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Introduction

m A hyperbolic PDE of order n is a PDE that has a well-posed initial
value problem for the first n—1 derivatives.

m Many equations in mechanics are hyperbolic.

m A linear hyperbolic equation in one dimensional is called wave
equation.



A simple 1D wave

. . ir
Linear wave equations

A simple 1D wave

The simplest equation expressing a wave is given by

O o(t,x) = 93 9(t,x)
where t € (0, T).

t=0... Initial time

T >0... Final time

x € R... Position on the real line

o(t,x)... Displacement at t and position x
¢ >0... Wave speed



Linear wave equations

A simple 1D wave

For given initial displacement ¢(0,.) and velocity d;¢(0,.), the solution is
obtained by d'Alembert formula:

o(t,x) = 1<(p(0,x— ct) + p(0,x + ct) +i/x+:t8t(p(0,§)d§>

2 X—Ci

Solutions in the bounded interval Q = (0, ) with Dirichlet boundary
conditions: ¢(t,0) = @(t,m) =0 can be expand into eigenmodes of the
operator AQ = —d2¢ in the domain D(A) = H}(Q):

o

o(t,x) = Z <akcos(ckt) + Bksin(ckt)) sin(kx)

k=1

Coefficients are determined by the initial displacement ¢(0,-) and
velocity d:9(0,-).
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Linear wave equations

A simple 1D wave

Special case ¢(0,x) =1 and d:¢(0,x) =0 for x € (0,7) and c =1

Fourier representation:

4 oo
;; kHcos (2k +1)t)sin((2k +1)x)
1

2

(@o(x+1t)+@o(x 1))
1 xe(0,m)+2nZ

0o(x) = 0 X € Tl
-1 xe(-m,0)+21Z



Linear wave equations

Waves in solids

Stress rate

9:0 = d(£(F)) = D(£(Dg))2(F) = D(E(Dg))(Dv) ()

¢(-,-) ... Deformation vector in elastic solid Q C R3
v=20:0... Velocity

6 =5(F)... Stress tensor

3(-)... Stress response function

F=Dg@ =Ve... Deformation gradient

Linear approximation of (*) by assuming small strains and ¢ ~ id :

atG = C[DV]

C=D3(I)... Elasticity tensor
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Linear wave equations

Waves in solids

The elasticity tensor
o = Atr(€)I42ue = Ce(u)
in isotropic media is characterized by Lame parameters A >0 and u >0 .

@ =x+u--- Deformation vector in elastic solid Q C R3
v =0;p = dpu--- Velocity

o =Ceg(u)--- Stress tensor

So the stress rate for linear elasticity

9,0 = 9,(Ce(u)) = Ce(du) = Ce(v)
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Linear wave equations

Waves in solids

2u+32

Introducing the compression modulus K = and the shear term

1
dev(c)=0— gtrace(c)l
Implies
Ce =2ue+ Atrace(€)l = 2udev(g) + Ktrace(e)l
and

1 3
-1 - _ _
Clo= o dev(o)+ K1.“race(cf)I
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Linear wave equations

Waves in solids

Newton's law for the balance of forces

The equation
porv=divo+b
p ... Mass density

0:v... Acceleration
b... Body force
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Waves in compressible fluids

Compressible flow

Compressible flow is the branch of fluid mechanics that deals with flows
having significant changes in fluid density.

In fluids shear forces can be neglected i.e we assume . — 0. Then stress

o=pl
is isotropic with hydrostatic pressure
1

= —trace

P=3

and compression waves are described by

oip=xdivv, pdiv=Vp+b

92p—CAp=f
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Electro-magnetic waves

Definition
Electromagnetical fields are described by Maxwell’'s equations introduced
by " James clerk Maxwell” in 1862. The electromagnetic quantities
involved in Maxwell's equations depend x € Q CRY, t € [0, T].

Maxwell system
oD —curlH=—J Ampere’s law

divD=p Gauss law
d:B+curlE=0 Faraday’s law
divB =0 Gauss law

J:electric current density

D:electric displacement ~ H:magnetic field
E:electric field

p:electric charge density B:magnetic field induction



Linear wave equations

Electro-magnetic waves

Vacuum

In vacuum with no electric charges we have

J=0, p=0
and the material laws
D=¢E
B=uH

with

permeability 1t > 0
permittivity € > 0



Linear wave equations

First-order differential systems

For all discussed cases, we obtain a system of J equations in RP
Mo:;u+Au=f

A... First differential operator M... Weighting operator

m Elastic waves

u=(o,v), A(o,v)=—(g(v),dive), M(o,v)=(C'to,pv)

C_latd — S(V) = f]
pov —divo =1,
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Linear wave equations

First-order differential systems

Mo;u+Au ="
m Acoustic waves

u= (p7V)7 A(p,V) = —(diVV,Vp), M(p»V) = (Kﬁlpvpv)

Kk 1d:p —divv = f;
porv—Vp=1,

m Electro-magnetic waves

u=(H,E), A(H,E)= (curlE, —curlH), M(H,E) = (uH, €E)

WwoH + curlE = f;
€0:E—curlH =1,
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A space-time setting for linear hyperbolic operators

A space-time setting for linear hyperbolic operators

Basic assumptions

We consider a linear operator in space A € £L(D(A), H) with domain
D(A) C H where:

Q C RP is a bounded Lipschitz domain
H C Ly(Q;RY) is a Hilbert space
(v,w)w = (Mv,w)g q is weighted inner product

M € L.(Q,RL%/) is uniformly positive

sym
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A space-time setting for linear hyperbolic operators

Homogeneous boundary conditions

Elastic waves D(A) = H(div, ;RD) x Hy (4 RP)
Acoustic waves D(A) = HY(Q) x Ho(div,Q)

Electro-magnetic waves  D(A) = Ho(curl, Q) x H(curl, )

)=
Skew-adjoint (Av,w)o.o =—(v,AW)oo V,w € D(A)
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The variational setting

In abstract setting we consider the operator
L=Mod;+A
on the space-time cylinder Q = Q x (0, T). We observe that
(Lv,W)o.@ = —(v,Lw)o @, V,w € CH(Q;RY).
Depending on L we define the space

H(L, Q) = {veLy(Q;R"): g € Lr(Q;R’) exists with
(g, W)o,@ =—(v,Lw),q forallw € Cé(Q;RJ)}.

Now we extend L to this space and H(L,) is a Hilbert space w.r.t. norm

IVliee = \/IIVI5 o + 1115,
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The variational setting

A space-time setting for linear hyperbolic operators

To study operator L in £(V,W) and the evolution equation
Llu=f
we fix the following setting

V C H(L, Q) is the closure of {ve C(][0, T];D(A)) : v(0) = 0}

W = L(V) is a subspace of Ly(Q;R’)

|w||3, = (Mw,w)g g is weighted norm

V]2 = ||v]|& + |IM1Lv||3, is weighted graph norm on V
This process extends to initial values ug # 0 by replacing f(t) in

Mos;u+Au=f

with f(t) — Aug.
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The variational setting

Babuska-Aziz theorem

Let V and W be Hilbert spaces.Then a linear mapping L:V — W is an
isomorphism if and only if the associated form a: V x W — R satisfies
the following conditions:

(i) Continuity there exists C >0 s.t
|a(v,w)| < Cllv]lv[lwliw (1)
(i) Inf-sup condition there exists & > 0 s.t

a(v,w)

SUPwew Wil > al|vllv forallv e V (2)

(iii) For every w € W, there exists v € V with a(v,w) # 0
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The variational setting

Babuska-Aziz theorem

Supplement. If we assume only (i) and (ii) then
L:V—{weW;a(v,w)=0forallv eV} cW
is an isomorphism. Moreover (2) is equivalent to
ILv]ly = alvllv forallve V

The name for condition (2) comes from the equivalent formulation

W) 450,

» Cavw)
VIV T v Twliw =
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The variational setting

Assume that (Az,z)g o > 0 for z € D(A). Then, the bilinear form b(,-) is
continuous and inf-sup stable in V x W with B = (4T2+1) 2 e,

b(v,w)

SUPWGW\{O}W > Blvllv vev

Theorem

For given f € Lp(Q;R’) there exists a unique solution u € V of
(Lu,w)o@ = (f,W)o @ WEW

satisfying the a priori bound ||uly < vV4T2+1||M~/2f0.q
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The variational setting

Remark

The approach presented here to show that L € £(V,W) is an invertible
operator in suitable Hilbert space V and W only requires to show that L

is injective.



