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What do we want?

1 Compute the solution u of the PDE

M∂tu + div(F (u)) = f

with zero initial and boudary conditions.

2 Evaluate the functional E at u or other words compute E (u)
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Goal Functional

We call this E goal functional.
Examples for goal functionals:

E1(u) :=
∫

Γ u(T , x)dx for some Γ ⊆ Ω,

E2(u) :=
∫
Q̃ Gu(t, x)d(t, x) for some Q̃ ⊆ Q and some linear

operator G ,

E3(u) := E1(u) + cE2(u) for some constant c ∈ R,

E4(u) := E1(u)2 + E2(u)2 + E3(u)2.

However in this presentation we just consider linear goal functionals as
E1,E2 and E3.
Since we consider E as linear we can write 〈E , v〉 := E (v).

Endtmayer Bernhard (JKU) Duality Based Error Estimation December 13, 2016 4 / 13



What to do?

To compute 〈E , u〉 we first have to compute u.
However unfortunately this is usually not possible exactly.
Therefore we have to use an approximation uh for u and we approximate
〈E , u〉 ≈ 〈E , uh〉.
Wishes:

high accuracy in our goal functional evaluation,

low computational costs

Solution:

adaptive mesh refinement for our goal functional.

However to refine adaptively we have to localize the error in the goal
functional.
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The Primal and The Dual Problem

First of all we consider

The Primal Problem

Find u ∈ V such that

(Lu,w)0,Q = (f ,w)0,Q ∀w ∈W ,

and

The Dual Problem

Find u∗ ∈ V ∗ such that

(w , L∗u∗)0,Q = 〈E ,w〉 ∀w ∈W .
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Localization of the Error in our Goal Functional

Let u∗ be sufficiently smooth and wh ∈Wh then for our error holds

〈E , u − uh〉

=
∑
R∈R

(f −M∂tuh−div(F (uh)), u∗)0,R + (nK .(F (uh)−F up
K (uh)), u∗)0,I×∂K

=
∑
R∈R

(f −M∂tuh − div(F (uh)), u∗ − wh)0,R+

(nK .(F (uh)− F up
K (uh)), u∗ − wh)0,I×∂K
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With Chauchy Schwarz inequality we obtain that

〈E , u − uh〉 ≤
∑
R∈R
‖f −M∂tuh − div(F (uh))‖0,R‖u∗ − wh‖0,R+

‖nK .(F (uh)− F up
K (uh))‖0,I×∂K‖u∗ − wh‖0,I×∂K ∀wh ∈Wh

So by choosing a projection Ih : V ∗ 7→Wh we can localize our error
estimator for the element R ∈ R which is defined by

ηR := ‖f −M∂tuh − div(F (uh))‖0,R‖u∗ − Ihu
∗‖0,R+

‖nK .(F (uh)− F up
K (uh))‖0,I×∂K‖u∗ − Ihu

∗‖0,I×∂K .

Endtmayer Bernhard (JKU) Duality Based Error Estimation December 13, 2016 8 / 13



However we do not know u∗!
But we can approximate u∗ by using again a finite element method. We
solve the Problem:
Find u∗h ∈Wh such that

(Lvh, u
∗
h) = 〈E , vh〉 ∀vh ∈ Vh.

For the operator Ih we can choose a higher order recovery operator(or a
lower order interpolation operator).
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Nonlinear Goal Functionals

Now we know how to deal with linear goal functionals.
Let E ∈ C 2(W ) now be a nonlinear goal functional. Then we can
represent the error as

E (uh)−E (u) = 〈E ′(uh), u−uh〉+
∫ 1

0
(1−s)E ′′(uh+s(u−uh))[u−uh, u−uh]ds

and hence the second term just depends on quadratic on ‖u − uh‖0,Q this
can be neglected if E ′′ is bounded. Hence we can apply the Theory for
linear goal functionals.
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The Algorithm

1 choose low order polynomials on the initial mesh

2 while maxR∈R(pR) < pmax or maxR∈R(ρR) < ρmax

3 compute uh
4 compute u∗h and Ihu

∗
h

5 compute ηR for all R ∈ R
6 if the error is small enough (

∑
R∈R ηR ≤ TOL) STOP

7 mark cells R ∈ R for which holds that ηR > ν maxR̃∈R(ηR̃)

8 increase polynomial degrees on marked cells

9 while end
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