Dirk Pauly

Introduction to Maxwell's Equations Exercise 4

Problem 1

Let H be a Hilbert space and let $M: D(M) \subset H \to H$ be linear and selfadjoint with reduced operator

$$\mathcal{M}: D(\mathcal{M}) := D(\mathbf{M}) \cap \overline{R(\mathbf{M})} \subset \overline{R(\mathbf{M})} \to \overline{R(\mathbf{M})}.$$

(This implies that M and \mathcal{M} are lddc. Why?) Moreover, let $D(\mathcal{M}) \hookrightarrow \mathsf{H}$ be compact and let $\lambda \in \mathbb{R} \setminus \{0\}$. Show:

- (i) $0 \notin \sigma_{\mathsf{p}}(M) \Rightarrow 0 \in \rho(M).$
- (ii) $0 \in \rho(\mathcal{M})$.
- (iii) $N(M \lambda) = N(\mathcal{M} \lambda)$ is finite dimensional.

(iv) $\sigma(M) \setminus \{0\} = \sigma_p(M) \setminus \{0\} = \sigma_p(\mathcal{M}) = \sigma(\mathcal{M})$ is discrete, i.e., $\sigma(\mathcal{M})$ has no accumulation point in \mathbb{R} .

Hint: (iii) and (iv) can be proved by the same indirect argument.

Problem 2

Let H_1 , H_2 , H_3 be Hilbert spaces and let

$$A_1: D(A_1) \subset H_1 \to H_2, \quad A_2: D(A_2) \subset H_2 \to H_3$$

be lddc operators with <u>closed ranges</u> and adjoints

$$\mathbf{A}_1^*: D(\mathbf{A}_1^*) \subset \mathsf{H}_2 \to \mathsf{H}_1, \quad \mathbf{A}_2^*: D(\mathbf{A}_2^*) \subset \mathsf{H}_3 \to \mathsf{H}_2.$$

The corresponding reduced operators are

$$\mathcal{A}_1: D(\mathcal{A}_1) := D(\mathcal{A}_1) \cap \overline{R(\mathcal{A}_1^*)} \subset \overline{R(\mathcal{A}_1^*)} \to \overline{R(\mathcal{A}_1)}, \quad \mathcal{A}_2: D(\mathcal{A}_2) := D(\mathcal{A}_2) \cap \overline{R(\mathcal{A}_2^*)} \subset \overline{R(\mathcal{A}_2^*)} \to \overline{R(\mathcal{A}_2)}$$

with adjoints

$$\mathcal{A}_1^*: D(\mathcal{A}_1^*) := D(A_1^*) \cap \overline{R(A_1)} \subset \overline{R(A_1)} \to \overline{R(A_1^*)}, \quad \mathcal{A}_2^*: D(\mathcal{A}_2^*) := D(A_2^*) \cap \overline{R(A_2)} \subset \overline{R(A_2)} \to \overline{R(A_2^*)}.$$

All operators are lddc and (A_1, A_1^*) , (A_2, A_2^*) as well as $(\mathcal{A}_1, \mathcal{A}_1^*)$, $(\mathcal{A}_2, \mathcal{A}_2^*)$ define dual pairs. We define $D_2 := D(A_2) \cap D(A_1^*)$. Moreover, let the sequence or complex property be satisfied, that is

$$A_2 A_1 \subset 0$$
, i.e., $R(A_1) \subset N(A_2)$.

Note that then also $A_1^* A_2^* \subset 0$, i.e., $R(A_2^*) \subset N(A_1^*)$ holds. In other words, we have the following sequences or complexes:

$$D(\mathbf{A}_1) \xrightarrow{\mathbf{A}_1} D(\mathbf{A}_2) \xrightarrow{\mathbf{A}_2} \mathbf{H}_3$$
$$\mathbf{H}_1 \xleftarrow{\mathbf{A}_1^*} D(\mathbf{A}_1^*) \xleftarrow{\mathbf{A}_2^*} D(\mathbf{A}_2^*)$$

Let us consider the following saddle point problem. For given (f, g) find (x, y), such that

$$A_{2}^{*} A_{2} y + A_{1} x + \pi_{2} y = g,$$

$$A_{1}^{*} y = f.$$
(1)

Show:

(i) There exists a unique pair

$$(x,y) \in D(\mathcal{A}_1) \times (D_2 \cap D(A_2^*A_2)) \subset R(A_1^*) \times H_2$$

solving (1), if and only if $(f,g) \in R(A_1^*) \times H_2$. The solution (x,y) depends continuously on the data (f,g).

(ii) $R(A_1)$ is closed, if and only if the inf/sup-conditions

$$0 < \frac{1}{c_1} = \inf_{0 \neq x \in D(\mathcal{A}_1)} \sup_{y \in D(\mathcal{A}_2)} \frac{\langle \mathcal{A}_1 \, x, y \rangle_{\mathcal{H}_2}}{|x|_{\mathcal{H}_1} |y|_{\mathcal{H}_2}} = \inf_{0 \neq x \in D(\mathcal{A}_1)} \sup_{y \in D(\mathcal{A}_1^*)} \frac{\langle \mathcal{A}_1 \, x, y \rangle_{\mathcal{H}_2}}{|x|_{\mathcal{H}_1} |y|_{\mathcal{H}_2}} = \inf_{0 \neq x \in D(\mathcal{A}_1)} \sup_{y \in D(\mathcal{A}_1^*)} \frac{\langle \mathcal{A}_1 \, x, y \rangle_{\mathcal{H}_2}}{|x|_{\mathcal{H}_1} |y|_{\mathcal{H}_2}}$$

. .

hold.

(iii) $R(A_2)$ is closed, if and only if the inf/sup-conditions

$$0 < \frac{1}{c_2} = \inf_{0 \neq y \in D(\mathcal{A}_2)} \sup_{z \in D(\mathcal{A}_2^*)} \frac{\langle \mathbf{A}_2 \, y, z \rangle_{\mathbf{H}_3}}{|y|_{\mathbf{H}_2} |z|_{\mathbf{H}_3}} = \inf_{0 \neq y \in D(\mathcal{A}_2)} \sup_{z \in D(\mathcal{A}_2^*)} \frac{\langle \mathbf{A}_2 \, y, z \rangle_{\mathbf{H}_3}}{|y|_{\mathbf{H}_2} |z|_{\mathbf{H}_3}}$$

hold.

Remark: The bilinear form $(\varphi, \psi) \mapsto a(\varphi, \psi) := \langle A_2 \cdot, A_2 \cdot \rangle_{\mathsf{H}_3}$ is coercive over

$$D(\mathcal{A}_2) = D(\mathcal{A}_2) \cap R(\mathcal{A}_2^*) = D(\mathcal{A}_2) \cap N(\mathcal{A}_1^*) \cap K_2^{\perp}$$

by the Poincaré type estimate, if and only if $R(A_2)$ is closed, and \mathcal{A}_1^{-1} and $(\mathcal{A}_1^*)^{-1}$ exist as continuous operators, if and only if $R(A_1)$ is closed. Hence, by the latter results the solution theory holds, if and only if the following two conditions are satisfied:

- (1) *a* is coercive over $D(A_2) \cap N(A_1^*) \cap K_2^{\perp}$.
- (2) The inf/sup-condition

$$0 < \frac{1}{c_1} = \inf_{0 \neq x \in D(\mathcal{A}_1)} \sup_{y \in D(\mathcal{A}_2)} \frac{\langle \mathbf{A}_1 \, x, y \rangle_{\mathbf{H}_2}}{|x|_{\mathbf{H}_1} |y|_{\mathbf{H}_2}}$$

holds.

These conditions are implied by the following two classical Babuska/Brezzi conditions:

- (1') *a* is coercive over $D(A_2) \cap N(A_1^*)$.
- (2') The inf/sup-condition

$$0 < \frac{1}{c_1} = \inf_{0 \neq x \in D(\mathcal{A}_1)} \sup_{y \in D(\mathcal{A}_2)} \frac{\langle \mathbf{A}_1 \, x, y \rangle_{\mathbf{H}_2}}{|x|_{\mathbf{H}_1} |y|_{\mathbf{H}_2}}$$

holds.

(1'), (2') are stronger assumptions than (1), (2) as they do not handle the cohomology group K_2 . For $K_2 = \{0\}$ they are equivalent.