Introduction to Maxwell's Equations

Exercise 3

Problem 1

Let $\Omega \subset \mathbb{R}^{3}$ be open. Show that the extensions by zero \hat{u}, \hat{E}, resp. \hat{H} of some $u \in \stackrel{\circ}{H}^{1}(\Omega), E \in \stackrel{\circ}{\mathrm{R}}(\Omega)$, resp. $H \in \stackrel{\circ}{\mathrm{D}}(\Omega)$ belong to $\mathrm{H}^{1}\left(\mathbb{R}^{3}\right), \mathrm{R}\left(\mathbb{R}^{3}\right)$, resp. $\mathrm{D}\left(\mathbb{R}^{3}\right)$.

Problem 2

Let $B, D \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right), f \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}\right)$. Show the following Poincaré (potential) formulas:
(i) The function $u \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}\right)$ defined by

$$
u(x):=\int_{0}^{1} x \cdot B(t x) \mathrm{d} t
$$

satisfies

$$
\nabla u(x)=B(x)+\int_{0}^{1} t x \times(\operatorname{rot} B)(t x) \mathrm{d} t .
$$

Especially, for B with rot $B=0$ it holds $\nabla u=B$.
Note the following: Let $\varphi \in \stackrel{\circ}{C}^{\infty}(\mathbb{R})$ be defined by $\varphi(t):=\tilde{u}(t x)$ with some $\tilde{u} \in \stackrel{\circ}{C}^{\infty}(\mathbb{R} 3, \mathbb{R})$. Then $\varphi^{\prime}(t)=x \cdot(\tilde{\nabla} u)(t x)$ and hence for $\tilde{B}:=\nabla \tilde{u} \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$, which implies $\operatorname{rot} \tilde{B}=0$,

$$
\tilde{u}(x)-\tilde{u}(0)=\varphi(1)-\varphi(0)=\int_{0}^{1} \varphi^{\prime}(t) \mathrm{d} t=\int_{0}^{1} x \cdot \tilde{B}(t x) \mathrm{d} t .
$$

(ii) The vector field $E \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}\right)$ defined by

$$
E(x):=-\int_{0}^{1} t x \times D(t x) \mathrm{d} t
$$

satisfies

$$
\operatorname{rot} E(x)=D(x)-\int_{0}^{1} t^{2} x(\operatorname{div} D)(t x) \mathrm{d} t
$$

Especially, for D with $\operatorname{div} D=0$ it holds $\operatorname{rot} E=D$.
(ii) The vector field $H \in \stackrel{\circ}{C}^{\infty}\left(\mathbb{R}^{3}\right)$ defined by

$$
H(x):=\int_{0}^{1} t^{2} x f(t x) \mathrm{d} t
$$

satisfies div $H=f$.
Note: There might be some wrong signs in the formulas, which have to be corrected as well. ;) Hint for (ii): First, prove the formula

$$
\begin{aligned}
\operatorname{rot}(B \times D) & =\partial_{D} B-(\operatorname{div} B) D+(\operatorname{div} D) B-\partial_{B} D \\
& =\sum_{n=1}^{3} D_{n} \partial_{n} B-(\operatorname{div} B) D+(\operatorname{div} D) B-\sum_{n=1}^{3} B_{n} \partial_{n} D .
\end{aligned}
$$

Problem 3

Let H_{1} and H_{2} be Hilbert spaces and let

$$
\mathrm{A}: D(\mathrm{~A}) \subset \mathrm{H}_{1} \rightarrow \mathrm{H}_{2}
$$

be a lddc operator. Show that

$$
\mathrm{M}:=\left[\begin{array}{cc}
0 & \mathrm{~A}^{*} \\
\mathrm{~A} & 0
\end{array}\right]: D(\mathrm{M}):=D(\mathrm{~A}) \times D\left(\mathrm{~A}^{*}\right) \subset \mathrm{H}_{1} \times \mathrm{H}_{2} \rightarrow \mathrm{H}_{1} \times \mathrm{H}_{2} ; \quad(x, y) \mapsto\left(\mathrm{A}^{*} y, \mathrm{~A} x\right)
$$

is selfadjoint. Similarly, show that

$$
\mathrm{M}_{-}:=\left[\begin{array}{cc}
0 & -\mathrm{A}^{*} \\
\mathrm{~A} & 0
\end{array}\right], \quad i \mathrm{M}_{-}:=i\left[\begin{array}{cc}
0 & -\mathrm{A}^{*} \\
\mathrm{~A} & 0
\end{array}\right]
$$

is skew-selfadjoint resp. selfadjoint.

