A Space-Time Petrov-Galerkin method for Linear Wave Equations following [Wieners, 2016] Talk No.3

Endtmayer Bernhard

JKU

Endtmayer.Bernhard@gmx.at

December 13, 2016

What do we want?

2 What to do?

Ouality Based Error Estimation

- The Primal and the Dual Problem
- Localization of the Error in our Goal Functional
- Nonlinear Goal Functionals

The Algorithm

Compute the solution u of the PDE

$$M\partial_t u + div(F(u)) = f$$

with zero initial and boudary conditions.

2 Evaluate the functional E at u or other words compute E(u)

We call this E goal functional. Examples for goal functionals:

- $E_1(u) := \int_{\Gamma} u(T, x) dx$ for some $\Gamma \subseteq \Omega$,
- $E_2(u) := \int_{\tilde{Q}} Gu(t,x) d(t,x)$ for some $\tilde{Q} \subseteq Q$ and some linear operator G,
- $E_3(u) := E_1(u) + cE_2(u)$ for some constant $c \in \mathbb{R}$,

•
$$E_4(u) := E_1(u)^2 + E_2(u)^2 + E_3(u)^2$$
.

However in this presentation we just consider linear goal functionals as E_1, E_2 and E_3 .

Since we consider E as linear we can write $\langle E, v \rangle := E(v)$.

To compute $\langle E, u \rangle$ we first have to compute u. However unfortunately this is usually not possible exactly. Therefore we have to use an approximation u_h for u and we approximate $\langle E, u \rangle \approx \langle E, u_h \rangle$. Wishes:

- high accuracy in our goal functional evaluation,
- low computational costs

Solution:

• adaptive mesh refinement for our goal functional.

However to refine adaptively we have to localize the error in the goal functional.

First of all we consider

The Primal Problem

Find $u \in V$ such that

$$(Lu, w)_{0,Q} = (f, w)_{0,Q} \quad \forall w \in W,$$

and

The Dual Problem

Find $u^* \in V^*$ such that

$$(w, L^*u^*)_{0,Q} = \langle E, w \rangle \quad \forall w \in W.$$

A 1

Let u^* be sufficiently smooth and $w_h \in W_h$ then for our error holds

 $\langle E, u - u_h \rangle$

$$=\sum_{R\in\mathcal{R}}(f-M\partial_t u_h-div(F(u_h)),u^*)_{0,R}+(n_K.(F(u_h)-F_K^{up}(u_h)),u^*)_{0,I\times\partial K}$$

$$=\sum_{R\in\mathcal{R}}(f-M\partial_t u_h-div(F(u_h)),u^*-w_h)_{0,R}+$$
$$(n_{\mathcal{K}}.(F(u_h)-F_{\mathcal{K}}^{up}(u_h)),u^*-w_h)_{0,I\times\partial\mathcal{K}}$$

With Chauchy Schwarz inequality we obtain that

$$\langle E, u-u_h
angle \leq \sum_{R \in \mathcal{R}} \|f - M \partial_t u_h - div(F(u_h))\|_{0,R} \|u^* - w_h\|_{0,R} +$$

$$\|n_{\mathcal{K}}(\mathcal{F}(u_h) - \mathcal{F}_{\mathcal{K}}^{up}(u_h))\|_{0,l \times \partial \mathcal{K}} \|u^* - w_h\|_{0,l \times \partial \mathcal{K}} \quad \forall w_h \in W_h$$

So by choosing a projection $I_h: V^* \mapsto W_h$ we can localize our error estimator for the element $R \in \mathcal{R}$ which is defined by

$$\eta_{R} := \|f - M\partial_{t}u_{h} - div(F(u_{h}))\|_{0,R} \|u^{*} - I_{h}u^{*}\|_{0,R} + \|n_{K}.(F(u_{h}) - F_{K}^{up}(u_{h}))\|_{0,I \times \partial K} \|u^{*} - I_{h}u^{*}\|_{0,I \times \partial K}.$$

However we do not know u^* !

But we can approximate u^* by using again a finite element method. We solve the Problem:

Find $u_h^* \in W_h$ such that

$$(Lv_h, u_h^*) = \langle E, v_h \rangle \quad \forall v_h \in V_h.$$

For the operator I_h we can choose a higher order recovery operator(or a lower order interpolation operator).

Now we know how to deal with linear goal functionals. Let $E \in C^2(W)$ now be a nonlinear goal functional. Then we can represent the error as

$$E(u_h)-E(u) = \langle E'(u_h), u-u_h \rangle + \int_0^1 (1-s)E''(u_h+s(u-u_h))[u-u_h, u-u_h]ds$$

and hence the second term just depends on quadratic on $||u - u_h||_{0,Q}$ this can be neglected if E'' is bounded. Hence we can apply the Theory for linear goal functionals.

- Choose low order polynomials on the initial mesh
- **2** while $\max_{R \in \mathcal{R}}(p_R) < p_{max}$ or $\max_{R \in \mathcal{R}}(\rho_R) < \rho_{max}$
- \bigcirc compute u_h
- compute u_h^* and $I_h u_h^*$
- compute η_R for all $R \in \mathcal{R}$
- if the error is small enough $(\sum_{R \in \mathcal{R}} \eta_R \leq TOL)$ STOP
- mark cells $R \in \mathcal{R}$ for which holds that $\eta_R > \nu \max_{\tilde{R} \in \mathcal{R}} (\eta_{\tilde{R}})$
- increase polynomial degrees on marked cells
- while end

Christian Wieners (2016)

A space time Petrov-Galerkin Method for linear wave equations *Zurich Summer School 2016*.

Thanks for your Attention