the reverse Cauchy-Schwarz inequality holds on \boldsymbol{X} :

For every $v_j \in S_j$ there exists an element $\tilde{v}_j \in \tilde{S}_j$, depending on v_j , such that

$$\|v_j\|_X\|\tilde{v}_j\|_{X'} \leq C_{CS}\langle v_j,\tilde{v}_j\rangle_{X\times X'},$$

with a constant $C_{CS}>0$, where $\langle .,.\rangle_{X\times X'}$ denotes the duality pairing between X and X' induced by the pivot space \mathcal{H} .

Lemma

Assume that Assumption 1 and Assumption 2 are fulfilled. Then, for arbitrary $\tilde{v}_j \in \tilde{S}_j$ there exists an element $q_l \in Q_l$, depending on \tilde{v}_j such that

$$\|\tilde{v}_j - B'q_l\|_{X'} \le C_{J,X'} \rho^{-(l-j)} \|\tilde{v}_j\|_{X'}$$

with a constant $C_{J,X^\prime} := C_B C_+ C_{J,Y} C_{B,X^\prime}$ and

$$\|q_l\|_Y \leq c_B^{-1} (C_{J,X'} \rho^{-(l-j)} + 1) \|\tilde{v}_j\|_{X'}$$

Theorem

Assume that Assumptions 1 and 2 are fulfilled. Choose $L \in \mathbb{N}$ such that

$$C_{CS}C_{J,X'}\rho^{-L} < 1$$

with constants C_{J,X^\prime} and C_{CS} as in Lemma and reverse Cauchy-Schwarz inequality and set

$$1 \ge j + L$$

for any refinement level j. Then the discrete inf-sup condition

$$\inf_{v_j \in S_j \setminus \{0\}} \sup_{q_l \in Q_l \setminus \{0\}} \frac{\left| \langle Bv_j, q_l \rangle \right|}{\|v_j\|_X \|q_l\|_Y} \geq \beta > 0$$

is satisfied with a constant β uniformly bounded away from 0 as $j \to \infty$. In particular, β is given by

$$\beta := \frac{C_{CS}^{-1} - C_{J,X'} \rho^{-L}}{c_B^{-1} (C_{J,X'} \rho^{-L} + 1)}.$$

Thank you for your attention